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Abstract. The lack of an universal modeling approach for turbulence in Reynolds-
Averaged Navier-Stokes simulations creates the need for quantifying the mod-
elling error without additional validation data. Bayesian Model-Scenario Averag-
ing (BMSA), which exploits the variability on model closure coefficients across
several flow scenarios and multiple models, gives a stochastic, a posteriori es-
timate of a quantity of interest. The full BMSA requires the propagation of the
posterior probability distribution of the closure coefficients through a CFD code,
which makes the approach infeasible for industrial relevant flow cases. By using
maximum a posteriori (MAP) estimates on the posterior distribution, we drasti-
cally reduce the computational costs. The approach is applied to turbulent flow
in a pipe at Re = 44,000, over 2D periodic hills at ReH = 5600 and finally over a
generic falcon jet test case (Industrial challenge IC-03 of the UMRIDA project).
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1 Introduction

The understanding of turbulence is one of the key challenges in classical mechanics. A
turbulent flow has a three-dimensional, time-dependent and random velocity field [1],
which is composed of a wide range of scales varying from the level close to molecu-
lar dissipation of heat to the scales determined by the boundary conditions of the flow
domain. Despite great developments in the field of high-fidelity turbulence modelling,
such as improvements of the large eddy simulation (LES) approach and hybrid-methods
combining Reynolds-averaged Navier-Stokes (RANS) and LES, RANS ’continues to
be the standard approach used to predict a wide range of flows for very complex con-
figurations across virtually all aerospace product categories’ [2]. However, using the



less-computationally demanding RANS approach comes at the price of uncertainty due
to approximate physical modelling such as turbulence modelling.

In recent years research has focussed on two types of epistemic uncertainties in
relation to turbulence modelling, namely parameter uncertainty and model-form uncer-
tainty. Parameter uncertainty arises due to the fact that the closure coefficients of the
models are determined via calibration against simple flow configurations using exper-
imental data or scale-resolving simulations. A Bayesian calibration incorporating both
the error of the experimental data and model inadequacy revealed how strongly the
posterior distributions of the closure coefficients vary even for a simple flow scenario
of flow over a flat plate, with different pressure gradients ranging from favourable to
strongly adverse [3]. This observation makes the generalisation of the coefficient un-
justifiable. Similarly, a Bayesian analysis dealing with the predictive performance of
commonly used turbulence models, i.e. Launder-Sharma k− ε , Wilcox k−ω , Spalart-
Allmaras, Baldwin-Lomax and Stress-ω , showed that no superior model could be iden-
tified either for the given flow configurations [3].

Bayesian Model-Scenario Averaging (BMSA) uses a set of different closure models
to compute both an ensemble prediction as well as a-posteriori measures of uncertainty
due to the choice of closure model. In addition, the variability of the closure coefficients
over different calibration scenarios is included to inject uncertainty caused by applying
a set of coefficients to a predictive case for which they were not specifically calibrated
[4]. The full BMSA approach requires the propagation of various posterior distribu-
tions through a CFD code, an expensive endeavour when the underlying flow case is
computationally expensive. The costs could be mitigated by using surrogate models per
turbulence model in order to propagate the distributions more efficiently [5]. However,
also the construction of the surrogate can become expensive for models with many clo-
sure coefficients.

In this work we use a major simplification of the full BMSA approach in order to
make the technique accessible for industrial flow cases. The reduction of the costs is
based on using maximum a posteriori (MAP) estimates of the posterior distributions of
the closure coefficients, which means that only a single set of closure coefficients per
scenario and per model needs to be propagated through the code [6]. Furthermore, the
BMSA method was developed using data of flat plate boundary layer flows, for which
the Bayesian inference of the posterior closure coefficient was conducted with a cheap
boundary-layer code. The method has recently been applied to airfoil and wing cases
as examples in order to assess the predictive capabilities of the BMSA framework for
wall-bounded flows in external aerodynamics [6], which represents a natural next step
in terms of flow complexity. In this work we apply the method to other flow cases such
as flow in a turbulent pipe at Re = 44,000 and flow over periodic hills at ReH = 5600 in
order to assess the robustness of the method also for flow configurations outside of this
natural domain. Finally, we also show results for one of the industrial challenges of the
UMRIDA project: a generic Falcon Jet (IC-03).



