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Effects of axial rectangular groove on turbulent Taylor-Couette flow from analysis of
experimental data

K. Sodjavia, F. Raveleta,∗, F. Bakira

aArts et Metiers ParisTech, DynFluid, 151 boulevard de l’Hpital, 75013 Paris, France

Abstract

The effects of the number of surface grooves on the hydraulic resistance are experimentally investigated in the case
of fully turbulent Taylor-Couette flow at a fixed radius ratio η = 0.9375 and for Reynolds numbers Rei from 2 × 104

to 13 × 104. Three configurations of inner cylinder having 6, 12 and 24 grooves of the same rectangular shape and
regularly distributed are compared to a reference smooth cylinder case. Such configurations are common in electric
motors of high power density and of very high rotation rate, for which better understanding and knowledge of the
flow patterns and aerodynamic losses are essential to enhance their design and to develop appropriate cooling systems.
Torque and pointwise velocity measurements are performed. The effects of the flow modulations induced by the grooves
on the friction coefficient and the flow features are examined. The results show significant difference in the average
flow pattern, the presence of the grooves suppressing the Taylor Vortices. An increase of the friction coefficient with
the groove number is reported. However, the individual drag-increasing contribution of each groove is reduced when
increasing the groove number. It is also found that the local scaling exponent of the friction coefficient as a function of
the Reynolds number is insensitive to the present surface roughness, suggesting that the bulk flow contribution is similar
for all the four configurations.
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1. Introduction

Fluid flow around solid body of rough or structured
surface topology has attracted considerable interest since
it is encountered in many natural phenomena and engi-
neering applications. The design of more compact elec-
tric motor with high power density is one of the related
application. Generally, this configuration is analogous to
a canonical topology known as Taylor-Couette flow, con-
sisting of the flow between two coaxial cylinders with a
stationary outer cylinder and a rotating inner cylinder. In
some cases an axial flow is also considered and the flow
is then refered to as Taylor–Couette–Poiseuille flow. As
noticed by Fénot et al. [1] in their review, there are a
lot of studies and results for the aerodynamics and heat
transfer capacity on smooth cylinders, but the few stud-
ies dedicated to slotted cylinders mainly focused on the
heat transfer. For the specific issue of high power compact
electric motors rotating at very high rotation rates, with
rotors presenting slotted shapes for electromagnetical rea-
sons, the aerodynamic losses in the annulus between the
two cylinders become a major issue to optimize their per-
formances. Better understanding of the flow field and to
a lesser extent of the heat transfer characteristics in this
confined environment still requires dedicated studies for
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axially grooved inner cylinders. This is needed in order to
enhance their design and to develop appropriate cooling
system. As far as heat and aerodynamic behavior are con-
cerned only a few investigations contain references to an
axially grooved cylinder. Likewise, most of the reported
results concern global physical quantities.

For instance, Hayase et al. [2] used numerical simu-
lation to compare three different flow configurations in
terms of momentum and heat transfer coefficient in a lam-
inar flow. The authors specifically studied the influence of
twelve cavities embedded in either the inner rotating or the
outer fixed cylinder in laminar flow. They observed larger
effects, both on the momentum and heat transfer when
the cavities were located on the inner cylinder rather than
on the outer cylinder. Lee & Minkowycz [3] and Gardiner
& Sabersky [4] investigated experimentally the heat trans-
fer and pressure drop characteristics of smooth or axially
grooved cylinders, with a superimposed Poiseuille flow, for
Reynolds numbers based on the rotation rate and on the
gap width up to Rei ' 4000. The authors observed that
the presence of grooves on the rotating inner cylinder sig-
nificantly increased the heat coefficient. They also noted
that the grooved rotor were associated to friction factors
which were generally higher than those for a smooth rotor.

Several experimental studies, such as, for instance that
of Cadot et al. [5], van den Berg et al. [6], or Motozawa et
al. [7] were devoted to the dissipation in Taylor-Couette



flows with regularly distributed square or triangular ribs
on the surface of the cylinders, at much higher Reynolds
numbers (up to Rei = 3 × 105). The main conclusions in
Refs. [5, 6] is that with two rough cylinders the drag coeffi-
cient is independent of the Reynolds number. The authors
observed that the total dissipation is dominated by the
contribution of the boundary layers for smooth cylinders,
whereas it is dominated by the bulk flow contribution for
ribbed cylinders. In addition to these experimental stud-
ies, some numerical studies such as that of Tsukahara et
al. [8] have considered the effect of ribs on the global trans-
port properties and flow characteristics for Reynolds num-
ber as large as 3.2× 103. The most important conclusion
drawn from the research was that the increment in the
pressure drag due to the roughness is damped as a result
of the strong adverse pressure gradient behind each rib. In
Refs. [7, 8], the distance between two consecutive grooves
(λ) was used as a key parameter and its influence on the
mean flow and the friction coefficient was highlithed.

