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Various computational techniques have been developed to investigate the efficacy of heat ex-
changers. Ramagadia et al. [38] used finite volume method (FVM) together with a momentum
interpolation method to investigate heat transfer characteristics of wavy channel (i.e. sinusoidal or
arc-shaped walls) heat exchangers. Wavy channels are steadily gaining attention thanks to their
manufacturing simplicity and potentially high energy savings and less power consumption. It was
found that wavy-type heat exchangers exhibit higher heat transfer rates compared with straight
channels due to the unsteady vortex shedding in the former device. Wang et al. [47] used a discrete
phase model (DPM) coupled with a RNG k-ε turbulence model to investigate the real-time fouling
characteristics of a H-type finned tube for waste heat recovery applications. It was found that fouling
mainly occurs in the flow stagnation region specific regions such as in front of the tube and fins. The
asymptotic fouling resistance decreases with increasing superficial inlet velocity, and fouling with-
out removal increases linearly with time. However, the DPM model did not include full resolved
particle-particle and particle-fluid interactions which is must be enabled in dense particle-fluid flows;
moreover, the morphology variation caused by the foulants on the finned tubes was not considered.
Bayomy et al. [2] studied the optimum design of an aluminium foam computer heat sink by taking
into account the highest heat transfer and lowest pumping power. De Bellis & Catalano [5] used
Reynolds averaged Navier Stokes equations (RANS) together with SIMPLEX and non-dominated
sorting genetic algorithm II to maximize the heat transfer of an immersed particle based heat ex-
changer. Pierre et al. [36] developed an optimal weak-variational formulation in the form of a spectral
method (i.e. generalized Graetz problem) for the numerical analysis of the temperature fields and
effectiveness of parallel convective heat exchangers. In the case of a two inlet/outlet semi-infinite
counter-current tubes, it was found that the heat exchanger effectivess saturates with the exchanger
length and Péclet number. The final effectiveness is controlled by the thermal conditions though
the dependence on the imposed hydrodynamics is diminutive. Gu et al. [15] stated that the exclu-
sion of the effects of the variability of air properties on the thermal-hydraulic characteristics of heat
exchangers for aero-engine cooling can overestimate the heat transfer and pressure drop.

The major limitation of the cited publications is that the evaluation of heat exchanger perfor-
mance is based on several oversimplified assumptions which make a systematic comprehension of
complex multiphase transport and particulate fouling phenomena impossible. Firstly, the above
cited publications that assess a heat exchangers efficiacy with the use of the Eulerian-Lagrangian or
even with the use of CFD-DPM are based on assumptions such as neglecting fully resolved particle-
particle interactions (i.e. zero particle volume) and neglecting the influence of the dispersed phase on
the fluid continuum, and vice versa; which is incorrect considering the fact that heat exchangers in
the chemical, oil & gas, and energy generation industries consist of dense multiphase (i.e. solid-liquid
or solid-gas) flows [23]. Secondly, studies assume the system comprises single-phase flow which is
not the norm in a myriad of engineering applications such as air-cooled heat exchangers [23, 42],
or even fuel systems in turbojets [28]. Therefore, the development of robust numerical models is of
paramount significance to decipher the mechanisms that govern multiphase transport and fouling in
various engineering systems.

1.0.1. Numerical methods for particle-laden fluid flows

Studies have delved into the physics of multiphase transport using various advanced numerical
techniques, each one having its own strengths and weaknesses. The standard Lagrangian based
DPM (Discrete Phase Model) is similar to the Discrete Element Method (DEM) but the former
neglects inter-particle collisions (i.e. zero particle volume); moreover, the DPM method neglects gas
displacement by the particles. As such, the DPM is suited for dilute particulate suspensions [18]
where a larger time-step could be used to reduce computational effort [31]. The Multiphase Particle-
in-Cell (MPPIC) method is similar to the DEM methodology but particle movement and interactions
are viewed statistically whilst excluding particle-particle and particle-wall interactions. The MPPIC
method could also be deployed in dense solutions as it is impractical to use DEM method to simulate
tens of thousands or millions of discrete particles. The Eulerian-Eulerian (i.e. two fluid model)
method is not suitable to model dense (non-dilute) particle-fluid flows as the method treats both
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phases as an interpenetrating continua; moreover, the constitutive relations for solid particles and
interphase interactions are generally not available [52]. Monte-Carlo methods do not permit one to
accurately resolve all particle-fluid interactions particle micromechanics; moreover, the visualization
of particle accumulation is not achievable. Population balance approaches, which is originally based
on the Smoluchowski equation, is found to provide accurate predictions of particle aggregate size
distribution; the drawback of this method is that predicting or obtaining the actual micromechanics
and microstructure of the aggregation phenomena and particle aggregate interactions with fluid
cannot be achieved [30]. The Lattice Boltzmann-Discrete Element Method (LB-DEM) could also be
used to examine particle-fluid flows. However, the development of such models is still at its infancy.
Moreover, it is significantly more computationally demanding than the widely used FVM-DEM
method or the Two Fluid Model (TFM) method. It is also not well suited for specific engineering
applications such as process modeling and control but it is suitable for fundamental research on
particle physics. Moreover, numerical difficulties are inherent in LB-DEM simulations with strong
particle-particle interactions [52, 51]. The literature is devoid of material regarding the development
of penalty methods. The development of these methods could then be used to compare against the
results of the other multiphase numerical methods such as the CFD-DEM method based on [24]. In
particular, there are no studies on penalization on solid-liquid flows; moreover, investigation of solid-
liquid flows using a CFD-DEM is very rare and most of these CFD-DEM investigations on solid-liquid
flows are based on fluidized beds. What is more, the literature is devoid of CFD-DEM investigation
of solid-liquid flows in complex geometries. Clearly, the development of numerical algorithms to fully
resolve multiphase transport in various engineering systems is extremely complex and challenging.
[43].