2 Bayesian predictive methodology

2.1 Calibration

The BMSA framework is based on the Bayesian calibration of the coefficients of closure
models. Treating calibration as a stochastic problem we obtain posterior probability dis-
tributions for the coefficients, which serve as our uncertain estimates of the coefficients
under the measurement error of the reference data and the modelling error. The data
used for the calibration consists of boundary-layer data-sets from the 1968 AFOSR-
IFP-Stanford conference proceedings [7], which are both highly resolved and subject to
low measurement noise. The set contains a collection of wide range of favourable and
adverse pressure gradients.

A scenario, denoted S, is a particular flow set-up, including boundary-conditions,
material parameters, and all other physical properties needed to define the flow, with
corresponding experimental data z. The CFD code mCFD(S;M,θθθ) takes as arguments
the scenario S ∈ S = {S1, . . . ,SK}, a turbulence model M ∈M = {M1, . . . ,MI} and
its closure-coefficients θθθ . Given an operator Hz(·) that maps the state to the measured
quantities z we can define a statistical model to relate z and θθθ :

z = δ [Hz ◦mCFD(S;M,θθθ)]+ ε, (1)

where ε , δ are random-variables (RVs) representing measurement noise and multiplica-
tive model error respectively. The error of the measurements is modelled as zero-mean
additive Gaussian noise and the RV δ is a representation for the model error, which
following the approach of Cheung et. al. [8] specifies δ as a correlated Gaussian pro-
cess, see also [3]. The Gaussian choice for both ε and δ yields a Gaussian likelihood
function, i.e. the pdf describing the probability of observing the data given a realization
of θθθ . Finally, an application of Bayes theorem [9] yields the expression for the posterior
distribution of θθθ

p(θθθ |z,M,S) =
p(z|θθθ ,M,S) p(θθθ |M,S)

p(z|M,S)
∝ p(z|θθθ ,M,S) p(θθθ |M,S) . (2)

Here, p(θθθ |M,S) is the prior distribution which represents our knowledge of θθθ prior to
training M on z. Since the denominator in (2) does not depend on θθθ it is omitted from
consideration.

To obtain samples from the posterior distribution p(θθθ |z,M,S), we employ the Markov-
Chain Monte Carlo method [10]. To reach convergence of the Markov-chain, we ob-
servered that roughly 40,000 code samples were required [3]. Ordinarly this would
constitute an excessive strain on available computational resources in a CFD context.
However, as our experimental data consisted of boundary-layer quantities, we were in
a position to use a fast boundary layer code. As such, no real computational bottleneck
exists during the calibration phase.

2.2 Prediction

Let ∆ be a quantity of interest (QoI) in a particular scenario, which may be a scalar,
vector, or functional quantity derived from the flow-state, which can be expressed as

∆ ' H∆ ◦mCFD(S̃;M,θθθ), (3)



in which S̃ represents a flow scenario outside of the set of scenarios used within the
calibration phase.

We wish to obtain a stochastic estimate of ∆ conditional on a set of models M and
a set of training scenarios S for the predictive scenario S̃ /∈S . The BMSA methodol-
ogy offers the evaluation of the posterior predictive distribution (ppd) for ∆ in case S̃
conditional on all training data:

p(∆ | S̃,z) =
I

∑
i=1

K

∑
k=1

∫
ΘΘΘ iii

p(∆ | S̃,Mi,θθθ) p(θθθ | Sk,Mi,zk)P(Mi | Sk,zk)P(Sk)dθθθ . (4)

The first term on the right-hand side inside the integral represents the probabilistic
equivalent of the simulation results for the QoI given the flow scenario S̃, a turbulence
model Mi and closure coefficients θθθ . The second and third terms are the posterior prob-
ability density distribution of the closure coefficients and the posterior model probabili-
ties respectively, which are the output of the previously conducted calibration procedure
summarized in Section 2.1 and detailed in Edeling et al. [3,4]. The last term represents
the scenario probabilities. The solution of the multi-dimensional integral over the clo-
sure coefficients is the expensive part of the method, because it requires as many code
calls as the entries in the Markov-chain, in this case 40,000.

