
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/15941

To cite this version :

Ahmed AHMED, Lionel ROUCOULES, Mathias KLEINER - Model-based Interoperability IoT Hub
for theSupervision of Smart Gas Distribution Networks - IEEE Systems Journal - Vol. 13, n°2,
p.1526-1533 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/15941
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 1

Model-based Interoperability IoT Hub for the
Supervision of Smart Gas Distribution Networks

Ahmed Ahmed, Mathias Kleiner, and Lionel Roucoules

Abstract—Industrial monitoring environments have evolved from single monolithic systems to widely distributed heterogeneous
systems. These include the Internet of Things, Industrial IoT, Cyber- Physical Systems and Enterprise Application. One of the key
challenges is the integration of heterogeneous systems and data exchange interoperability. In the industrial smart gas project in
which this work takes place, current standard-based or middleware solutions are not sufficient to handle these issues and often
require specific ad-hoc developments. This paper proposes a generic, modular, and extensible interoperability architecture based on
modeling principles. We provide a free software implementation and illustrate the approach on industrial usecases. Some criteria are
then proposed for a first qualitative evaluation.

Index Terms—interoperability, data aggregation, smart systems, model-based engineering, Industrial Internet of Things (IIoT).

F

1 Introduction

During the past years, there has been a continuous
growth and rapid evolution in the IT infrastructure

of industrial/enterprise environment. It has evolved from
containing single monolithic systems to widely distributed
heterogeneous systems. This includes the Internet of Things
(IoT) systems, Industrial IoT systems [1], Cyber-Physical
Systems (CPS) [2] and Enterprise Application (EA). This
integration and the collaboration between these systems
results in a large complex system called System of Systems
(SOS) [3]. The emerging smart environments, such as Smart
Grids, Smart Gas network, Smart Cities, Smart Home, Fu-
ture Industry 4.0, etc. are examples of SOS [4], [5], [6].

As we are moving towards larger complex systems where
millions of devices, applications and systems need to be
integrated, the requirement for an inexpensive and rapid
integration solutions is an essential need [7]. Thus, this
work proposes the study and the development of a generic,
modular, and extensible interoperability architecture that is
based on modeling principles. It aims to ease the system
integration and promote interoperable data exchange be-
tween the heterogeneous systems in the industrial and smart
environments. In this paper, it is applied in the context of a
smart gas network.

This paper is organized as follows: The next subsections
introduce the various systems that constitute the smart gas
environment, a running example and the problematic tack-
led by this paper. The second section is a survey of existing
related work. The third section presents the conceptual and
technical architecture proposal. This will be followed by
some use cases in the fourth section. An evaluation will
be presented in the fifth section. Finally, the sixth section
concludes with some insights on ongoing and future work.

• A. Ahmed is with Arts et Métiers ParisTech, France and Sogeti-HT
Cagemeini, France.
E-mail: ahmed.ahmed@capgemini.com

• M. Kleiner and L. Roucoules are with Arts et Métiers ParisTech, France.
E-mail: {mathias.kleiner,lionel.roucoules}@ensam.eu

Manuscript received April 00, 0000; revised August 26, 0000.

1.1 Context

This work takes place in a French national project1 that
manages a real-time smart gas distribution network. In the
current network specifically, and in the industrial envi-
ronment generally, many distributed systems are used to
perform useful operation independently and to increase the
enterprise competitiveness [7]. An example of such systems
in the smart gas network is shown in figure 1. It includes
various Supervisory Control and Data Acquisition (SCADA)
architectures [8], that is a vertically integrated system, for
representing the vertical data exchange between equipment
and Human Machine Interface. In a given environment, var-
ious SCADA systems may co-exist from different vendors,
each with its own standard for accessing, manipulating,
and representing data [7] such as OPCUA [9], MQTT2,
radio transmission based network like Sigfox3, etc. Each
vertical oriented closed system is able to work separately
and independently.

Furthermore, other enterprise applications (EA), simply
referred by systems, coexist such as Computerized Main-
tenance Management System (CMMS), Enterprise Resource
Planning (ERP), Geographic Information System (GIS),
decision-support systems, logistic systems, and others. They
are provided by different vendors, using different standards,
programming language and protocols [7].

The heterogeneity of these systems, due to different com-
munication mechanisms, data format, and data semantics,
makes the interoperable exchange of data very challeng-
ing. However, the current architecture, mainly based on
the use of a single standard (OPC Unified Architecture -
OPCUA [9]), relies on system-specific ad hoc developments
whenever new systems have to be integrated. This arti-
cle proposes an interoperable integration platform for the
global supervision system that is an extension to the work
introduced in [10].

1. Gontrand FUI project: https://www.gontrand.net/
2. http://mqtt.org/
3. http://www.sigfox.com/

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 2

Gas Analyzers

OPCUA

Server

HMI

Geographic

Information System
Decision Making

system

CRM

Light Intensity

Sensors

Gas Network

Simulation Tool

Forecasting

system

HMI

Sigfox

Back-end

server

M2MM2M

SCADA 1 SCADA 2

V
e

rt
ic

a
l
In

te
g

ra
ti
o

n

V
e

rt
ic

a
l
In

te
g

ra
ti
o

n

Horizontal Integration

CMMS

GASS

GIS

LISS

Fig. 1. Example of distributed systems used in the smart gas network.