1.0.2. Objective

Fouling phenomenon is indeed a complex multifaceted problem and it is a subject of debate and
ongoing research. This provides the prime motivation to develop robust and advanced numerical
methods to accurately unravel the mechanisms governing multiphase transport (i.e. solid-gas or
solid-liquid) and particulate fouling. The development and successful implementation of advanced
numerical methods permits engineers, for instance, to better optimize heat exchanger systems for
the purposes of fouling alleviation and control. The objective of this investigation is to develop and
compare two numerical method to assess the mechanisms that govern two-phase solid-liquid flows
and particulate clogging on a filter. The two numerical methods is validated extensively against
various benchmarks namely, experimental results.

2. Numerical methods

We investigate solid-liquid flows and solid particle accumulation on a filter based on two numerical
methods. Section 2.1. covers the equations which is used in both methods. Section 2.2 covers the
mathematical moedl based on penalization whereas the second method is based of the coupled CFD-
DEM method developed in Open Field Operation and Manipulation (OpenFOAM), an opensource
C++ CFD program. The results based on these two methods are compared against the experimental
results.

2.1. Constitutive equations

The transport of incompressible and isothermal fluid is governed by the Navier-Stokes equations,
and is given as

∂αd
∂t

+∇ · (αdv) = 0 (1)

∂(ρfαdv)

∂t
+∇ · (ρfαdvv) = −∇(αdp) +∇ · (αdτ) + (ρfαdg) + Fpf (2)
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where αd is the fluid volume fraction, fluid velocity v, fluid density ρf , fluid pressure p, gravita-
tional acceleration g, fluid viscous stress tensor τ . The gas volume fraction is given as

αd = 1−
kc∑
i=1

Vi
Vc

(3)

The interphase momentum transfer between the particles and fluid is denoted by Fpf [24] and is
given as

Fpf =
1

∆Vc

kc∑
i=1

fpf,i (4)

The presence of non-reactive dense particulate-fluid flows signifies the necessity to accurately
resolve interactions between the individual particles and the hydrodynamic interactions between the
particles and carrier fluid (two-way coupling) and particle and the walls of the domain (four-way
coupling). The cohesive contacts (i.e. cohesion energy density) between the particles and walls have
not been taken into account as the particle diameter is significantly greater than 1 mm. In this study,
the density and diameter of a particle is set to 2400 kg/m3 and 1-2 mm respectively.

2.1.1. Mesh cell size and DEM particle size

Although it is desirable to having a fine mesh in order to resolve details of the fluid flow field,
numerical stability becomes concern if a DEM particle size approaches a FVM cell of identical size
(or slightly smaller). Smoothing or approximation models could be deployed to circumvent this is-
sue. The reader is referred to Goniva et al [19] regarding other approximation methods (such as big
particle void fraction method, divided void fraction method, etc) for use in the event a DEM particle
is either very similar to the cell size or slightly exceeds the cell size. In this study an approximation
method based on Wahyudi et al [46] is developed in OpenFOAM. This approximation method is
based on the designation of the maximum solid phase fraction per computational cell if the FVM cell
is completely smeared with the DEM particle (around the vicinity of the filter); also, and the mass
and momentum sources is distributed to neighbouring cells as a means to conserve mass and energy
[46]. The mesh cell size Sc to particle size dp ratio is approximately 5:1 but this ratio is significantly
lower at the filter region.

Figure 1: Each cell is coloured according to its solid volume fraction χs. The difference between the particle size and
the resolution of the mesh has an impact on the choice of the coupling method. A) Most particles are smaller than
the mesh cell size, therefore an unresolved approach is suitable. B) The particles and the mesh cells have similar size.
Neither approach is appropriate but the hybrid method is applicable. C) The flow around the largest particle can be
resolved accurately.

It is noteworthy that there is no concrete consensus among the research community regarding the
preferred ratio of the mesh cell size to the particle diameter; values vary in literature. For instance,
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Li et al [26] suggested a ratio of 1.670 or above whereas both Geng & Che [12] and Wang et al [48]
successfully used 1.00 and 1.33 respectively, whereas Feng & Yu [10] used 1.625. Kubicki & Lo [21]
numerically examined slurry transport with an Sc/Dp ratio of approximately one and it was found
the numerical results are in good agreement with the experimental data. Kuruneru et al. [23] showed
no difference in the particulate foulant distribution profiles in an idealized metal foam heat exchanger
pertaining to a mesh cell size/particle diameter ratio of 1:1 or higher. What is more, Li et al [26]
claimed that a ratio of 1.67 or higher is suitable (at least for their study) as the results corresponding
to about 50 data points are all identical to the experimental results; interestingly though, about 68
% and 74 % of the data points corresponding to ratios of 1.02 and 1.12 respectively, closely match
the experimental data points. All 48 data points for ratios of 1.67 or higher identically match the
experimental data Wahyudi et al [46] used very fine grids near the wall of a fluidized bed in order
to thermally resolve the boundary layer. It is in this region that the particle diameter is smaller
than the mesh cell size (half the particle diameter). However, in the study by Li et al [26], the
minimum gas phase fraction was not specified; moreover, the 1.67 ratio is based on the Gidaspow
drag law (ErgunWenYu) [13], as such it remains to be seen whether the same ratio stands for other
drag closures (i.e. Di Felice [6], PlessisMasliyah [7], Koch & Hill [20]) or a standard drag model.
What is more, the Gidaspow model is not universally used in all dense particle-fluid systems. To be
precise, the Gidaspow is ideally suited for packed beds whereas the Di Felice drag closure is derived
for particle sedimentation. Thus, the 1:67 ratio ideally should not be used in all dilute or dense
granular-fluid systems. The interested reader is referred to [25] regarding grid size to DEM particle
diameter ratio and validation of numerical model pertaining to particel bounce in a rectangular model
compared with experimental data. In fact, there is no concrete consensus among the research arena
regarding the modeling of solid-air drag closures [8, 41, 14].