Therefore to obtain a practical estimate of p(∆ | S̃,z) we propose to approximate
the marginal posterior probability distributions p(θθθ | Sk,Mi,zk) with Dirac-δ functions
at their maximum a posteriori (MAP) values4

θθθ
MAP
i,k := argmax

θθθ∈ΘΘΘ iii

p(θθθ | Sk,Mi,zk) (5)

so that

p(θθθ | Sk,Mi,zk)' δ

(
θθθ −θθθ

MAP
i,k

)
. (6)

The effect of this approxmation is to neglect the effect of within-model within-scenario
variance on the ppd. Thus the ppd variance will be reduced, but still include the effect
of multiple models and scenarios. Note that if perfectly plentiful data were available in
the training scenarios (and the models were able to fit the data exactly for some values
of the closure coefficients), then p(θθθ | Sk,Mi,zk) would be δ -functions. So one way to
think of this approximation is as neglecting the effect of imperfect training.

Substituting (6) into (4) leads to an approximation of the posterior predictive distri-
bution p(∆ | z)' p̂(∆ | z)

p̂(∆ | S̃,z) =
I

∑
i=1

K

∑
k=1

P(Mi | Sk,zk)P(Sk)
∫

ΘΘΘ iii

p(∆ | S̃,Mi,θθθ)δ

(
θθθ −θθθ

MAP
i,k

)
dθθθ

=
I

∑
i=1

K

∑
k=1

P(Mi | Sk,zk)P(Sk) p(∆ | S̃,Mi,θθθ
MAP
i,k )

(a)
=

I

∑
i=1

K

∑
k=1

P(Mi | Sk,zk)P(Sk) δ
(
∆ −mCFD

(
S̃;Mi,θθθ

MAP
i,k

))
. (7)

4The MAP estimates are available online at [11]



Equality (a) follows from the fact that the prediction of mCFD is deterministic for deter-
ministic θθθ . The approximate ppd is therefore a weighted-sum of I×K δ -functions, one
at each prediction of mCFD(S̃) for each model, and each scenario’s MAP-estimate of θθθ .
The cost of evaluating the ppd is I×K runs of mCFD(S̃).

The first moment of p̂(∆ | S̃,z) can be derived directly from (7). The expectation is

E[∆ | S̃,z] =
∫

∆ · p̂(∆ | S̃,z)d∆

(a)
=

I

∑
i=1

K

∑
k=1

P(Mi | Sk,zk)P(Sk)
∫

∆ ·δ
[
∆ −mCFD

(
S̃;Mi,θθθ

MAP
i,k

)]
d∆

(b)
=

I

∑
i=1

K

∑
k=1

P(Mi | Sk,zk)P(Sk) mCFD

(
S̃;Mi,θθθ

MAP
i,k

)
, (8)

where (a) follows from (7) and (b) is the integral-identity encoding the statement that
the mean of a deterministic quantity is the quantity itself.

Unlike the posterior model probabilities P(Mi | Sk,zk), which are informed using
the reference data during the training phase [4], the scenario probabilities P(Sk) are of a
predictive nature. If reference data for the scenario S̃ would be available, P(Sk) could be
optimized accordingly. However, in a predictive setting this data isn’t always available.
Therefore, P(Sk) is defined based on model agreement per scenario Sk: If the models
show a high level of agreement regarding the value of ∆ under a specific scenario Sk,
this scenario receives a higher weight compared to other scenarios, in which the models
rather disagree. For that we exploit the principle, that if S̃ is similar to Sk the models
are expected to give accordingly similar predictions, because θθθ

MAP
i,k has been calibrated

under the same data zk. As introduced in [4] this principle is modelled by

P(Sk) :=
ξ
−p
k

∑
K
j=1 ξ

−p
j

, ξk =
I

∑
i=1
‖mCFD

(
S̃;Mi,θθθ

MAP
i,k

)
−E[∆ | S̃,zk]‖2, (9)

in which p serves as a tuning parameter scaling the weighting procedure, i.e. for p = 0
all scenarios are equally weighted but for p→ ∞ a single scenario is preferred.