All the above cited studies were performed with struc-
tural rough elements arranged in such a way as to ob-
struct the mean flow. This type of surface roughness is
used either as heat transfer promoters or results from de-
sign necessity. They are known to be more efficient in
generating friction drag than smooth surface. Rough ele-
ments aligned with mean flow is another category of sur-
face roughness generally used to reduce the skin friction
drag. This is achieved when the boundary layer thickness
becomes smaller than the rough height and leading the
flow resistance to be bulk dominant. The studies of Hall
& Joseph [9], Moradi & Floryan [10], Greidanus et al. [11]
and Zhu et al. [12] can be include in this category.

A better understanding of the relevant mechanisms as-
sociated with an increase of friction drag in axially grooved
cylinder flow involves a full understanding of the Taylor-
Couette flow. Since the pioneering contribution of Cou-
ette [13], the Taylor-Couette flow has been greatly stud-
ied, both experimentally, numerically and theoretically be-
cause of its considerable scientific and engineering impor-
tance. The recent comprehensive review of Grossmann et
al. [14] provides salient details on its fully developed turbu-
lence regime from experimental, numerical, and theoretical
points of view.

In this paper, we focus on the statistical features of
fully turbulent Taylor-Couette flow with an axially grooved
inner rotating cylinder. The grooves have the same rect-
angular shape and are regularly distributed on the tested
cylinders. In an attempt to investigate the effect of the
groove density, we conduct series of experiments using
four different configurations. Three configurations of inner
cylinder having 6, 12 and 24 grooves of the same rectan-
gular shape and equally spaced in azimuthal direction are
compared to a reference smooth cylinder. For each config-
uration, torque and pointwise velocity measurements are
performed to assess the global transport properties and
flow characteristics. Section 2 describes the experimen-
tal setup, the geometry of each tested cylinder and the

measurement techniques. The results are then analysed in
section 3. The characteristics of the mean flow are summa-
rized in section 3.1, with a focus on the noticeable effects
of the groove density. The local flow characteristics are
analysed in section 3.2, with a focus on the interaction of
the groove and bulk flows. The torque results expressed
in terms of friction coefficient are discussed in section 3.3.
Then, concluding remarks are given in section 3.

2. Experimental setup

2.1. Taylor-Couette facility

The experimental apparatus has been specifically de-
signed for the study of the Taylor-Couette flow. A detailed
sketch and Photograph of this facility are given in Fig. 1.
It consists of two coaxial cylinders that create a gap oc-
cupied by a working fluid. Each cylinder can rotate inde-
pendently with the use of an AC Servo motor (Panasonic
Minas A5, 1500 W). The outer cylinder made of 5 mm
thick Plexiglas is driven via a driving belt while the in-
ner cylinder is directely attached to a shaft through the
torque sensor. The system is closed at the top and bot-
tom ends with lids that rotate with the outer cylinder.
The motors are controlled by a LabView software pro-
gram that regulates the desired angular rotation rate of
the corresponding cylinder. The radii of inner and outer
cylinders are ri = 112.5 mm and ro = 120 mm, respec-
tively, yielding to a gap d = ro − ri = 7.5 mm and to
a gap ratio of η = ri/ro = 0.9375. All the tested inner
cylinders have a length h = 200 mm, which gives an axial
aspect ratio of h/d = 26.66. The axial gaps between the
top and bottom end-plates of the inner and outer cylin-
ders are 2.5 ± 0.1 mm. All the results of this study con-
cerns rotor/stator configurations, therefore the outer cylin-
der was kept at rest mechanically while varing the inner
cylinder angular frequency ωi. The relevant dimensionless
parameter that characterizes the flow dynamic is the inner
Reynolds number defined as:

Rei =
riωid

ν
. (1)

2.2. Geometry of the inner cylinders

Our aim is to evaluate the action of axial grooves on
the behaviour of Taylor-Couette flow, more precisely to
identify possible mechanisms responsible for the increase
in flow resistance. Thus three grooved inner cylinders
are compared to a reference one having a smooth surface.
Please note that for all the tested cases, the outer cylinder
has a smooth surface.

Figure 2 presents the four inner-cylinder configurations.
As can be seen, the grooved cylinders are equipped with
6, 12 or 24 identical axial rectangular cavities which are
arranged periodically. They are named “Gn” where n is
the number of grooves. The detailed shape of the groove
is shown at the bottom of Fig. 2. The ratio of the groove
width w = 12 mm to its depth k = 5.84 mm is close
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Figure 1: Photograph and sketch with dimensions of the experimental setup. Left: Taylor-Couette facility with torque meter at upper part
of the picture and laser head at left side. Right: sketch showing the grooves of the inner cylinder and LDV Measurement area
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Figure 2: Schematic top view of the tested inner cylinders and the
groove geometry. (Top), left to right reference smooth cylinder,
cylinder with six (G6), twelve (G12) and twenty four(G24) grooves
arranged at uniform spacing λ = 2πri/n; n = 6, 12, 24. (Bottom)
Dimensions of elementary groove

to w/k ' 2. These parameters are motivated by the in-
tended application, namely the investigation of aerody-
namic losses in an electric motor. The ratio of the groove
separation distance λ = 2πri/n to the groove depth k is
generally used as the key parameter to distinguish the dif-
ferent wall roughness configurations [7, 8]. In the present
work, this ratio λ/k corresponds approximately to 20, 10
and 5 for G6, G12 and G24 respectively.