2.2. Mixed resolved-unresolved FVM-DEM method

The methods presented in this section are implemented in a research C++ based CFD program.
The present method has been developed to provide a tool capable of simulating these transient,
complex flows in actual fuel system geometries [29]

Jet engines have complex fuel systems, involving several hydraulic components sensitive to clog-
ging e.g. filters, valves or heat exchanger inlet screens. When a so-called ”snow shower” occurs, ice
particles settle in seconds to form a porous layer which is likely to occasion fuel flow restrictions, as
shown in Figure 2. Little data were then available, which is why the model was designed to adapt
to various time and space scales of this phenomenon.

Figure 2: Clogging of a typical fuel filter [29].

The fluid phase is modelled by equations (1) and (2) with αd = 1 in the entire domain. The
particularity of this method comes from the asymmetry in the treatment of the interphase momentum
transfer : The action of the flow on the particles Ffp is modelled as in typical unresolved approach,
while the sink term in the momentum equation Fpf is calculated based on the local medium porosity,
in the manner of resolved methods. For a complete description of the method, see [28] and [29].
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2.2.1. Flow through porous medium

The porous medium consists of a stack of ice crystals of various sizes. The feedback of the particles
on the flow must be considered at two scales :

• Microscopic: ice particles are intrinsically porous. Experiments have shown that the fraction
of fluid within the ice can reach up to 50

• Macroscopic: Even if the particles were impermeable, the stack of particles has interstices in
which the fluid can flow.

The pressure drop related to the intrinsic porosity is modelled by Darcy’s law. For a given finite
volume cell of the mesh, the pressure gradient related to viscous loss is expressed:

∇p = − µ
K

(vf − vs) (5)

Where µ is the dynamic viscosity of the fluid, vf the superficial velocity of the fluid, vs is the
(average) solid velocity within the cell, and and K is the intrinsic permeability. To account for the
macroscopic effects, the equation (5) is weighted by a permeability function X , calculated for each
mesh cell :

∇p = −X (χs)
µ

K
(vf − vs) (6)

Where χs is the solid volume fraction, defined as the ratio of the total volume of particles entirely
or partially located in a computational cell, to the volume of the FVM cell :

χs = 1− αd =
kc∑
i=1

Vi
∆Vc

. (7)

The permeability function used in the present work is a power law of exponent η = 2, which acts
as a tuning parameter for the macroscopic porosity. The final expression for the momentum sink
term is :

Fpf = −χηs
µ

K
(vf − vs) (8)

2.2.2. Hydrodynamic forces

The forces considered in this work include the effects of pressure field, buoyancy and drag. For
the sake of simplicity, the other hydrodynamic forces and the effects related to the particles rotation
are not taken into account (see table 1). Since the particles accumulate, their interactions with each
other and with the walls must also be considered. The contact force between a particle i and an
other solid k in the simulation is denoted Fc

ik. The constitutive laws that govern the transport of
the individual discrete particles are based on Newtons second law given as:

mi
dvi
dt

= Fg + Fd + Fp +
∑
k 6=i

Fc
ik (9)

In this study, the particles are assumed smooth, rigid, and isothermal.

2.2.3. Particle interactions

There are two main approaches for modelling contact particle interactions. The first relies on
the conservation of the momentum of binary and instantaneous shocks, and generally implements
algorithms based on the management of collision events. It is well suited for inelastic collision of hard
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Buoyancy Fg (mp − ρfVp) g
Drag Fd −1

2
ρfSpCD ‖vr‖vr

Pressure Fp −Vp(∇p)hydro

Table 1: Hydrodynamic forces considered in the present method.

spheres. In event-driven algorithms, the time step is determined by the smallest duration between
two contacts, which tends to zero when the solid fraction increases. In the second approach, two
particles are considered in contact when they interpenetrates slightly. Normal and tangential forces
are then evaluated by a spring-dashpot model.

Industrial applications of clogging require simulations over periods of several seconds and involves
locally high concentrations of particles. The very small time-step of conventional models can become
problematic. A contact algorithm for inelastic collisions allowing for larger time steps was thus
developed. The present method consider that the collisions between particles are perfectly inelastic.
This choice is based on two arguments : 1) The coefficient of restitution for wet particles and particles
in fluid is much lower than dry particles [27] 2) The experimental setup is designed to study static
stacks of particles.

Figure 3: Particle position before and after a time step. In grey, the position if there is no interaction.