1.2 Running Example

This example will be used throughout the paper to illus-
trate the proposal on a simplified scenario of information
exchange in a smart gas network supervision environment.
It is composed of a subset of systems that were shown
previously in figure 1. Throughout this paper, the system
providing the information and the system using it is referred
as data producer (DP) and data consumer (DC), respectively.
It is composed of three DPs: A Gas Analyzer SCADA Sys-
tem (GASS) that monitors the quality and quantity of gas
at certain points of the gas network on real-time. It exposes
the data using OPCUA protocol; A Light Intensity Sensing
system (LISS) (DP) that provides light intensity information
on real time. The information is available through a (Rest)
web service from a Sigfox Cloud back-end server. Sigfox is
a low-cost communication solution that encodes the data
using simple 12 bytes data chunks; A CMMS that provides
maintenance and geolocation information for the analyzers
and the light sensors. Their data is available as a shared
tabular file (Excel format). Furthermore, this example in-
cludes a Geographic Information System (GIS) (DC). It
displays the GASS (e.g. CH4) and LISS (e.g. Light Intensity)
information on their appropriate location on the map in
real time. Additionally, operational rules are required on the
sensors data before it can be presented to the GIS. Data must
be provided through a shared tabular file (CSV format).

1.3 Issues

The information exchange between the heterogeneous sys-
tems in the running example impose the need for an in-
teroperability solution such as adhoc and middleware so-
lutions. Thus, a functional decomposition of such solutions
leads us to the following main issues: 1. Different commu-
nication mechanisms are used by the different systems in
order to provide or consume data (here OPCUA, Rest web
service, file sharing); 2. Different data formats are used by
the systems (here OPCUA Data Model, plain bytes, tabular
CSV and Excel files); 3. Different data semantics coexist.
Indeed, each system has its own semantics in producing
or interpreting data. These can range from simple naming
(for instance, here the geolocation information uses different
coordinates system) to more complex structural differences;
4. Operational/business rules may be required in order
to process input data before it can be presented to the

consumer (here, the GIS system requires an additional ag-
gregated value);5. Various interaction paradigms are used
by the communication protocols for the dissemination of
data such as request/reply and publish/subscribe [11]. The
first three issues require to address interoperability at the
technical level, syntactic level and semantic level, respec-
tively [12]. The fourth issue focuses on domain knowledge
by applying business rules. The last issue also belongs to the
technical interoperability for data dissemination. It should
be noted that these differences can be independent from
each other. For instance, multiple systems can share a com-
munication mechanism while using different data formats
and/or semantics.

2 Related Work
Smart gas platforms are a relatively recent application
area which led to various ad-hoc developments. However
interoperability solutions can rely on level-specific studies
and on the various proposals made for similar architectures
(such as the broader IoT scope). The first part introduces
the existing work that focuses on one of the three interop-
erability level, then the second part presents more general
solutions that can be considered in our context.

2.1 Level-specific interoperability

2.1.1 Communication Interoperability
Numerous standards, protocol and mechanisms exist for
device and application communication such as OPCUA [9],
PROFIBUS, Modbus, MQTT [13], COAP [14], radio trans-
mission for Sigfox network, Restful web service [15], and so
on. Heterogeneous environments often need a combination
of these mechanisms for the systems to communicate with
each other.

2.1.2 Syntactic Interoperability
When interacting with external systems, various inter-
change format and standards are used such as Extensi-
ble Markup Language (XML), JavaScript Object Notation
(JSON), Comma-Separated Values (CSV), databases, etc. The
XML Metadata Interchange (XMI) [16] format is an OMG
standard for exchanging metadata information via XML. It
is widely used for the serialization of Metaobject Facility
(MOF) metamodels. Heterogeneous environments must in-
teract with a variety of these formats.

2.1.3 Semantic Interoperability
Many approaches are proposed to deal with semantic inter-
operability. One way is creating domain-specific data mod-
els such as the Common Information Model (IEC 61970,
61968 and 62325) [17] that defines the components of the
electrical power systems and their relationships, Gas Distri-
bution Model (GDM) 4 for representing the components of
gas network, etc. Another way relies on domain ontologies
[18]. Ontologies are formal explicit specifications of a shared
conceptualization [19]. Again, ISO-15926 also provides an
ontology for oil and gas industry. [20] is an ontology for
manufacturing system engineering ontology. These domain

4. http://gtigpsresearch.blogspot.com/p/gas-distribution-
model.html

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 3

conforms

to

MetaMeta

model

conforms to

transformation

Data 1

(file)

Projection

(inject)

Model A

MetaModel

A

Model

B

MetaModel

B

conforms

to

Metamodel

Transformation

Model (rules)

conforms

to

conforms to

Data 2

(file)

Projection

(extract)

Grammer,

schema,

structure

Grammer,

schema,

structure

respect respect

MetaMeta

Model

MetaModel

Model

Reality

Instance of/

conforms to

Instance of/

conforms to

Represente

d By

Instance of/

conforms to

M0

M1

M2

M3

conforms

to

conforms

to

Technical space

of input

Technical space

of output
Modeling Space

M1

M2

M3

Projection Transformation Projection

Fig. 2. MBE projection and transformation concepts

ontologies and data model standardization have brought
semantic convergence for information exchange, however,
the lack of an environment complying to the common
agreements and data model is still the main encumbrance
for interoperability. OPC UA [9] in addition to its com-
munication mechanisms, provides a generic way to create
data models. Some commercial tools like Kepware 5 propose
ad-hoc adapters to interoperate with no-opcua systems.
Work, involving data model mapping, has been done in the
electricity domain for the mapping of CIM to OPCUA [21].
Another generic data model is Open Data Format (O-DF)
which aims at providing a unified semantic at a domain
agnostic abstract level [22].