Given all terms in (7) we now want to deduce uncertainty estimates from the ppd. If
the full range of P(Mi | Sk,zk)P(Sk) is used, the uncertainty bound is largest and deter-
mined by the extreme predictions of the entire ensemble. However, a more reasonable
approach is to draw samples from the ppd and use percentiles as min/max levels to
obtain a confidence interval of the ppd leading potentially to tight uncertainty bounds.
This is done in the following.

3 Incompressible pipe flow at Re = 44,000

We apply the BMSA method to turbulent flow in a straight pipe at Re= 44,000 with val-
idation data from a DNS simulation [12]. This flow case is, together with turbulent flow
over a flat plate and channel flow, one of the three canonical wall-bounded flow types
[1]. The main difference between flow in a pipe or channel and over a flat plate, lies
in the development of the boundary layer. Assuming an uniform inflow into a circular



straight pipe a boundary layer at the wall develops and its thickness increases down-
stream similarly to the flat plate case. Forced by the geometry of the pipe the boundary
layers from all sides will eventually merge in the middle of the pipe. The distance from
the entrance of the pipe to the point, where the boundary layer fills the entire diame-
ter, is known as the entry length. Beyond the entry length the flow is homogeneous in
stream-wise direction. In contrast the boundary layer thickness of a flat plate flow with
zero pressure gradient is not bounded. However, for all these wall-bounded flow types
the physics close to the wall can be assumed to be similar. Therefore, with the appli-
cation of BMSA based on flat plate flow to pipe flow is a proof-of-concept in order to
assess the predictive capabilities of BMSA for wall-bounded flows in general.

3.1 Simulation setup

The validation of the BMSA method is based on a comparison with averaged veloc-
ity profiles from a DNS simulation [12]. Therefore, the steady-state RANS simulation
mimics the time-averaged DNS simulation by using appropriate boundary conditions
given in Table 1. In the DNS simulation the mass flow rate is kept constant via a time-
varying adjustment of the pressure gradient in the stream-wise direction [12]. For the
RANS simulation the mass flow rate is kept constant via a fixed inlet velocity and the
pressure gradient is set to zero at the inlet. At the outlet both the velocity gradients are
set to zero and pressure is set to zero. In this way the pressure drop is computed accord-
ing to the fixed mass flow. For the forward-simulations mCFD

(
Mi,θθθ

MAP
i,k

)
the results of

simulations with nominal values of the coefficients mCFD(Mi,θθθ
o
i,k) are used as an initial

condition in order to reduce iteration counts.5

Table 1. The Inlet conditions of velocity U , pressure P/ρ and turbulent quantities.[13]

U [m/s] P/ρ [m2/s2] k ε ω ν̃

Inlet (1,0,0)T n ·∇P = 0 0.00375 0.00835 25.0516 0.00027
Outlet n ·∇U = 0 (0,0,0)T n ·∇k = 0 n ·∇ε = 0 n ·∇ω = 0 n ·∇ν̃ = 0
Wall (0,0,0)T (0,0,0)T (0,0,0)T (0,0,0)T 8367238.00803 (0,0,0)T

The geometry of a straight pipe is determined by its diameter and length. While
the diameter D is set in order to achieve the target Reynolds number, the length of the
pipe needs to be chosen sufficiently longer than the entry length in order to overcome
all effects at the inlet, such as the usage of different closure coefficients or the uniform
inflow velocity profile. The entry length is estimated by an empirical relation based on
the Reynolds number [14]

Lturb = 1.359 ·D ·Re1/4
D ⇒ Lturb ∼ 20D. (10)