The principle of the model is the following : let consider a pair of particles (i, ri,mi) and (j, rj,mj)
where r and m refers to radius and mass. In absence of any interaction force, interpenetration be-
tween two particles at the end of a time step ∆t may occur (figure ). The principle of the contact
handling algorithm is to compute the contact force Fc

ij required to prevent this behaviour for each
pair of particles and to apply it before the position of the particles are updated.

The derivation of the method starts with the discrete equation of motion for a pair of particles :
xn+1
i − xni

∆t
= vni +

∆t

mi

(
Fh
i +

∑
k 6=i

Fc
ik

)
xn+1
j − xnj

∆t
= vnj +

∆t

mj

(
Fh
j +

∑
k 6=j

Fc
jk

) (10)
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Where Fh
i refers to the sum of all but contact forces. Here a 1st-order forward euler formulation

is used but the method can be derived with more refined time schemes. The distance that would
cover a particle if there was no contact divided by the time step dt is called predicted velocity and
denoted v̂. The expression reads:

v̂ni = vni +
∆t

mi

Fh
i (11)

Thereafter, let us denote any relative quantity φij = φj − φi. The two vector equation of motion
are subtracted from one another and projected on the normal direction nij to obtain a single scalar
equation :

xn+1
ij · nij = xnij · nij + ∆tv̂ij · nij +

(∑
k 6=i

∆t2

mi

Fc
ik +

∑
k 6=j

∆t2

mj

Fc
jk

)
· nij (12)

xij = (xj − xi) · nij is the relative distance between two particle and v̂ij = (v̂j − v̂i) · nij the
relative predicted velocity projected along nij. Decomposing contact forces by their amplitude fik
and direction nik and introducing previous notations, equation (12) becomes:

xn+1
ij = xnij + v̂ij∆t+

(∑
k 6=i

∆t2

mi

fiknik +
∑
k 6=j

∆t2

mj

fjknjk

)
· nij (13)

Avoiding the interpenetration at the end of the next time step is equivalent to verifying for each
pair of particle (i, j) the inequality:

xn+1
ij ≥ ri + rj (14)

Combining eq (13) and eq (14) finally gives:

xnij + v̂ij∆t+

(∑
k 6=i

fik
∆t2

mi

nik · nij +
∑
k 6=j

fjk
∆t2

mj

njk · nij

)
≥ ri + rj (15)

The distance between the surface of two particles is usually denoted δij. For better readability,
let us denote:

Λj
ik =

∆t2

mi

nik · nij (16)

Equation (15) holds for each pair of particles. A system of inequalities g(fij) is obtained:

g(fij) = δij − v̂ij∆t−

(∑
k 6=i

Λj
ikf

k
ik +

∑
k 6=j

Λi
jkf

k
jk

)
≤ 0 (17)

Adding contact forces will impact the total kinetic energy of the particle system. Therefore
contact forces must be computed so that the set of constraint is satisfied while minimizing the
change of kinetic energy [? ]. This is achieved through an iterative procedure, fully described in [29].
Starting from zero, contact forces are gradually increased in proportion of the value of the constraint
functions. After convergence, the speed of a particle a time t + ∆t is computed with the resulting
interactions forces:

vn+1
i = v̂ni −

∆t

mi

(∑
k 6=i

fiknik

)
(18)

In practice, the convergence of the method requires an under-relaxation of parameter ω. The
iterative procedure is as follow :

1. Initialisation of forces and constraints: f 0
ij = 0 and g0ij = δij − v̂ij∆t
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2. Update forces : fk+1
ij = max

(
0; fkij − ω.gkij

)
3. Update constraints : gk+1

ij = δij − v̂ij∆t−

(∑
k 6=i

Λj
ikf

k+1
ik +

∑
k 6=j

Λi
jkf

k+1
jk

)
4. Convergence test

2.2.4. Numerical schemes and resolution algorithm

The complexity of solving the Navier-Stokes equations lies in the absence of an independent pres-
sure equation, whose gradient plays a dominant role in the three momentum equations. Moreover,
the continuity equation no longer behaves like a transport equation for the mass, but plays the role
of constraint on the velocity field. Thereby the main difficulty in solving the incompressible Navier-
Stokes equations is the calculation of the pressure field. The resolution algorithm adopted in this
work is based on the SIMPLE algorithm, first developed by Caretto et al. in 1972, and adapted to
unstructured meshes by Rhie and Chow in 1983. The reader is referred to Ferziger and Peric [11]
regarding the standalone SIMPLE or PISO algorithms.

Due to the non-linearity of the equations, this class of algorithms involve an iterative procedure to
achieve coupling between pressure and velocity fields. The deferred correction is a technique whose
principle is to calculate higher order terms explicitly, and treat them as a source term in the second
member of the equation. A low-order approximation of these terms is treated implicitly in the first
member, and subtracted from the second member. As the iterative procedure converge, low-order
terms tend to zero. In this work, we used a moving least square (MLS) interpolation scheme de-
velopped by Cueto-Felgueroso et al. for compressible flow [3] and applied to uncompressible flow
by Ramrez et al. [39]. A deferred correction is used for the calculation of convective flux. The
low implicit term is a Linear Upwind Scheme, and the explicit correction is a second order MLS
interpolation. The diffusive flux is directly calculated by a second order MLS interpolation. The
volume integrals for the temporal term and the source term are approximated by a midpoint rule.
A second order backward Euler scheme is used for time derivatives.