2.3. Torque measurement

The torque (T ) is measured on the inner cylinder using
a co-rotating torque meter (KISTLER Ref.4503A, 10 N.m)
with an absolute precision of less than ±0.02 N.m. As the
torque meter is mounted on the shaft between the driv-
ing motor and the inner cylinder, the measured torque
includes the mechanical friction of the bearings. This con-
tribution is measured in case of air filled flow as a function
of the rotation rate and is subtracted from the total torque
via a linear interpolation. This contribution is less than
2% of the torque for all the runs. The present Taylor-
Couette system is operated with water as working fluid at
an initial temperature in the range 20−24 oC, resulting in
a volumetric mass density of the order of ρ = 998 kg.m−3

and a kinematic viscosity of the order of ν = 10−6 m2.s−1.
The system is not equipped with temperature regulation
unit and therefore the mean temperature increases during
a run, resulting in a variation of the viscosity and density.
a K-type thermocouple flush mounted under the top lid, in
direct contact with the working fluid, is used to measure
the temperature rise due to frictional heating. For each
run, the rotating frequency of inner cylinder is increased
stepwise from 3.5 to 20 Hz at constant acceleration rate,
∂Rei/∂τ = 149102 where τ is a non-dimensional time de-



fined as τ = tν/d2. During each step, once the desired
angular frequency is achieved, the torque, the angular fre-
quency and the working fluid temperature are recorded
simultaneously at a sampling frequency of 5 kHz during
40 s. The experiments are repeated three times for each
inner cylinder over the same Reynolds number range to
check the reproducibility. The repeatability is quite satis-
factory, the variation being typically less than 2.5%. The
measured torque is expressed in term of friction coefficient
as follows:

Cf =
T

2πρr2i h(riωi)2
(2)

In the two horizontal gaps between the inner cylinder
and the top or bottom lid, the fluid motion creates ad-
ditional shear force. To estimate this contribution and
subtract it from Cf , we use the empirical correlation de-
veloped by Hudson & Eibeck [15] in turbulent flow with
single rotating disk and different shroud clearance ratios
and gap aspect ratios. The torque that is applied on the
disks Tdisk is expressed as follows:

Tdisk =
1

2
Cdiskρω

2
i r

5
i , (3)

with Cdisk = 2.83
(
r2i ω/ν

)−0.48
(g/ri)

0.05
. Here, g is

the axial height of the gap between the top or bottom end-
plates of the inner and outer cylinders. In the present case,
the relative contribution of the end-effects to the measured
torque is estimated to be in the ranges 9− 17%, 7− 12%,
6−11% and 4−8% for, respectively, the smooth, G6, G12
and G24 cylinders.

2.4. LDV measurement

The spatial distribution of the mean velocity in the
meridional plane of the gap between the two cylinders (see
Fig. 1) is measured by single-component Laser Doppler
Anemometry (LDA), using a Dantec Dynamics FlowEx-
plorer system, in a backscattering configuration. It con-
sists of a 25 mW argon-ion laser with red wavelength
(660 nm), and a fiber-optics probe of focal length 300 mm
giving a measurement volume of 0.1 × 0.1 × 1 mm3. The
sytem has a high accuracy, as the calibration coefficient un-
certainty is lower than 0.1%. The working fluid is seeded
with iriodin 201 of 7 − 14 µm mean diameter used as
the tracer particles. For each inner cylinder, azimuthal
and axial velocities are measured at 585 points distributed
along 39 radial profiles at the mid-height of the rotational
axis (see left part in Fig. 1) at constant axial intervals of
1 mm. At each measurement position, 100000 samples are
acquired, with a limiting time acquisition of 40 s. The data
rate lies in the range 800− 10000 Hz, while the validation
rate is upper than 60%. In dealing with velocity measure-
ments in liquid Taylor-Couette flow by mean of LDA tech-
nique, the presence of flat or curved interface introduces
a shift of the measurement volume and an underestima-
tion of some components of the flow velocity (Huisman et

al. [16]). In this study a ray tracer program has been used
to calculate the measurement volume displacement and
velocity correction factors. The velocity correction factor
is only applied to the azimuthal velocity, because for the
axial velocity the laser beams are normal to the flat plate
and therefore the difference in refractive index is balanced
by the change in wavelength.