5The template-cases for each turbulence model are available on GitHub: https://
github.com/shmlzr/UQOpenFOAM

https://github.com/shmlzr/UQOpenFOAM
https://github.com/shmlzr/UQOpenFOAM


For all simulations a conservative value L = 200D was chosen. Due to the symmetry of
the case a wedge-shaped mesh with symmetric boundary conditions orthogonal to the
stream-wise direction was chosen[15]. Different meshes were initially studied, with a
total number of 2900, 5900 and 9900 cells respectively. The differences for the velocity
profiles between the meshes were negligible, but in order to keep the error small the
finest mesh was chosen for all forward simulations. In order to study the effect of the
turbulence modelling and not additional modelling due to wall-functions the thickness
of the smallest cells close to the wall was defined according to y+ ≤ 1.0 and Low-Re
turbulence models were used.

3.2 BMSA-prediction for radial velocity profile
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Fig. 1. BMSA prediction using different smart weighting tuning parameter p.

Applying the BMSA framework to the set of simulations leads to the expectation
of the radial velocity E(U/Ubulk|z) as shown in Figures 1(a) to 1(c) for different tun-
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ing parameters of the smart-weighting method p = [0,1,2]. For the confidence interval
10000 samples were drawn from the posterior predictive mass function given in eq. 7
for each x/R position. The 5th and 95th percentile of the population was used as the
lower and upper limit respectively, containing 90% of the samples. For p = 0, i.e. uni-
form weighting of the scenarios, the impact of outliers on the confidence interval is large
leading to an over-prediction of the modelling error. Outliers are caused by sensitivities
of the models with respect to certain coefficients leading to predictions very different
compared to the ensemble mean. The effect is already reduced for p = 1, for which the
confidence interval is covering a tight bound around the expectation. The shape matches
with the shape of the majority of the ensemble of forward simulations. For increasing
p the confidence interval becomes tighter, since the smart-weighting consecutively in-
creases the weight of Sk = 1300 as shown in Figure 2(b) and decreases the influence of
the others, reducing the overall variance. Interestingly, the MAP estimates for scenario
Sk = 1300 are acquired based on a flow over a flat plate with a moderate favourable
pressure gradient and a boundary layer close to an equilibrium state [4], which is very
similar to the conditions for the flow in a pipe. A comparison of the DNS data and the
expectation for different p via the L2-norm

||E[U/Ubulk|S̃,z]−Uo||2 (11)

given in Figure 2(a), where the high-resolution DNS data is interpolated by a cubic
spline to enable a point-by-point comparison, shows a minimal error for 0 < p < 2,
but also an increase of the error for higher values of p. Note that due to the use of
MAP estimates, the variance is missing the within-model within- scenario contribution.
Therefore, a reduction of the variance with smart-weighting should be done with care
in order to not reduce the already underestimated variance even further. Thus, the pur-
pose of the smart-weighting for the BMSA-with-MAP-approach should be to exclude
outliers, which can be achieved with relatively low p values. In such a way an optimum



of the width of the confidence interval and the correctness of the expectation can be
achieved.

0 1 2 3 4 5 6 7 8
p

0.5

1.0

1.5

2.0

2.5

∆
P
/
ρ

[m
2
s−

1
]

[∆P ∗ |S̃,z]
∆P ∗

o @Re=44,000

90% conf.

Fig. 3. BMSA prediction of pressure drop including confidence interval for several tuning param-
eter p of smart-weighting method.

Table 2. Pressure drop over pipe length for Launder-Sharma k− ε , Wilcox (2006) k−ω and
Spalart-Allmaras using nominal closure coefficient [4]. The corresponding Darcy friction coef-
ficient fDarcy is calculated using the Darcy-Weisbach equation. The empirical value for fDarcy
is based on the Colebrook equation for Re = 44,000 and the corresponding ∆P/ρ is calculated
using the Darcy-Weisbach equation.