The linear algebra is handled through the Petsc library [1]. The three linear systems result-
ing from the (uncoupled) momentum equations are solved by the BiConjugate Gradient Stabilized
(BiCGSTAB) method with block-Jacobi preconditioning. The pressure-correction equation is solved
by Hypre’s algebraic multi-grid (AMG) method.

2.2.5. Computational domain & mesh

The computational domain is meshed with quad cells of 1mm length. The total number of cells
is 19,200. A schematic of the mesh is shown in Figure 4.

2.3. Unresolved FVM-DEM method

The numerical results obtained using the method in Section 2.1 is compared against the numerical
results based on a coupled FVM-DEM method developed on the OpenFOAM platform, an open-
source C++ based CFD program. In this study, the particles are smaller than the FVM mesh cell size,
therefore the coupling between the finite volume method (FVM) and discrete element methodology
(DEM) is achieved with an unresolved method, developed on the OpenFOAM platform.

2.3.1. Development of a coupled FVM-DEM

In this study, the sink term Fpf accounts for gravity force, drag force, lift, and pressure gradient
force, virtual mass, and Basset history forces. Brownian force is neglected as the size of particles in
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Figure 4: Mesh

both numerical methods is significantly greater than 1 µm. A soft-sphere DEM method, similar to the
Cundall and Strack model [4], in the form of spring-slider-dashpot model is employed to accurately
resolve the trajectories of particle motion by integrating the Newtonian equations of motion. The
soft-sphere approach permits one to explicitly define the properties of both particle and wall (i.e.
density, Youngs modulus, Poisson ratio), and also the coefficient of restitution, coefficient of friction,
and cohesion energy density between particle-particle and particle-wall interactions.The following
equations are used to model the particle-particle and particle-wall interactions [24].

The equations governing the motion of solid particles is given as:

mi
dVip

dt
= mig +

ki∑
j=1

FC,ij + fpf,i, (19)

Ii
dωi
dt

=

ki∑
j=1

Ti, (20)

where Vip is the translational velocity of a particle, and the number of particles in contact with
particle i is denoted as ki, Ii is the moment of intertia, rotational velocity ωi, and torque Tt.

The normal contact force is given by

Fcn,ij = (−knδ1.5nij − ηnuij · nij)nij, (21)

The tangential force is given by

Fct,ij = (−ktδtij − ηtusij), (22)

where kn is the non-linear normal spring stiffness, and kt is the tangential spring stiffness between
particle contacts i and j. The following expressions connote the spring stiffness:

kn =
4

3

√
R∗

E

2(1− σ2
j )
, (23)

and

kt = 8
√
R∗δnij

G

2(2− σ)
, (24)

where

10



R∗ =
rirj
ri + rj

and G =
E

(2(1 + σ))
, (25)

where δ is the deplacement, unit vector nij from the centres of particles i and j. The slip velocity
of the contact point is given as:

usij = uij − (uij · nij)nij + (riωi + rjωj)× nij, (26)

where uij is the relative velocity vector between the contact of particles i and j.
For particle sliding to occur, the following relation must be satistifed:

|Fctij| > µf |Fcnij| (27)

The resultant tangential force is expressed as a function of the friction coefficient µf :

|Fctij| = −µf |Fcnij|usij/|usij|, (28)

The damping coefficient is given as

ηn = λ(m∗kn)0.5δ0.25n , (29)

where m∗ is the effective mass and expressed as

m∗ =
mimj

mi +mj

, (30)

where mi and mj is, respectively, particles i and j. It is noteworthy that the emperical constant
λ is related to the coefficient of restitution. Moreover, the damping coefficient ηn is assumed to be
identical to ηt.

In order to accurately capture particle contacts, the DEM time-step must be around 10 - 100
times smaller than the FVM time-step [50]; as such, the FVM time-step is set at 1 x 10−5 s whereas
the particle (discrete phase) collision resolution time-step is set to 20. The simulation is run from
0.00 s to 5.00 s and the particle injection commences at 0.20 s to allow for fluid flow development
prior to the injection of particles. The particle velocity is initialized at the same velocity as the
fluid velocity. The Youngs Modulus is assigned a slightly lower value than the actual to reduce
computational effort. Trial numerical results show negligible difference in the particle distribution
patterns irrespective of the Youngs Modulus value. The same observation is reached by Tsuiji et al.
[45, 44].

The coupling between the two phases is achieved as follows: first, at each time-step, the DEM
solver will relay the dynamic information such as positions and velocities of individual particles,
in order to evaluate the porosity and the particle-fluid interaction force in a computational cell.
Afterwards, the CFD solver will use this data to evaluate the gas flow field which computes the fluid
forces acting on each DEM particle. Then all of these resultant forces are imported into the DEM in
order to generate motion information of individual particles for the next time-step. The fluid force
acting on each discrete particle will act in response on the carrier fluid from the DEM particles,
thereby complying with Newtons third law of motion [37].