2.1.4 Model-based engineering (MBE)

In the last years, this field of software engineering has
studied how different data formats and semantics can be
related and technically handled in a generic architecture.
Although it originates from software modeling and gen-
eration techniques, it has since been successfully applied
to represent and exchange information from the physical
world [23].
MBE naturally promotes separation of concerns. It uses
“models” as a unifying concept to represent information
[24]. The community distinguishes three levels of mod-
els: (terminal) model, metamodel, and metametamodel. A
model (M1) is a representation of a system and a way to ve-
hiculate information (M0) that is described through a mod-
eling language called metamodel. This metamodel (M2) is
itself described by a meta-language i.e. the metametamodel
(M3). The OMG proposes a standard 4-layers metameta-
model called Meta Object Facility (MOF) to implement these
models as shown in figure 2.

MBE provides many techniques for model operations
that can be used to achieve interoperability in our context.
At the syntactic level, projections allow to convert data
formats from/to specific technical spaces (TS) to/from the
modeling environment. These can be implemented manu-
ally or facilitated by using XML or grammar-based tools
[25]. At the semantic level, transformations [26] allow to map
data from one metamodel semantics to another. Such meta-
models may either be domain-specific, based on standards,
or provide custom unified semantics. Some attempts have
been made in order to use models to promote interoperabil-
ity for enterprise software integration [27] and SOS [28].
They focus mainly on defining interoperability models and
the generation of code.

5. https://www.kepware.com

2.2 Multi Level Interoperability

2.2.1 Standards

Many organization tackle the interoperability issue by using
domain-specific standards. These standards may handle one
or more interoperability levels. In our context, we may
consider ISA-95 for Enterprise-Control System Integration
[29], MIMOSA 6 and PRODML 7 for the oil and gas interop-
erability solutions, ISO-15926 for data modeling and data
integration including oil and gas industry [30], etc.

2.2.2 Architectures and Middlewares

All the interoperability aspects discussed previously must
be applied in an architectural solution so that all the aspects
are glued together and complete each another. Therefore,
some work-groups and organization steer their effort to de-
compose the interoperability issues by defining a reference
model in architectural approaches, such as Grid Wise Archi-
tectural Council (GWAC) [30], the Smart Grid Architecture
Model for electricity domain [4] and Reference Architecture
Model for Industry 4.0 (RAMI 4.0) [31]. These architec-
tures are divided into several abstract layers representing
interoperability categories for business, policies, functions,
information, and communication, etc.

Service Oriented Architecture is a conceptual-level ar-
chitectural model that relies on services for integrating
systems. It is used by the“IoT Architectural Reference Model
(ARM)” [32] that provides a common structure and guide-
lines for the Internet of things. Arrowheam [33] is also a
SOA-based Framework for the interoperability and integra-
tion aimed at enabling IoT, Industrial IoT and system of sys-
tems. Middleware solutions helped to facilitate the design
and development of concrete SOA solutions mostly referred
by “Service oriented middleware” (SOM) [34]. SOCRADES
Integration Architecture for IoT is one of the SOM solutions
that allows the integration between things (devices) and
applications using web services [35].

IoT hub-based solutions have been created to achieve a
degree of interoperability through dedicated middlewares.
Some of these hubs, such as ThingsSpeak and Xively, are
based on web technologies and protocols, therefore referred
as Web of things interoperability solutions.

2.3 Discussion

Level-specific interoperability solutions handles the com-
munication, syntactic and semantic interoperability sepa-
rately, therefore, they are not sufficient in our context. In-
deed, more generic solutions that bind all the interoperabil-
ity levels are required. Generic solutions involves imposing
standards such as [29], [30] MIMOSA, PRODML for gas
and oil industry. However, authors in [36] concluded that
there is no unified standard for system integration in the
oil and gas industry. Another works in [37] also showed the
limitations of these standards for smart gas networks. The
National Institute of Standards and Technology (NIST), that
introduces an interoperability framework for Smart Grid,
concluded that hundred of standards are required which
themselves must be interoperable, to achieve end-to-end

6. http://www.mimosa.org/
7. http://www.energistics.org/production/prodml-standards

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 4

CMMS
Sigfox

back-end

server

LISS

Data ConsumerData Producers

GASS GIS

System Of Systems (SOS) Layer

S
e

tt
in

g
s

 L
a

y
e

r

Manage communication

Common format to DC TS format

Unify the semantics Refine the semantics

Central

Repository FetchAndProcess

Convert DP TS format to common format

Aggregate
S

m
a
rt

-H
u

b

Domain-Independent Layer

Domain-Specific Layer

Communication layer

Fig. 3. Conceptual Smart-hub Architecture

interoperability [38]. Additionally, standards have to be re-
worked (and thus systems adapted) whenever new technical
or semantic issues need to be taken into account. To sum
up, in such heterogeneous environment, it is unpractical to
impose and comply with a single standard [39]. However,
when applicable, support of standards greatly reduces the
need to develop specific components.