3. Results and discussion

3.1. Mean flow characteristics

r+

z/
d

(a)

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r+

(b)

0 0.5 1
r+

(c)

0 0.5 1
r+

(d)

0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

r+

(a)

z/
d

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r+

(b)

0 0.5 1
r+

(c)

0 0.5 1
r+

(d)

0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3: (Colour online) Contour plots of the time-averaged nor-
malized azimuthal (top) and axial (bottom) velocity fields Vθ mea-
sured by LDA at Reynolds number Rei = 47000. (a) Smooth case,
(b) G6 case, (c) G12 case, and (d) G24 case

Prior to examining the friction coefficient, we investi-
gate the effect of groove on the overall behaviour of the
bulk flow. To characterize the turbulent states in the
grooved and smooth cases, we perform scans of the az-
imuthal and axial velocities in the meridional plane (r, z)
at mid-height of the apparatus for two Reynolds number
Rei = 47000 and 80000. At these Reynolds numbers, the
flow is considered as fully turbulent. The dimensionless ra-
dial coordinate is r+ = (r−ri)/d so that the inner cylinder



is at r+ = 0 while the outer cylinder is at r+ = 1. The
wall inner cylinder velocity riωi is used as velocity scale.

Figure 3 compares the time-averaged azimuthal and
axial velocity contour plots for Rei = 47000, showing the
flow characteristics for the four different inner cylinder sur-
faces. In the case of the smooth surface, the presence of
large-scale structures is clearly highlighted by the radial
inflow and outflow boundaries visible on the azimuthal ve-
locity field (see top part in Fig. 3 (a)). These structures are
also visible through the alternation of positive and nega-
tive velocity visible on the axial velocity field (see bottom
part in Fig. 3 (a)). From these boundaries, high-speed
fluid near the inner cylinder and low-speed fluid near the
outer cylinder are ejected in the bulk regions between the
vortices and contribute to redistribute the angular momen-
tum. The elliptical shape of these vortices depends on the
strength of inward and outward fluid. According to Tok-
goz et al. [16] the birth and death of new vortices always
takes place at these boundaries. For the present geom-
etry, Reynolds number and acceleration rate (∂Rei/∂τ),
the local axial wavelength of the vortices obtained at mid-
height of the apparatus is around 4.4d, comparable to the
value reported by Ravelet et al. [17] for Rei = 14000 in an
experiment with a slightly different gap ratio.

The three grooved cylinder results reveal certain con-
stants in the behavior of the velocity fields and notable
structural differences compared to smooth surface case.
Contrary to the smooth cylinder, no axial periodicity is
observed indicating the absence of large coherent struc-
tures. As expected, the grooves produce radial velocity
modulations and the resulting interaction with the bulk
flow breaks the primary instability responsible of Couette-
Taylor roll formation. The random distribution of the ax-
ial velocity confirms the breakdown of coherence and the
small scale structures of the flows. Also from the axial ve-
locity field, one can state that there is negligible convective
transport or diffusion of azimuthal momentum in the bulk
flow. From comparison between the grooved surface cases,
one can notice that the region of high azimuthal velocity
near the inner cylinder gradually extends into the bulk flow
with increasing groove number (see top part in Fig. 3 (b-
d)) and that the azimuthal velocity becomes more uni-
formly distributed along the axial direction. The change
in magnitude of azimuthal velocty in the bulk is not fully
understood. However, in our opinion, it may result from
ejection of high-speed fluid at the top edges of each groove.
In fact, the flow separation occuring at the top edges of the
grooves may generate a radial high-speed fluid ejection to-
wards the outer cylinder. As the groove number increases,
the contribution of the ejected fluid will increase, explain-
ing the changes observed in magnitude of the azimuthal
velocity contours.

In order to check the dependence of the flow struc-
ture on the Reynolds number, Fig. 4 compares four time-
averaged azimuthal and axial velocity contour plots at
Rei = 80000. At this Reynolds number, the average flow
with grooved wall shares common features with those at
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Figure 4: (Colour online) Contour plots of the time-averaged nor-
malized azimuthal (top) and axial (bottom) velocity fields Vθ mea-
sured by LDA at Reynolds number Rei = 80000. (a) Smooth case,
(b) G6 case, (c) G12 case, and (d) G24 case



Rei = 47000, such as the loss of axial periodicity and the
increase in magnitude of azimuthal velocity in the bulk as
the groove number increases. The only noticeable differ-
ence is a larger axial wavelength of around 6d obtained
with the smooth surface case. Based on these results, we
can rigorously claim that this specific axial groove geome-
try enhances the momentum transport in the radial direc-
tion, i.e. from the inner cylinder to the bulk flow at high
Reynolds number.
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Figure 5: Normalized averaged azimuthal 〈Vθ〉 and axial 〈Vz〉 veloc-
ity profile along radial coordinate for Reynolds number Rei = 47000
(top) and Rei = 80000 (bottom). The three grooved cylinder profiles
have been averaged over both time and axial position. The smooth
surface profiles were extracted at, the center of a vortex (labelled
Smooth mid), intflow (labelled Smooth In) and outflow (labelled
Smooth Out) boundaries between two consecutive vortex. The sub-
figure displays the axial velocity profile extracted at the center of a
vortex. Comparison to the data of Ravelet et al. [17]