2.3.2. Numerical solution and algorithm control

A generalized (GAMG) solver and a Gauss-Seidel smoother is deployed to obtain discretized
pressure equations whilst a smooth solver with a smoother symmetric Gauss-Seidel (sGS) is used
to discretize the velocity equations while performing a single sweep smoothing iteration prior to
re-calculating the residual in order to improve computational efficiency. These solvers operate on
a LDU matrix class where the smooth solver is for symmetric and asymmetric matrices, and the
smoother converges the solution to the required tolerance (or relative tolerance). The GAMG solver
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generates a solution on a mesh with a small number of smalls with minimal computational effort;
afterwards, the solver maps the solution onto a finer mesh which uses it as a starting solution in order
to generate an accurate solution on the fine mesh. This is achieved by geometrically coarsening the
grid (geometric multi-grid) or directly harnessing the algebraic multi-grid irrespective of geometry.
The mesh is coarsened or refined in steps. The agglomeration of cells is executed by a face area pair
agglomerator. Merge levels is set to control the pace at which coarsening or refinement of the grids
is performed. Typically in most situations, OpenFOAM coarsens/refines the grid one level at a time
by making one cell out of four (i.e. mergeLevel 1). This level or merging generally yields optimal
convergence. However, for cases with a simple mesh, coarsening (or refining) of the grids can be
safely achieved at a rapid pace by coarsening (or refining) two levels at a time (i.e. mergeLevel 2).

2.3.3. A merged SIMPLE-PISO (PIMPLE) algorithm

The modular implementation and versatility of OpenFOAM permits one to implement a hybrid
SIMPLE-PISO (PIMPLE) algorithm. This algorithm is used to couple the pressure-velocity equa-
tions for transient solutions with very large Courant numbers (1-10) which in turn assists in stabilizing
the numerical convergence while preserving numerical accuracy. The PIMPLE algorithm consists of
various important parameters that could be used depending on the case study. These parameters
include the number of non-orthogonal correctors, number of correctors (inner loops/pressure correc-
tion), number of outer correctors (outer loops/pressure-momentum correction), momentum predictor,
consistent (PIMPLEC), residual controls, under-relaxation. PIMPLEC (PISOC-SIMPLEC) is ben-
eficial for cases with a large maximum Courant number (Co). Although the PIMPLEC algorithm is
applicable for transient solutions with very large Courant number, simulations with this algorithm
take longer to reach convergence compared with the SIMPLEC algorithm. This is due to the fact
that the PIMPLEC algorithm involves both predictor and corrector steps. Unlike the standalone
PISO algorithm, which is generally applicable for cases where Co ≤ 1, the PIMPLE algorithm per-
mits the use of a high time-step or an adaptive time-step (i.e. assign a maximum Courant number)
to numerically stabilize transient solutions which is beneficial for cases involving complex fluid flow
patterns in complex geometries with skewed non-orthogonal meshes. It is also beneficial for particle-
laden gas flows based on unstructured meshes where the DEM particle size is on par with the FVM
mesh cell size. Executing the pimple algorithm loops over the PISO algorithm in one time-step which
permits some under-relaxation between these loops. This activity permits the use of larger time-
steps, which is not possible in the standalone PISO algorithm. The PIMPLE algorithm attempts
to solve the momentum equation one or more time at each time-step depending on the number of
outer correctors assigned to the PIMPLE loop. In theory, the PIMPLE algorithm is identical to
the PISO algorithm if one outer corrector is assigned. This is in theory identical to multiple PISO
loops per time-step analogous to a transient SIMPLE algorithm. In other words, assigning only one
outer correctors solves the momentum equation once only at each time-step which is the norm in a
PISO algorithm. In the event the pressure-momentum coupling is calculated only once (one outer
corrector), the standalone PISO algorithm is enforced irrespective of the number of correctors (1-3).

The number of correctors signifies the number of times the pressure field is corrected. For tetra-
hedral non-orthogonal mesh, a correction term is essential for the treatment of non-orthogonality.
In other words, the number of non-orthogonal correctors corrects the solution Laplacian term of the
pressure equation (surface normal gradient schemes). The value is ranges from 0 to 2; it is generally
set to 0 for steady-state simulations and pure hexahedral mesh or 1 for transient and/or low-quality
highly skewed meshes (i.e. max non-orthogonality angle is approximately 70 or higher). In this
study, 2 correctors and 2 non-orthogonal corrector is assigned. The pressure is re-calculated based
on the updated fluxes obtained from the outer loop correction. For example, in this study, Open-
FOAM computes 50 SIMPLE outer loops and within one outer loop, the pressure is corrected twice.
To ensure the robustness and stability of the PIMPLE algorithm, under-relaxation factors for outer
iterations is enforced.

An under-relaxation factor is assigned to under relax the system of discretized equations An
under-relaxation factor is assigned to under relax the system of discretized equations (eq. 3.95 & 3.96
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Terms Numerical Schemes

First and Second Order Time Derivatives Euler
Gradient Schemes Gauss Linear
Divergence Schemes Gauss Linear Upwind Unlimited
Laplacian Schemes Gauss Linear Corrected
Interpolation Schemes Linear
Surface Normal Gradient Schemes Corrected