The model driven efforts to handle interoperability [27],
[28] focus on semantics and code generation for integration
purposes, which do not take in consideration all levels of
interoperability. In the architectures and reference models
given by [4], [30], [31], the communication and information
interoperability were defined by domain-specific standards.
In a heterogeneous environment, prior guaranty that all
systems comply with the same agreement of standard is
not granted. The SOA architecture presented in [32] is
very abstract and provides an approach for modeling an
IoT system. However, it does not provide an approach for
the technical implementation of the system under study.
Works in [33], [34], [35], ThingsSpeak 8, Xively 9 provided
technical solutions, however, there are applicable to service
based/web-based systems with specific syntax and seman-
tics. However, in our context, there are many non service-
based systems (database applications, file based application,
etc.) and different syntax and semantics need to be managed.
Therefore, specific adapters must be developed to integrate
these systems which are expensive in terms of cost and time.

All the previous works impose a particular standard,
solution or technology to promote a holistic and a non-
extensible interoperability solution. However, to the authors
knowledge, there is no existing solution that promotes the
interoperability by extending its different levels and com-
bining them as a single solution. Thus, these existing holistic
solutions can be reused as a single unit but cannot promote
the re-usability at a specific interoperability level. This latter
is one of our requirements to facilitate the adaption of the
interoperability solutions to external system changes which
will result in improving the development cost and time.

In this papers, the authors attempt to enable the in-
teroperability between heterogeneous systems through a
generic, conceptual, technically implementable, modular
and extensible architecture that promotes re-usability at
each interoperability level, easily adapt to external system
changes and does not impose a specific standard.

8. https://thingspeak.com/
9. https://www.xively.com

3 Smart-hub
In the first part of this section, the authors present the
conceptual architecture of the approach which promotes
modularity by relying on a deep separation of concerns.
Then the technical implementation, which facilitates ex-
tensibility by relying on unified model-based techniques,
is described.

3.1 Conceptual Architecture

Figure 3 introduces a 5-layers architecture dubbed Smart-
hub. It acts as a hub between data producers (DPs) and data
consumers (DCs) heterogeneous systems.
• Communication layer: This layer provides a “Catalog
Repository” for a set of data connectors to interface, estab-
lish communication and exchange data with the external
systems either directly or via the system’s proxy/gateway.
• Domain-Specific Layer: This layer manages various for-
mats by converting the data provided by DPs from their
technical space format to a common format. Similarly, it
converts the data from the common format to the data con-
sumers technical space format. This process of conversion
between formats relies on a data repository (Common For-
mat Repository) that includes the common format descrip-
tion of the systems and a functional repository (Conversion
Rules) that includes the format conversion procedures.
• Domain-Independent layer: This layer addresses the
different semantics of data. It includes a functional repos-
itory (Transformation Rule) that manages the conversion
rules to unify the data provided by the domain-specific layer
to common semantics and to refine the common-semantics
to domain-specific data. It also includes a repository to hold
these intermediate data.
• System of Systems Layer: This layer includes the Cen-
tral repository to hold the unified data. It aggregates the
data provided by the domain-independent layer, and a
functional repository (Data Processing Rules) holds rules
that allow for fetching/processing the data required by DCs.
• Settings Layer This layer manages the configuration
data for connected systems.

An Orchestration layer (not presented) handles the data
dissemination from DPs and to DCs according to different
interaction patterns. However, it is out of the scope of this
paper. Simply, you can consider that the Smart-hub requests
and publishes the data from DPs and to DCs, respectively.

3.2 Architecture implementation

The implementation of the architecture heavily relies on the
use of the model-based technologies previously discussed.
(Meta)models are used for modeling the exchanged data,
the unified semantics and the Smart-hub configuration it-
self. This has several advantages. First, abstract modeling
eases common understanding between domain experts and
developers. Second, syntactic and semantic interoperability
are achieved using the same paradigm which, coupled with
efficient model-based software tools, allows to ease devel-
opments and further extensions. The authors have chosen
the Eclipse Modeling Framework (EMF)10 to support the
implementation.

10. https://eclipse.org/modeling/emf/

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 5

Communication

OPCUA Connector

File Sharing Connector

Rest Webservice Connector

Different communication mechanism

plugins that contribute as an extension

Data Connector Catalogue

Communication plugin

defines the extension point

connect() , receiveData()

sendData(), disconnect()

Fig. 4. Communication Layer.

Additionally, thanks to the conceptual separation of con-
cerns that permits the creation of loose coupling compo-
nents. Loose coupling eases the integration and addition of
components.

3.2.1 Communication Layer

The communication layer must provide the following func-
tionality: establish a communication with the external sys-
tem; disconnect from the external system; receive data from
the data producer; send data to the data consumer. The dif-
ferent communication mechanisms (OPCUA client connec-
tor, file sharing, Rest Webservice connector) are created as
identified extension plug-ins that implement and contribute
to these functionalities. These components for our running
example are shown in Figure 4.