In Fig. 5 we compare profiles of the mean azimuthal
velocity across the gap between the cylinders for the two
Reynolds numbers. The three grooved cylinder profiles
have been averaged along the axial position. The smooth
surface profiles are extracted at three relevant axial loca-
tions: at the center of a vortex, at the inward and at the
outward vortex boundaries. The data of Ravelet et al. [17]

extracted at the center of a vortex are added for compar-
ison. Globally, the overall trend of the present profiles is
comparable to the results reported by Ravelet et al. [17].
The slight gap observed on the azimuthal velocity pro-
file is probably due to the different value of the Reynolds
number or to a gap ratio dependence. A strong signature
of the number of grooves can be seen on these profiles as
mentioned previously. As the groove number increases,
the profiles become more flat near the rotating cylinder,
leading to a steeper velocity gradient. This corresponds
to the so-called downward shifts in the log-law region, as
it is well established that any rough surface leads to a
downward shift in the logarithmic region of the velocity
profile ([18, 19]). The increase in the azimuthal veloc-
ity, averaged axially at mid-gap is constant for the two
Reynolds numbers and is approximately 27%, 33% and
68% of the smooth case value for G6, G12 and G24, re-
spectively. An increase in bulk azimuthal velocity in the
presence of wall roughness has also been reported from
experimental data by Greidanus et al. [11] and from nu-
merical data by Hayase et al. [2] and Zhu et al. [12]. The
latter authors attributed it to the conservation of the an-
gular velocity current along the radius.

To gain some insight on the velocity fluctuations, the
root mean square azimuthal velocity profiles extracted at
mid-gap in the bulk flow are plotted against the axial co-
ordinate in Fig. 6 for Reynolds number Rei = 47000. We
do not include the profiles for Rei = 80000 because they
are identical to those at Rei = 47000. As expected the
grooves do not only impact the mean flow, but also the
fluctuations. The three grooved cylinders exhibit nearly
constant value along the axial direction, with a slightly
higher intensity for G24. For the smooth cylinder, the pro-
file exhibits a prominent double-peak feature characteristic
of the inflow and outflow boundaries of Taylor vortice. Its
mean intensity is lower than those of the grooved cylin-
ders. Globally, such behaviors are consistent with those
of mean flow and could be attributed to competing fac-
tors of groove-induced modulations that add periodically
intermittency or heterogeneity in bulk flow.

3.2. Local flow characteristics

In order to perform spectral analysis of the flow un-
steadiness, time-resolved signals of the azimuthal veloc-
ity have been recorded at a mean acquisition frequency of
around 10 kHz and maximum point time series of 1 000 000.
These parameters correspond to approximately 1132 and
662 points per revolution of the inner cylinder for Rei =
47000 and Rei = 80000, respectively. Before computing
Fourier transform, all LDV signals are reconstructed on
an equally spaced time grid based on local mean sampling
frequency via zeroth-order interpolation. All the power
spectra are estimated using the periodogram technique
with a Hanning window and an overlapping of 50%. Each
spectrum is expressed in decibels (dB) using the following
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Figure 6: Normalized root mean square azimuthal velocity profile
along axial coordinate for Reynolds number Rei = 47000. The pro-
files have been extracted at r+ = 0.5.

formula:

S (f) = 20 log10 (p (f) /p0) , (4)

where p (f) is the power spectrum density function and
p0 is taken equal to unity. The frequency is normalized by
the groove passing frequency fgpf = nωi/2π.

Figures 7 and 8 compare the power spectra of the az-
imuthal velocity fluctuation at three measured points dis-
tributed across the flow, one in the bulk flow and two
others near the inner and outer cylinder boundary lay-
ers. These figures help observing the flow dynamics in
more details. Near the innner cylinder at r+ = 0.1, for
both Reynolds numbers, the spectra exhibit seven strong
discrete peaks, illustrating the complexity of the near-wall
flow. The first peak, at f = fgpf , is associated with the
groove passing frequency, whereas the others correspond
to its harmonics. At this location, the distribution of tur-
bulent energy between the different harmonics depends on
the groove number. The energy content for G6 is quasi-
constant for all the harmonics (see Figs. 7 (a) and 8 (a)),
while it gradually attenuates for G12 and G24. We re-
lates it to the distance between the grooves, not sufficient
for the flow to be recovered, so leading to complex unsta-
ble flow. The fact that the intensity of the base frequency
and its harmonics declines quicker with more grooves could
also been related to the fact that with more grooves the
differences in velocity between the forcing inner cylinder
and the bulk velocity decreases: the forcing per groove
decreases, as also seen later when analyzing the contribu-
tion to the torque. In the bulk flow at r+ = 0.55, the
influence of the groove becomes slightly weaker. Apart
from the groove passing frequency, the spectra display ap-
proximately three, one and zero low energy peaks (see
Figs. 7 (b) and 8 (b)) for G6, G12 and G24, respectively.
This is consistent with observations at r+ = 0.1 about the
dependence of the groove signature on its number. With a
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Figure 7: Square amplitude spectra of tangential velocity Vθ (t) at
three different locations for Reynolds number Rei = 47000. The
first and the third spectrum is shifted 13.98 dB upward and −26 dB
downward with respect to the middle one, respectively. (a) G6 case,
(b) G12 case, and (c) G24 case
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Figure 8: Square amplitude spectra of tangential velocity Vθ (t)
at three different locations for Reynolds number Rei = 80000. The
first and the third spectrum is shifted 13.98 dB upward and −26 dB
downward with respect to the middle one, respectively. (a) G6 case,
(b) G12 case, and (c) G24 case