Model ∆P/ρ [m2

s2 ] fDarcy

Wilcox(2006) k−ω 2.1427 0.02144
Launder-Sharma k− ε 2.0478 0.02049
Spalart-Allmaras 2.2074 0.02208

Empirical value 2.1499 0.021499

3.3 BMSA-prediction for pressure drop

Another relevant quantity of interest for the turbulent pipe flow is the pressure drop ∆P
over the pipe length. Table 2 gives the values for the pressure drop ∆P/ρ normalised
by the fluid density ρ and the corresponding Darcy friction coefficient fDarcy

fDarcy =
2 ∆P D
ρ L U2 (12)

per model. The empirical reference value for the pressure drop is calculated from the
Colebrook-White equation, which is an approximation of the empirical Moody-diagram,



1√
f
=−2log10

(
2.51

Re
√

f

)
(13)

with zero roughness at Re = 44,000. For several tuning parameters of the smart-
weighting methods, i.e. p ∈ [0,8], the BMSA expectation of the pressure drop E[∆P |
S̃,z] is shown in Figure 3 as well as the empirical reference data calculated based on
the Colebrook-White equation. Up to p = 4 the confidence interval still covers a range
including also the empirical reference value, which suggests that the method success-
fully gives a reasonable uncertainty range. For larger tuning parameters the confidence
interval reduces drastically and puts all weight on one single scenario, so that the con-
fidence interval is not visible any more. In line with the results for the velocity profile
(see Section 3.2), also for the pressure drop p=2 is a reasonable choice. The expecta-
tion consistently underestimates the true value and is therefore worse than the baseline
predictions, see Table 2. However, since the BMSA method wasn’t trained on pressure
drop data this is not unexpected and the main gain of BMSA are the confidence bounds
instead of replacing the baseline prediction with the point-estimate of the expectation.

4 Incompressible flow over periodic hills at ReH = 5600

The periodic hill test case is based on the channel flow case, but with a lower surface
modified by a series of periodically arranged hills, and deals with flow separation on
the curved surface of the hills and reattachment on the flat plate region between the
hills [16]. Being computationally relatively cheap but still challenging in terms of flow
physics it has been used in several workshops as a benchmark test case [17]. We use
DNS data of the mean flow field from Breuer et al. [16] for ReH = 5600, defined using
the streamwise bulk velocity Ub between the hills crest and the upper surface and the hill
height H. The test case is known to be especially challenging for linear eddy-viscosity
models, which aren’t able to predict the mean effect of the unsteady fluctuation of the
separation and reattachment points correctly [18]. Thus, the application of BMSA to
this challenging flow configuration is a test of the limits of the framework utilizing
linear eddy-viscosity models being calibrated for flat plate boundary layer flows.

4.1 Simulation setup

In order to mimic the periodicity of the hill-geometry, periodic boundary conditions
were applied at the inlet and outlet and no-slip conditions at the walls. A volume forc-
ing is applied to each cell, which maintains a bulk velocity of Ub = 1.0 between the
hill’s crest and the upper surface. The functional form of the lower surface is defined
according to the ERCOFTAC test case description6. In order to study the effect of the
turbulence modelling and not additional modelling due to wall-functions the thickness
of the smallest cells close to the wall were defined according to y+ ≤ 1.0 and Low-
Re turbulence models were used: Spalart-Allmaras, Launder-Sharma k− ε and Wilcox

6Underlying flow regime 3-30, 2D Periodic Hill Flow: http://qnet-ercoftac.
cfms.org.uk

http://qnet-ercoftac.cfms.org.uk
http://qnet-ercoftac.cfms.org.uk


(2006) k−ω (for details of these models see [4]). Furthermore, a mesh convergence
study was conducted for each model using baseline coefficients and the meshes in ta-
ble 3 were used for the application of the BMSA method.

Table 3. Mesh size per closure model for flow of periodic hills at ReH = 5600.

mesh (nx × ny)

Spalart-Allmaras 100 × 110
Launder-Sharma k− ε 150 × 140
Wilcox (2006) k−ω 100 × 110

Similar to the pipe flow case in Section 3 the results of the forward-simulations
mCFD

(
Mi,θθθ

MAP
i,k

)
with nominal values of the coefficients mCFD(Mi,θθθ

o
i,k) are used as

an initial condition in order to reduce iteration counts. For S14 the simulation using
Wilcox (2006) k−ω didn’t converge so that this scenario was excluded from the set
leading to 13 used scenarios in total.