3.2.2 Domain-Specific Layer

This layer manages the projection of data formats from the
technical space of the connected system to the modeling
environment (ProjectToModel) and vice-versa (ProjectFrom-
Model). For each format, a plug-in contributes and imple-
ments a domain-specific projection rule.

Here model-based technologies greatly reduce the devel-
opment times. First, XML or grammar-based data formats
can be projected by software tools using simple rules [25].
Second, a domain-specific metamodel can be shared by dif-
ferent systems. Either because it is a generic format (such as
the OPCUA data model), or because the developer can group
systems that provide the same domain-specific data. After
the data is received via OPCUA connector, it is handled by
this layer to generate a model conforming to the generic
OPCUA metamodel.

3.2.3 Domain-Independent layer

This layer uses a single meta-model that provides unified
semantics at an abstract and agnostic level. This agnostic
meta-model called Common Data Model (CDM) is inspired
from [9], [22], [40]. The main concepts of this metamodel
are: an Object is an identified container of data variables
and nested objects that are organized as a hierarchical tree; a
Data Variable is a container of data that is characterized by
a name, a data type and a value. It may include nested data
variables and meta-variables; a Meta Variable is a container
of data that provides additional meta-data information for a
data variable; a Value concept is used to hold the value with
an optional time stamp.

This layer achieves semantic interoperability by con-
verting domain-specific models to this domain-independent
model(unify) and vice versa (refine). For each domain-
specific model, a plug-in contributes these functionalities.

Domain-

Independent

LISSUnification

id=LISSUnif

Tabular Transformation

id= TabularTrans

OPCUA Transformation

id=OPCUAUnif

Domain-Independent

plugin defines the

extension point

Different domain-independent

plugins that contribute as an

extension

Transformation rules

functional repository

CDM

MetaModel.ecore

conforms

to

Metamodel

Transformation

Model (rules)

conforms

to

settings.xmi

Settings.ecore

conforms

to

Input model

containing

System

Information

from settings

layer

OPCUAUnif:

OPCUA2CDM

Output model

Intermediate Repository

DS_GASS.xmi

OPCUA

MetaModel.ecore

conforms to

Id=GASS

transformation

DI_GASS.xmi

Input model

from

Domain-

Specific

Layer

• unify()

• refine()
GASSM.xmi

OPCUA

MetaModel.ecore

conforms to

T
ra

n
s
fo

rm
a

ti
o

n

Fig. 5. Example of GASS Transformation for unifying the semantics

Here again, model-based technologies greatly ease the
development. Our current transformations are mostly based
on the ATL tool [41]. ATL uses simple rules that can be un-
derstood or written by domain experts. Figure 5 illustrates
an example of transforming the DS GASS model from the
domain-Specific layer to a model conforming to the CDM
metamodel. The Smart-hub settings are used here to assign
the data of the corresponding system in the CDM.

3.2.4 System of Systems Layer

The Central Repository holds the unified data which also
conforms to the CDM meta-model. Each system instance has
a corresponding object in the repository. Two operations are
supported in this layer:

• Aggregate “creates” or “updates” the repository with the
system data from the domain-independent layer.This sim-
ple operation is not system-specific and thus implemented
generically in the Smart-hub core.
• SOSFetchAndProcess “fetches” and “processes” the
data from the Central Repository for further dispatching
to a consumer system.

As previously discussed, data processing is a manda-
tory feature in our context. It involves the application of
operational/business rules (arithmetic, structural, etc.) to
the data when this is required by a specific consumer
system. A plug-in contributes and implements these custom
rules for each system that requires it. Again, model-based
technologies such as ATL allow to facilitate the writing of
these operational rules by domain experts. In our example,
the aggregated data is processed through ATL rules and
generates the model for the GIS system in the Intermediate
Repository. This generated data then naturally follows the
reverse process previously described: it is refined to the
domain-specific layer and finally provided to the consumer
system using its communication mechanism.

3.2.5 Settings Layer

We have have seen previously that the data go throw a
number of levels for the data acquisition (DA) from DPs
and the data generation (DG) for DCs. This layer manages
the components to load for each smart-hub layer in order to
establish interaction with the external systems.

In the smart gas environment, multiple systems co-
exist that share the same communication mechanism, data

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 6

format, and semantics. Therefore, the Smart-hub distin-
guishes two concepts: A System-Type, either a DataPro-
ducer (e.g. GasAnalyzerSystem) or a DataConsumer (e.g.
GeolocalizationSystem), is a conceptual concept of a system
sharing similar components. A System-Instance, either a
DataProducerInstance (e.g.GASS, GASS1, GASS2, etc.) and
DataConsumerInstance (e.g. GIS, GIS1, etc.), is the concrete
system in the environment that uses the components iden-
tified by its system-type (GasAnalyzerSystem). These two
concepts are distinguished via a meta model named “Settin-
gRepository”. Furthermore, a particular system-instance re-
quires additional information such as authentication. These
system-instance information are set via a metamodel ex-
tending the SettingRepository metamodel. This coupling of
the two levels settings makes the Smart-hub modular due
to its ability to add system instance information for specific
environment without affecting the system-type repository.