deeper penetration, at r+ = 0.8, the energy content of the
peak is gradually diminished and the peaks are completely
suppressed for G12 and G24 (see Figs. 7 (c) and 8 (c)). For
the two cases, the disappearance of the sharp peaks does
not imply necessarily that the flow is totally featureless
in this region. The large value of λ —the distance be-
tween two consecutive grooves— ensures a low interaction
between consecutive groove modulated waves, probably re-
sponsible for the persistence of the peak in G6 flow.

Flow characteristic analysis based on spectra indicates
different local dynamics in relation to groove number and
spatial location. In the following, we propose to go further
in perfoming spatial analysis using phase-average tech-
nique. The LDV signals reconstructed via zeroth-order
interpolation at mean sampling frequency facq are decom-
posed into N (integer number) revolutions of period τ =
2π/ωi. Each period contains K = 2πfacq/ωi samples,
where K is an integer. From the velocity phase-averaged
at φ = jωi/facq (j = 1, ...,K), we define the mean (Eq. 5)
and standard deviation (Eq. 6) of azimuthal velocity:

〈Vθ (φ)〉 =
1

N

N−1∑
i=0

Vθ (φ+ iτ) , φ ∈ [0, 360]o, (5)

RMS〈Vθ (φ)〉 =
1

N

N−1∑
i=0

Vθ (φ+ iτ) , (6)

In Fig. 9, we compare profiles of the phase-averaged
azimuthal velocity normalized by the rotation velocity of
the inner cylinder wall. Only the case Rei = 47000 is
shown since the distribution is identical for the two Rey-
nolds numbers. The signature of the groove can be ob-
served in both near-wall and bulk flow locations. Near the
rotating wall at r+ = 0.1, the profiles of mean azimuthal
velocity are highly periodic and regular with only a single
dominant frequency corresponding to groove passage. The
periodicity is 60o, 30o and 15o for G6, G12, and G24, re-
spectively. The profiles also show that the mean flow near
the inner cylinder is dominated by the velocity deficit cre-
ated by the groove passages. This can be explained by
the presence of the steady recirculation flow in the groove.
In fact, literature data based on the channels flow with
rectangular cavities [18, 19] or Taylor-Couette flow with
grooved inner or outer cylinder [2] revealed a recirculating
flow within the cavities. The presence of this recirculat-
ing flow will induced by viscous force a shear zone at each
groove passage, which will result in the azimuthal veloc-
ity deficit. Another interesting observation revealed by
phase-averaged technique is the higher fluctuation level
within the velocity deficit region. This observation is a
consequence of a higher shear stress and velocity gradient
induced by the cavity shear layer which generate an in-
tense turbulent production. The phase-averaged profiles
in the bulk flow at r+ = 0.55 show weakness of groove
signatures as compared to r+ = 0.1. The fluctuation level
is more attenuated and its maximum location is shifted to
center of the crest, contrary to what happens at r+ = 0.1.
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Figure 9: Normalized phase-averaged azimuthal velocity for
Rei = 47000: mean 〈Vθ (φ)〉/riωi (black) and root mean squared
RMS〈Vθ (φ)〉/riωi (red).(a) G6 case, (b) G12 case, and (c) G24 case.
The phase-averaged technique is applied only for the two locations
where the spectrum density displays at least one discernible peak

3.3. Torque

The torque of the four inner cylinders expressed in
terms of friction coefficient Cf (see equation 2) is shown in
Fig. 10 as a function of the Reynolds number Rei. In this
figure we also show the local scaling exponent α,defined

by Cf ∝ Reα−2
i and estimated as α = 2 +

d log(Cf )
d log(Rei)

. The

derivative is computed by a convolution product of the
data series with the derivative of a gaussian of length 21
points and standard deviation 11 points. Before we dis-
cuss the variation of the friction coefficient with the groove
number, we compare our smooth cylinder data to the ex-
perimental results of Ravelet et al. [17], Motozawa et al. [7]
and Lewis & Swinney [20] and, to an empirical correlation
of Dubrulle & Hersant [21]. The large gap between the
present smooth data and those of literature is not surpris-
ing since rigorous direct comparison could not be achieved
owing to the different gap ratios of the experiments and the
end effects. It should be noted however that the torque is
measured in the same way in Refs. [17, 7] and in the cur-
rent study. The torque is moreover corrected from end
effects by dividing by 2 in Ref. [17] and by using the cor-
relation of Hudson & Eibeck [15] in the present study. No
end effects correction is used in Refs. [7, 20] since Lewis &
Swinney [20] measured the torque acting only on the cen-
tral part of the inner cylinder. To obtain good agreement
with the correlation of Dubrulle & Hersant [21] rewritten
as