Table 2: OpenFOAM Numerical Schemes

pp.115 [17]); moreover, an under-relaxation factor is also used to relax the new pressure equations. In
other words, solving the pressure equation again is executed in order to yield a better approximation
of the correct pressure fields (eq. 3.145 pp.149 [17]). The under-relaxation factor for the final
equations and fields of velocity and pressure is set to 1 in order to comply with the conservation
of mass. It is noteworthy that the PISO algorithm does not under-relax the fields and equations
and the momentum corrector step is executed more than once. Likewise, the pressure-momentum
correction (outer loops) is essentially a SIMPLE loop which requires under-relaxation to stabilize
the solution. The number of outer correctors (outer loop correction) is set as the number of times
the fluxes, pressure, and momentum are re-calculated within one time-step. However, slightly lower
final residuals could be enforced only if a very high number of outer correctors (≥ 100) is assigned
to find the correct solution within one time-step. Secondly, a residual sub-control is enforced for
the PIMPLE algorithm in order to reduce the computational time whilst maintaining numerical
stability. This allows OpenFOAM to exit the PIMPLE outer corrector loop once a solution fulfils
the residual criteria during a time-step. A residual and tolerance criteria for both the PISO and
PIMPLE loop/iteration is assigned, where OpenFOAM will escape the PISO loop/iteration when
the final residuals within each PISO loop fall below the assigned final tolerance level. For instance,
the geometric agglomerated algebraic multi-grid (GAMG) solver will iteratively solve the system of
linear equations until the final residual for pressure falls below an allocated value (i.e. 1 x 10−6)
OpenFOAM will escape the PIMPLE loop and proceed to the next time-step if the initial residuals
fall below the allocated tolerance value. The deployed PIMPLE algorithm is well suited for skewed
complex geometries and meshes and multiphase transport (with a slightly high Courant number).
As the case study involves transient simulations, the relative tolerance is set to 0.0 to yield efficient
PIMPLE simulations by forcing the solution to converge to the solver tolerance in each time step
[35]. The residuals for the pressure and velocity is set to 1 x 10−6 and 1 x 10−5 respectively whereas
the residual control for the PIMPLE loop is assigned as 1 x 10−3 for both pressure and velocity.

2.3.4. Numerical schemes

There is an array of numerical schemes available. For most practical engineering applications,
the following schemes shown in Table 1 are used. Linear interpolation is widely used in a number
of cases although a cubic interpolation could be deployed but it is rarely used except for very cases
such as stress analysis. The corrected surface normal gradient schemes is generally used for most
cases where the maximum mesh non-orthogonality does not exceed 70◦ which is the case in our
study.The uncorrected and orthogonal surface normal gradient schemes is normally deployed in the
even the mesh exhibits very low non-orthogonality (i.e. ≤ 5◦) The choice of the Laplacian scheme is
also based on the maximum mesh non-orthogonality. A Gauss Linear corrected Laplacian scheme is
deployed to obtain solution to the pressure poisson equation. Gauss Linear and Euler are deployed
for the divergence and time derivatives respectively. For the numerical schemes for the particles, an
Euler-implicit integration scheme is used. The coupling between the two phases permits the transfer
of the corrected momentum from the discrete phase to the fluid continuum phase.

A recent study has found that the commercial software FLUENT-EDEM exhibits a miscalculation
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of the drag force (to a certain degree) which resulted in the overestimation of the mean particle
velocity, which is attributable to the lack of an appropriate mesh interpolation scheme in their code [8].
In short, the velocity of gas is not interpolated to the particle location, and all of the solid particulates
in the FVM grid encounter identical fluid velocity irrespective of the particle position within the fluid
mesh cell [8]. OpenFOAM circumvents this issue by explicitly enforcing an interpolation scheme
based on the carrier fluid bulk properties (i.e. fluid density, velocity, and dynamic viscosity). The
reader is referred to Elghobashi (1994) [9] and Xiao & Sun (2011) [49] for additional details on these
interpolation schemes. As the simulation is fully coupled, the momentum correction is transferred
from the discrete solid phase to the fluid continuum phase. The discrete phase is coupled to the
carrier phase (i.e. source terms are generated for the carrier phase via a semi-Implict scheme).

2.3.5. Computational domain & mesh

The FVM-DEM method is applied to the computational domain shown in Figure 1. The filter
is composed of wires (300-500 µm diameter) and it forms square holes (500-800 µm). The geometry
and mesh is designed in ANSYS. Afterwards, the mesh file is imported to OpenFOAM to run the
simulations. Both numerical results (Section 2.1 & 2.2) are then compared against the experimental
findings.

Figure 5: Computational domain for OpenFOAM case

The grid consists of unstructured tetrahedral mesh and the mesh is refined around the vicinity
of the filter. A mesh sensitivity analysis is performed based on single-phase fluid flow. The inlet is
set to 0.885 m/s. The results are shown in Table 2. The pressure drop is evaluated as the difference
between the average pressure drop along the y-axis 40 mm from the inlet and the average pressure
drop along the y-axis 40 mm from the rear face of the obstruction walls. The numerical simulations
is executed in OpenFOAM.

Grid Number of Nodes Pressure Drop (Pa)

1 5065 3.18
2 12024 3.50
3 15190 4.15
4 30063 3.95
5 56006 4.10
6 208021 4.20

Table 3: Mesh sensitivity analysis

According to Table 2, less than 5 % difference is observed after every successive mesh refinement
commencing Grid 3. As such, Grid 3 is used for all the simulations to ease computational burden.
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3. Results & Discussions

3.1. Solid-Liquid Flow: Particle Accumulation and Clogging of a Filter

3.1.1. Experimental Method

Figure 6: Diagram of experimental setup

Figure 7: Test section dimensions

The following protocol is carried out for each test (Qv and volume of particles):