4.2 BMSA prediction for velocity field

The baseline simulations for the three models show the expected behaviour as re-
ported in the literature for a larger Re-number [18]: while both Spalart-Allmaras and
the Wilcox (2006) k−ω over-predict the size of the recirculation zone, characterised by
a zero velocity component close to the wall, the Launder-Sharma k− ε under-predicts
this flow feature.

The BMSA approach using MAP estimates of the posterior probability distributions
outputs both an expectation of the velocity E[∆ |S̃,z], for which ∆ = Ux, and a confi-
dence interval. For the latter two types were chosen: one obtained by sampling from the
posterior predictive distribution and using the range from the 1.0 to the 99.0 percentile,
i.e. 98% confidence interval, and another one by using the min/max range of the ppd.
We have chosen both a larger confidence interval and the entire range of the distribution
in order to take the expected low performance of the linear eddy-viscosity models for
this test case into account. Especially the latter can be seen as an approach trying to
envelop the true process by all models and for all scenarios. The smart-weighting tech-
nique to obtain the scenario probabilities as described in Section 2.2 was applied along
the y/H-direction for each streamwise location for the 98% confidence interval. In that
manner the predicitive similarity for each scenario per model is evaluated locally for
the streamwise direction x.

The BMSA expectation E[∆ |S̃,z], as shown in Figure 4, over-predicts the recircula-
tion zone, gives similar velocity profiles for x = 3.0 and 4.0 close to the lower surface,
but is completely off for other locations. Especially, for x = 0.0 the expectation doesn’t
capture the local maximum of the velocity close to y/H = 1.0, i.e. at the hills crest, and
over-predicts the velocity within the channel for every other location. Throughout the
different locations the expectation shows large differences compared to the DNS for the
upper part of the velocity profile.



The entire range of the posterior predictive distribution (ppd) and the 98% confi-
dence interval show large differences over the entire domain as shown in Figure 4. The
ppd captures the DNS data for x ≥ 3, but doesn’t capture the local velocity maxima in
the area of the free shear layer in the leeward region of x = 0 to 2.0. Interestingly for
x ≤ 3.0 when the range of the ppd shrinks locally in y/H-direction also the DNS is
still inside. However, this pattern is not the same for every y/H-position, e.g. at x = 2.0
the expectation and the DNS match for 0.5 ≤ y/H ≤ 1, but the error is high. For the
relatively large confidence value 98% the intervals shrinks drastically, so that the DNS
data is only captured in a small lower band y/H ≤ 1.0 for 3≤ x≤ 7 and for the part of
the velocity profile in the middle of the channel.

Interestingly, in the reattachment region between the two hills, where the case is
similar to a flat plate, the BMSA approach in the present form with a confidence of
98% is able to capture the DNS data. However, the interval for the upper surface is
always negligible but the DNS data doesn’t match with the expectation.

The large effect of the min/max profiles, which determine the min/max range of
the ppd, to capture the DNS data proves the aforementioned fact that the used linear
eddy-viscosity models suffer from restrictions which inhibit the reproduction of the true
flow state for this test case. However, posterior probability distributions of the closure
coefficients of the models inferred on other flow scenarios more equal to the one here
might lead to a different picture.

5 Industrial Test-case: Generic Dassault Falcon

The final test-case we consider is the generic Falcon jet – a business jet including tail,
engine nacelles and winglets – at transonic conditions (Industrial challenge IC-03 of
UMRIDA). The geometry is far more complex than any considered so far, with a result-
ing spectrum of primary and secondary flows. We provide this case as a demonstration
of the applicability of our approach to problems of relevance in the aerospace industry
- unfortunately without a reference solution. LES is impractically expensive here, and
experimental data is not available. We attempt to justify the results of BMSA based on
the expected response of the simulation to the closure modelling.