Cf =
K7

2π

(1− η)
1/2

ln [η2 (1− η)Re2i /K8]
3/2

, (7)

we use K7 = 1.95 and K8 = 100 which should be com-
pared to the given values of K7 = 0.5 and K8 = 104. It
should be recalled that Dubrulle & Hersant [21] contructed

−3.4

−3.2

−3

−2.8

−2.6

−2.4

lo
g

1
0
 C

f

 

 Smooth

G 6

 

 G 12

G 24

 

 Motozawa et al.[7]

Ravelet et al.[17]

 

 Lewis et al.[20]

 

 

Dubrulle et al.[21]

4.2 4.4 4.6 4.8 5 5.2
1.6

1.8

2

log
10

 Re
i

α

Figure 10: Friction coefficient Cf and local exponent α as a function
of the Reynolds number Rei. Comparison to the experimental data
of Ravelet et al. [17] (η = 0.917), Motozawa et al. [7] (η = 0.939) and
Lewis and Swinney [20] (equation 3, η = 0.724), and the empirical
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their correlation using results of Lewis & Swinney [20] ob-
tained with η = 0.724.

We now analyse the influence of the groove number on
the friction coefficient in relation with the Reynolds num-
ber. As indicated in Fig. 10, the friction coefficient in-
creases with increasing groove number. Their profiles ap-
pear to be quite similar in shape without discernible tran-
sitional regime, which means that the flow is at fully devel-
oped turbulence state over the range of Reynolds numbers
examined. The local scaling exponent (see bottom Fig. 10)
also confirms this. The exponent for all the three grooved
cylinders collapse with the smooth cylinder exponent, with
mean value of 1.83 ± 0.1. This value agrees well with the
results of Lathrop et al. [22], Lewis & Swinney [20] and
Ravelet et al. [17]. In the previours experimental studies
of Cf ∝ Reα−2

i (Cadot et al. [5], van den Berg et al. [23]),
it was found that the value of the exponent α was equal to
1.88 with an inner cylinder roughened by parallel regular
square cross section ribs and outer smooth cylinder, and
α = 2 when both walls were rough. However our inner
grooved cylinder exponents were fairly close to α = 1.83,
the fact that α is approximately equal to the smooth cylin-
der value points out that the effects of grooves on the ex-
ponent might be too weak to be observed due to the large
value of η or, that the contribution of grooves might be as-
sociated to a simple shift in pressure drag. Therefore one
may conclude that the present friction coefficient scaling is
not bulk flow dominant contrary to the common behaviour
of classical rough wall.

To further illustrate the effect of groove number on
the torque, Fig. 11 presents the ratio of friction coeffi-
cients between the grooved and smooth cylinders C∗

f =
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Figure 11: friction coefficient ratios between the grooved and smooth
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by its height λ/k. Comparison to, DNS study of turbulent channels
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Figure 12: Relative contribution of single groove Cf,1G as a function
of Rei

Cf/Cf,smooth as a function of Rei. The friction ratio is ap-
proximately constant across the whole Reynolds number
range. Averaged over the whole Rei range, the mean ratio
C∗
f is approximately 1.46, 1.65 and 2.33 for G6, G12, and

G24, respectively. In Fig. 11 , the subfigure compares the
mean ratios C∗

f to those of literature [19, 7, 8] as a function
of the rough element interval normalized by its height λ/k.
Significant differences can be observed. The grooved cylin-
der values are lower on average than the ribbed channel
and cylinder results for all λ/k and the peak is also shifted
towards lower λ/k. In view of the present results, we can
assume that the higher friction coefficient ratio reported
in Refs. [19, 7, 8] can be attributed to an enhanced pres-
sure drag by rib. Indeed, for these studies, the main flow
direction is obstructed by the ribs. As a result, a strong
pressure gradient is generated leading to intense transfer
of momentum from fluid to the wall.

To go further in the analysis, effort is made to estimate
the relative contribution of each groove by mean of two
assumptions: (i) the groove (cavity) contribution to the
skin friction is considered negligible compared to that of
the crest; (ii) the skin friction on the crest is equall to
that of smooth cylinder over the Reynolds number range.
Under these two assumptions, the contribution of a single
groove is defined as follows:

Cf,1G =
Cf − SGn

Ssmooth
Cf,smooth

n
, (8)

where Ssmooth is the lateral surface area of the smooth
cylinder and SGn is the total crest surface area of the Gn
cylinder. The contribution Cf,1G can be interpreted as a
single groove pressure drag contribution to the total fric-
tion coefficient. Figure 12 shows the relative contribution
of single groove as a function of Rei. The profiles are sim-
ilar in shape for the three tested cylinders, even though
they illustrate a substantial dependence on Reynolds num-
ber. The contribution should be equal for the three cases if