4 Case Study
Figure 6 presents the application of the Smart-hub solution
on the running example that was introduced in section 1.2.
Firstly, a list of components is developed for the extension
of the smart-hub layers. The components for the communi-
cation layer are: OPCUA, RestWebservice and FileSystem to
interact with the OPCUA server(GAAS), the Rest-compliant
systems (LISS) and the file-based systems (CMMS and GIS),
respectively. The components for the Domain-Specific layer
are: OPCUA for projecting OPCUA data to OPCUA model;
LISSProjection for projecting the data provided by LISS
system to LISS domain-specific model. ExcelProjection for
projecting excel format to tabular model; CSVProjection for
projecting CSV format to tabular model; The components
for the Domain-Independent layer are: OPCUA to transform
OPCUA model to the unified model; TabularTransformation
to transform tabular data to the unified model; LISSUnifica-
tion to transform LISS domain-specific model to the unified
model. Likewise, a GISDP SOSFetchAndProcess component
is developed to process the aggregate data in the central
repository and generate the data required by the GIS system.

The data acquisition process (1-4) passes through a num-
ber of stages. Firstly the smart-hub acquires the data from
the external system,then it unifies the syntax, after that it
unifies the semantics and finally the data are aggregated
in the central repository. The data generation process (5-
9) is the reverse operation of the data acquisition where
data are generated from the central repository in the unified
semantics using the SOSFetchAndProcess operational rules.
Then, the data are refined to the DC syntax and finally
dispatched to the DC.

As seen in this simple example, the FileSystem connector
was developed once but used twice. The same applies to
the TabularTransformation, that was reused by more than
one tabular based system. Now, systems compatible with the
pre-existing components can be easily added to the current
environment without any hard-coding as will be seen in the
next section.

4.1 Extended running example

Now, the running example is extended by adding and mod-
ifying some systems. First, a number of DPs are added:

another gas analyzer system (GASS1) that uses OPCUA;
two pressure regulator stations (PRS) that monitors the
gas pressure using OPCUA; a forecasting system using rest
web service; Second, an OPCUA DC server is added that
aggregates the data from all the DPs. Finally, the format of
the CMMS system is changed from Excel to CSV.

Since GASS1, PRS56, and PRS78 are OPCUA-based sys-
tem DPs, it is just required to reuse the pre-existing compo-
nents. The rest web service component exists previously and
can be re-used with the forecasting system at the commu-
nication level. However, since the Forecasting format and
semantics does not exist previously, then it is required to
create their domain-specific and domain-independent com-
ponent. As indicated previously, the CMMS system changed
its format from Excel to CSV format. Therefore, the Smart-
hub is reconfigured to load the pre-existing CSV domain-
specific component.

The OPCUA server DC (OPCUADC) must provide the
full data in the central repository. Therefore, a SOS-
FetchAndProcess component is declared to fetch and pro-
cess the central repository and make it available to the DC.

5 Evaluation

The Smart-hub has been tested by engineers on a number of
real case studies in the smart gas network for the project
Gontrand. The modularity of the architecture has led to
focus and develop a number of loosely coupled components
which tackle the different layers of interoperability. This
has resulted in the development of a number of commu-
nication, domain-specific, domain-independent and opera-
tional/business rule components to test the functionality
of the Smart-hub without imposing a particular standard.
Then, the case studies in the project Gontrand have been
subjected to several iterations for external systems changes
to test the re-usability and extensibility feature, which was
achieved successfully.

In order to make an evaluation of the proposal, the
authors have created a comparison of the generic related
works and the proposal based on some criteria as shown in
Table 1. The first criterion verifies if the solution is generic
in terms of application to a particular domain or if it is
domain independent. The second criterion checks if the
solution provides a deep separation of concerns to handle
each level of interoperability separately and independently.
The value of loosely coupled concerns is simplifying devel-
opment, re-using functionalities and maintenance of each
interoperability level separately. A solution such as OPCUA
provides separate functionalities for the different level of
interoperability, however, the layers are tightly coupled and
dependent. The third criterion checks the solution capabil-
ity to extend to new technologies and solutions at each level
of interoperability, thus the ability of the solution to adapt
to external systems changes (at any level of interoperability
either communication, syntactic or semantic) without the
need for complete replacement/update of an existing solu-
tion (e.g. changing the syntax of a system). Finally, the last
criterion verifies whether a standard must be imposed for a
particular solution or it can adapt to any standard (OPCUA,
ISO15926).

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 7

C
o

m
m

.

la
y
e

r

Sigfox

back-end

server

LISS GIS

Rest Api comm.

12 Bytes format

OPCUA comm.