1. Purge the whole system

2. Insert the desired amount of particles

3. Fill the loop with tap water

4. Close vane A and open vane B
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5. Start the pump

6. Open slightly vane air to allow flow in the test section

7. Wait until all the air exit the system

8. Adjust vane A to set the desired volume flow rate

9. Wait until the particles and the pressure drop stabilize

10. Record the pressure drop and take a picture of the particles

3.1.2. Comparison between Numerical and Experimental Findings

We compare the numerical and experimental particle distributions in three different cases as shown
in Figure 2 & Figure 3. The inlet velocity is set to 0.885 m/s which corresponds to a volumetric
flow rate of 4 m3/h. Four different solids concentration is investigated: 2 mL, 4 mL, 6 mL, 8 mL.
The numerical pressure drop is evaluated and compared against the experimental values. Both the
numerical and experimental pressure drop is calculated as difference between the average pressure
drop along the y-axis 40 mm from the inlet and the average pressure drop along the y-axis 40 mm
from the rear face of the obstruction walls at a particular time point. As time elapses, the solid
particles aggregate and eventually clog the filter. Particle aggregate spread along the x-axis and
y-axis is in good agreement with the experimental results. The pressure drop aligns well with the
experimental observations based on a solid volume of 2 mL or 4 mL. However, there exists a large
discrepancy between the experimental and numerical pressure drop at 6 mL and 8 mL. Additional
simulations have shown that the solution greatly underestimates the pressure drop at a large solid
volume (i.8 mL , 10 mL) irrespective of the inlet velocity. However, this is not the case for lower solid
volume (i.e. 2 mL and 4 mL). The pressure drop miscalulation stems from the fact that total number
of particles injected into the 2D configuration is not the same as a 3D configuration (experiments -
Secion 3). Instead, a homogeneous repartition of the particle along depth of the experimental test
channel is assumed and the equivalent surface of the particles in a 2D case is computed as (Ss = Vs/L)
as specified in Section 2.1.

In 2D calculation, an artificial porosity is added to the particle in order to account the 3D effect.
Although this assumption showed large discrepancy between the numerical and experimental pressure
drop values in OpenFOAM, the penalization technique yield reasonably accurate numerical pressure
drop results. However, it is noteworthy that although the penalization technique yields very accurate
representation of the particle spread distribution profile, the penalization technique did show large
discrepancy between the numerical and pressure drop distributions in several cases.

This discrepancy stems from the fact that an ideal filter is used which actually blocks the particles
but does not impede the incoming carrier fluid.

Secondly, the introduction of significantly fewer particles into the 2D system (i.e. 1911 particles
for Case E1 compared with 96 particles for Case O1) results in a loosely packed particle aggregate
bed formation which consists of more voids between the particle contacts (O1) than the 3D case
(E1); moreover, the tightly packed particles for the 3D case (i.e. E1) remain motionless whereas the
2D case (i.e. O1) clearly shows that the particle undergo very faint unsteady sliding vibration-like
movement as shown by the velocity contours (i.e O1) in Figure 2.

It is noteworthy that the additional validation cases (Sections 3.1.2 & 3.1.3) is based on solid-gas
flows but the results in this section is solid-liquid flows. Although only a few numerical cases of
solid-liquid flows align reasonably well with the experimental values, all the solid-gas flow numerical
case studies are in excellent agreement with the three benchmark cases. As shown in Figure 7, at
6 mL and 8 mL solids volume, a slightly better agreement is observed between the experimental
and the penalization method. However, the large discrepancy in the OpenFOAM results is linked
to the 2D particle projection assumption in addition to the difference in velocities of the particles
together with the compactness of the 2D and 3D cases. At 8 mL solids volume, both numerical
methods greatly miscaluate the pressure drop values. Although both methods use the 2D particle
injection assumption, it is interesting to note that at 6 mL and 8 mL OpenFOAM underestimates
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Figure 8: Comparative Assessment between Penalization results (P1, P2), OpenFOAM results (O1, O2), and experi-
mental results (E1, E2) based on three different solid concentration (P1/O1/E1: 4 mL, P2/O2/E2: 8 mL)

the pressure drop values, whereas the penalization method overestimates the pressure drop values,
and the difference is more profound at 8 mL.

4. Conclusions and Perspectives

This study investigates the transient evolution of particle-laden liquid flow and particle accumula-
tion on a filter by comparing the methodology and results of the FVM-DEM methodology developed
in OpenFOAM and the the penalization technique. The results obtained by both numerical methods
are then compared against experimental results.

Interestingly, many studies including this study here are based on engineering applications where
granular media (i.e. particle-fluid flows) is either dense or dilute. However, certain applications may
have regions of dilute or dense flows. As such, it may not be practical to use the DEM throughout
the entire domain, rather, DPM could be used. In short, a FVM-DEM-DPM could be used to
accurately and rapidly obtain the numerical solution (i.e. use DEM in areas of high particle (dense)
concentrations and use DPM in areas of low particle (dilute) concentrations. This could be achieved
by a straightforward algorithm which assigns which particle solver to use, DEM or DPM, depending
on the porosity of the FVM mesh cell. The next phase of this project comprises the implementation
of the energy equation to account for thermal transport between solid particles and fluid continuum
in the two numerical approaches. The penalization technique is to be extended for 3D flows coupled
with heat transfer and radiation effects. This topic will be investigated in the near future using
OpenFOAM. This approximation method coupled with the PIMPLE algorithm will nullify numerical
instability issues whilst preserving numerical accuracy which will be show in Section 4.3. Interestingly,
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Figure 9: Numerical (OpenFOAM) and experimental pressure drop values

Kuruneru et al [22] have shown that the use of both methods lead to a negligible change in particle
deposition profiles and pressure drop characteristics in a 2D clear rectangular channel.
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