The CFD code used is Petrov-Galerkin finite-element RANS solver AETHER used
within Dassault Aviation. As a preliminary step it was verified that the closure mod-
els implemented in AETHER were identical to the models for which closure coef-
ficients were calibrated. The implementations of Spalart-Allmaras and Wilcox k−ω

were found to be sufficiently similar to the calibrated models, and in addition are re-
garded by Dassault Aviation as suitable for this test-case. Of the 14 sets of closure
coefficients computed with each model, only 5 cases were able to be successfully con-
verged with k−ω , whereas all S-A cases converged without issue. BMSA requires a
minimum of 2 models per scenario, and as such only 5 scenarios could be considered.
Thus the spectrum of model results is substantially more limited than for both previous
test-cases.

The resulting uncertainty in the pressure distribution at a cut on the wing (with p =
0) can be seen in Figures 5(a) and 5(b). The uncertainty is concentrated around the shock
on the suction side, and even there is barely visible. Increasing p reduces the uncertainty
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posterior predictive distribution (ppd) range (shaded grey) and confidence interval of 98% (shaded
blue) using p = 2. DNS data of Breuer et al. [16] (black).



further. The very low variance can be attributed to two effects: (a) the real lack of
sensitivity of the pressure distribution to the turbulent boundary layer in an essentially
attached flow, for which an inviscid solution is already satisfactory, and (b) the limited
range of models and coefficients used in the study. Indeed by eliminating exactly those
coefficients that cause convergence problems (for k−ω), we are introducing additional
bias into the sampling, likely biasing against extreme results. The only alternative – of
including unconverged solutions – is even less attractive however.
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Fig. 5. Pressure distribution at 30% span of the Falcon wing, y = 3848mm.

More insight can be gained by looking at force coefficients: Figure 6 shows total,
pressure and viscous drag coefficients, all evaluated by surface integration, with mean
and 95% confidence intervals, as a function of p. While pressure- and viscous-drag have
approximately the same magnitude, the viscous part completely dominates the uncer-
tainty - with CD,p varying at most 3 counts, and CD,v varying between 15 and 25 counts,
depending on p. Thus the uncertainty in total drag is driven entirely by CD,v. Given the
observed lack of uncertainty in Cp-profiles, and the high sensitivity of friction coeffi-
cients to closure modelling, this is not surprising – though it does indicate that varying
the closure model does not appear have a significant effect on separation behaviour in
this case. Examining the relationship of uncertainty against p reveals which quantities
are dominated by model-differences (where uncertainty is approximately constant with
p), and for which quantities scenario differences are significant. Here CD,p belongs to
the former class, and CD,v to the latter.

In summary, the limited number of turbulence models and range of coefficients
lead to limited uncertainty in this case, for quantities of interest related to the pressure,
which is essentially governed by the inviscid flow behaviour. Significant uncertainty is
observed for viscous quantities such as friction drag. Resolving this in practical appli-
cations is the subject of ongoing work.
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6 Conclusion

The BMSA approach based on MAP estimates of the posterior probability distributions
of the closure coefficient has been applied to three different test cases.

For the flow in a straight pipe at Re = 44,000 the results for the velocity profile
and the pressure drop are in line with the validation data for this case, which shows in
general that the approach can successfully be applied to other test cases outside of the
set used for calibration.

The application of BMSA to the periodic hill test case at ReH = 5600 proves that
this test case is challenging for the linear eddy-viscosity assumption and also shows
the limits of the BMSA framework in the present form, provided that all models in
the chosen set employ the Boussinesq hypothesis. However, the resulting ppd is able
to capture most of the validation data successfully. A more suitable test case will be
evaluated for BMSA in the future, such as the flow over a backward-facing step, for
which the separation is forced by the geometry and not result of the simulation itself.
Furthermore, the question of how to incorporate model-form error within a stochastic
framework for UQ purposes is the topic of ongoing research.

Finally, the Falcon Jet test case (IC-03) revealed the open problem of how to deal
with many non-converged solutions within the BMSA methodology and the succes-
sive artificial reduction of uncertainty by excluding these simulations from the set of
simulations, which is also a topic for further research.
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