OPCUA format
File System

Excel format

File System

CSV format

C
H

4
=

1
2

3

L
ig

h
tI

n
te

n
s
it
y
=

9
4

8

CMMS

Connectors Catalog

Connect
sendData

Disconnect

ProjectFromModel

Refine

C
e

n
tr

a
l

R
e

p
o

s
it

o
ry

Intermediate Repository Transformation

Rules

Common Format Repository Conversion Rules

S
e

tt
in

g
s

 L
a

y
e

r

OPCUA,

Rest Webservice,

FileSystem

LISS,

OPCUAProjection,

ExcelProjection,

CSVProjection

LISSUnification,

OPCUA,

TabularTransformation

LISS

MetaModel.ecore

OPCUA

MetaModel.ecore

CDM

MetaModel.ecore

CDM

MetaModel.ecore
Data processing

rules

GISDP

DI_GASS.xmi DI_LISS.xmi

DS_LISS.xmiDS_GASS.xmi

CDM.xmi

LISS Bytes

Data
OPCUA Object

Data

Input Data

1

2

3

4

GASS

D
o

m
a

in
-S

p
e

c
if

ic
 L

a
y
e

r

5

6

7

8

1 2 3 4

5 6 7 8

Data acquisition

Data generation

DI_GIS.xmi

DS_GIS.xmi

Output Data

Data ConsumerData Producers

Unify

DI_CMMS.xmi

Tabular
MetaModel.ecore

DS_CMMS.xmi

Excel File

ProjectToModel

receiveData

…

…

D
o

m
a

in
-I

n
d

e
p

e
n

d
e

n
t

L
a

y
e

r

Aggregate FetchAndProcess

CSV File

S
O

S
 L

a
y
e

r

Fig. 6. The running example data exchange via the smart-hub

The smart-hub solution has been developed taking into
consideration the requirement documents that states the
previously defined criteria. One of the advantages of the
Smart-hub is its support of reuse which has a great impact
on reducing time-to-market, cost and improving quality
[42]. The quantitative comparison of software reuse and
other criteria such as performance, efficiency, etc. between
the different solutions are reserved for the future work.
The authors are aware that the smart-hub solution has
some limitations. The smart-hub was able to integrate SOA
solutions that acquire data from single service, however,
it was not tested to integrate SOA solutions with multiple
services. This is due to the fact that the smart-hub is data-
oriented and not service oriented, i.e. the central pivot
point for data exchange is the central data repository and
not services. The smart-hub scalability to handle frequently
changed and massive data has not been tested yet. However,
the Smart-hub architecture provides a methodology that can
be implemented using more efficient techniques.

6 Conclusion and future work
In this work, the authors have described a methodology
which promotes the interoperability in order to achieve inte-
gration between systems in the smart gas distribution grid.
This methodology has been based on multi-layer generic,
modular and extensible architecture that relies on a deep
separation of concerns and model-based software engineer-
ing techniques. The architecture has been developed and
tested on a number of use cases from the Gontrand Project.

There are many perspectives for this work. First, ongoing
work tackles the orchestration of data according to different
interaction pattern. Second, we are investigating solutions

TABLE 1
Evaluation with generic related work

Generic Modular Extensible Impose
standard

St
an

d
ar

d
s ISA-95,

MIMOSA,
ISO15926

x X x X

OPCUA X x x X

A
rc

hi
te

ct
u

re
s

an
d

M
id

d
le

w
ar

es

GWAC x x x x

RAMI,
IoT ARM,
Hypercat

X x x x

Smart-hub X X X x

to support built-in data storage and historization. Third, we
plan to assess the scalability of the architecture with high
frequency data exchanges. Fourth, we are building empirical
data for creating a benchmark. Finally, we plan to test the
architecture in similar environments such as Industry 4.0,
smart grid, Industrial IoT, and all sorts of SoS where the
integration and the collaboration between heterogeneous
systems is required.

Acknowledgments
This work was carried out within the framework of a French
national project (Gontrand) for the supervision of a smart
gas grid. Support was given by Sogeti-HT Capgemini com-
pany, who funded this work. Finally, the authors would like
to thank the gas distribution companies GRDF, REGAZ, and
RéseauGDS for their collaboration.

IEEE SYSTEMS JOURNAL, VOL. X, NO. X, MONTH 0000 8

References
[1] R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and

Paradigms. Morgan Kaufmann, 2016.
[2] R. Rajkumar et al., “Cyber-physical systems: The next computing

revolution,” in Design Automation Conference, June 2010, pp. 731–
736.

[3] M. Jamshidi, Systems of systems engineering: principles and applica-
tions. CRC press, 2008.

[4] CEN-CENELEC-ETSI and Smart Grid Coordination, “Smart grid
reference architecture,” Tech. Rep., nov 2012.

[5] K. Su et al., “Smart city and the applications,” in International
Conference on Electronics, Communications and Control (ICECC),
Sept 2011, pp. 1028–1031.

[6] R. Drath and A. Horch, “Industrie 4.0: Hit or hype?” IEEE Indus-
trial Electronics Magazine, vol. 8, no. 2, pp. 56–58, June 2014.

[7] W. He and L. D. Xu, “Integration of distributed enterprise ap-
plications: A survey,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 1, pp. 35–42, Feb 2014.

[8] P. Zhang, Advanced Industrial Control Technology. William An-
drew, 2010.

[9] W. Mahnke et al., OPC Unified Architecture. Springer Nature,
2009.

[10] A. Ahmed et al., “Model-based interoperability solutions for the
supervision of smart gas distribution networks,” in 11th System of
Systems Engineering Conference (SoSE), June 2016, pp. 1–5.

[11] G. Mhl et al., Distributed Event-Based Systems. Springer, 2006.
[12] A. P. Sheth, Changing Focus on Interoperability in Information

Systems:From System, Syntax, Structure to Semantics. Boston, MA:
Springer US, 1999, pp. 5–29.