Figure 13: Photographs of the flow at different Reynolds number and surface roughness. A: smooth cylinder at Rei = 4.06 × 103, B: G12
cylinder at Rei = 4.06× 103, C: G12 cylinder at Rei = 1.15× 103,D: G6 cylinder at Rei = 1.15× 103. The flow structure is vusualized using
microscopic iriodin particles.

our assumptions are strictly valid or if there are no interac-
tion between the groove-induced modulation. The first as-
sumption is supported by the literature results of Hayase et
al. [2] and Leonardi et al. [19] obtained with pitch ratio less
than 4 which is the case of the current study (w/k ≈ 2).
The second assumption is slightly weaker since the velocity
results (see Fig. 3, 4 and 5) clearly show a steeper velocity
gradient and an increase of azimuthal bulk velocity with
increasing groove number. They will result in skin friction
reduction on the crest through the reduction of the bound-
ary layer contributions. The gap between G12 and G24,
and G6 distributions is too large to be associated only with
reduction of skin friction on the crest. Based on these ob-
servations and arguments, we conclude that G12 and G24
flows have similar structural behaviour, strictly different
from that of G6, which we associate to groove density.
The azimuthal velocity spectra (see Fig. 7, 8) also confirm
the difference in the flow feature since the groove signature
is found to persist until the near wall of the outer cylinder
for G6, which is not the case for G12 and G24. This agrees
well with the finding of Tsukahara et al. [8] who observe
that, for λ/k ≥ 13, the rough elements are isolated. Glob-
ally, similar behaviour is reported by Motozawa et al. [7]
for ribbed inner cylinder, which the authors attributes to
the recovery of the velocity distribution which could not
be achieved for smaller value of λ/k.

We therefore conclude that, for this type of flow con-
figuration where surface morphology significantly acts on
the global transport properties represented by measured
torque, at least spatial distribution of velocity field at
vicinity of wall should be derived from more complete ex-
periments, to account for the separate effects of elementary
rough element on skin friction and pressure drag, which is
not the case of the current study.

4. Conclusion and future work

Derived from industrial situations, the experimental
conditions led to the study of Taylor Couette flow with ax-
ially grooved rotating inner cylinder and fixed outer cylin-
der. With a large radius ratio and high Reynolds number
up to Rei = 13×104, this experiment simulates a compact
electric motor behavior at high velocity speed. Torque and
pointwise velocity measurements have been carried out for

different tested inner cylinders to assess flow characteris-
tics and global transport properties.

The most prominent differences in the flow features
between the grooved tested cylinder cases and the smooth
cylinder case are a loss of axial dependency of the time-
averaged velocity field; a steeper velocity gradient near the
grooved rotating cylinders and an increase of the bulk flow
azimuthal velocity with decreasing circumferentially peri-
odic length λ/k. This parameter is found to discriminate
the flow feature since it allows to characterize the periodic
spatial variations in the flow within the roughness bound-
ary and the bulk flow.

Direct consequence of these variations in the flow fea-
tures is a large difference in global transport properties
measured by the torque and expressed in term of fric-
tion coefficient. It is shown that the use of grooved in-
ner cylinder increases the friction coefficient and that the
groove contribution rate is a function of λ/k. Within the
Reynolds number range of this study (2 × 104 ≤ Rei ≤
13 × 104), the friction coefficient ratio between the rough
and the smooth cylinders is approximately constant and
the mean ratio is approximately 1.46, 1.65 and 2.33 for
G6, G12, and G24, respectively. Despite these strong ef-
fects on the measured torque, the local scaling exponent
of the friction factor with Reynolds number seems insensi-
tive, contrary to the common behaviour of classical rough
wall.

The current study must be only the start of a long
experimental program to further explore the effects of ax-
ial rectangular groove on turbulent Taylor-Couette flow.
The most immediate and urgent objective will be to per-
form high spatial resolution velocity measurement in the
rotating grooved inner cylinder sublayers in order to esti-
mate local contribution of skin friction and pressure drag.
It should be noted that all of the experiments were con-
ducted for a single value of pitch to height ratio (w/k ≈ 2).
Hence, future experiment should be performed for different
values of w/k to confirm ours observations.

The next step will be to examine the flow dynamics
and the transport properties at lower Reynolds numbers.
In fact, it is interesting to observe in Fig. 13 that dif-
ferent turbulent states coexist. At Rei = 4.06 × 103,
the smooth cylinder flow is dominated by Taylor-vortices
while the G12 flow did not contain obvious structures like



Taylor-vortices. By decreasing the Reynolds number from
Rei = 4.06×103 to Rei = 1.15×103, a bifurcation process
occurrs for G12 flow (see Fig. 13 C) revealed by the pres-
ence of large coherence structures with azimuthal wave-
lengths locked to λ. This is confirmed by the Photograph
in Fig. 13 D obtained with G6. This kind of study has
been performed by Ravelet et al. [24] in inertially driven
von Kármán closed flow in which the authors observed the
so-called ’turbulent bifurcation’ and multistability. The
objective will be to check whether these flow features and
bufircation are reflected in the overall transport properties.
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