[13] A. Banks and R. Gupta, “Mqtt version 3.1.1,” OASIS standard,
2014.

[14] C. Bormann et al., “CoAP: An application protocol for billions of
tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp.
62–67, mar 2012.

[15] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly
Media, Inc.”, 2008.

[16] M. Rys et al., “XML metadata interchange,” in Encyclopedia of
Database Systems. Springer Nature, 2009, pp. 3597–3597.

[17] M. Uslar et al., The Common Information Model CIM: IEC
61968/61970 and 62325-A practical introduction to the CIM.
Springer Science & Business Media, 2012.

[18] T. Bittner et al., “Ontology and semantic interoperability,” Large-
scale 3D data integration: Challenges and Opportunities, pp. 139–
160, 2005.

[19] T. R. Gruber, “A translation approach to portable ontology speci-
fications,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993.

[20] H. K. Lin and J. A. Harding, “A manufacturing system engineering
ontology model on the semantic web for inter-enterprise collabo-
ration,” Comput. Ind., vol. 58, no. 5, pp. 428–437, Jun. 2007.

[21] S. Rohjans et al., “Uml-based modeling of opc ua address spaces
for power systems,” in IEEE International Workshop on Inteligent
Energy Systems (IWIES), Nov 2013, pp. 209–214.

[22] J. Robert et al., “O-mi/o-df standards as interoperability enablers
for industrial internet: A performance analysis,” in IECON 2016
- 42nd Annual Conference of the IEEE Industrial Electronics Society,
Oct 2016, pp. 4908–4915.

[23] K. Duddy and J. R. H. Steel, “Overview of the modelling of the
physical world (motpw) workshop at models 2012,” in Proceedings
of the Modelling of the Physical World Workshop, ser. MOTPW ’12.
New York, NY, USA: ACM, 2012, pp. 1:1–1:2.

[24] J. Bézivin, “On the unification power of models,” Software &
Systems Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[25] S. Efftinge and M. Völter, “oaw xtext: A framework for textual
dsls,” in Workshop on Modeling Symposium at Eclipse Summit,
vol. 32, 2006, p. 118.

[26] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–
645, Jul. 2006.

[27] J. P. Bourey et al., “Report on Model Driven Interoperability,” Apr.
2007, deliverable TG2.3.

[28] G. Tyson et al., “A model-driven approach to interoperability and
integration in systems of systems,” in Proc. of Workshop on Model-
Based Software and Data Integration (MBSDI), 2011.

[29] S. Instrumentation and A. Society, ANSI/ISA-95.00.01-2010 (IEC
62264-1 Mod) Enterprise-Control System Integration, Std.

[30] The Gridwise and Architecture Council, GridWise Interoperability
Context-Setting Framework, 2008.

[31] M. Hankel and B. Rexroth, “The reference architectural model
industrie 4.0 (rami 4.0),” ZVEI, 2015.

[32] A. Bassi et al., Eds., Enabling Things to Talk. Springer Nature,
2013.

[33] P. Varga et al., “Making system of systems interoperable the core
components of the arrowhead framework,” Journal of Network and
Computer Applications, vol. 81, no. C, pp. 85–95, Mar. 2017.

[34] J. Al-Jaroodi et al., “Service oriented middleware: Trends and
challenges,” in Seventh International Conference on Information
Technology: New Generations, April 2010, pp. 974–979.

[35] P. Spiess et al., “SOA-based integration of the internet of things in
enterprise services,” in 2009 IEEE International Conference on Web
Services, July 2009, pp. 968–975.

[36] V. Veyber et al., “Model-driven platform for oil and gas enterprise
data integration,” International Journal of Computer Applications,
vol. 49, no. 5, 2012.

[37] ——, “Model driven approach for oil amp; gas information sys-
tems and applications integration,” in 2010 6th Central and Eastern
European Software Engineering Conference (CEE-SECR), Oct 2010,
pp. 156–162.

[38] C. Greer et al., “Nist framework and roadmap for smart grid
interoperability standards, release 3.0,” Special Publication (NIST
SP)-1108r3, 2014.

[39] G. A. Lewis et al., “Why standards are not enough to guarantee
end-to-end interoperability,” in Seventh International Conference
on Composition-Based Software Systems (ICCBSS), 2008.

[40] S. Nativi et al., “Unidata’s common data model mapping to the
iso 19123 data model,” Earth Science Informatics, vol. 1, no. 2, pp.
59–78, Sep 2008.

[41] F. Jouault et al., “ATL: A model transformation tool,” Science of
Computer Programming, vol. 72, pp. 31–39, 2008.

[42] M. L. Griss, “Software reuse: From library to factory,” IBM Systems
Journal, vol. 32, no. 4, pp. 548–566, 1993.

Ahmed AHMED is a PhD student at Arts et
Métier ParisTech and a research engineer with
the company Sogeti-HT Capgemini, France. He
obtained his master degree in complex informa-
tion systems from the university of Western Brit-
tany, Brest, France in 2014. His current research
focuses on architectures, data modeling and
interoperability using model driven engineering
techniques.

Mathias Kleiner is an associate professor of
computer science in Information and System
Science Laboratory at Arts et Métier ParisTech,
France. He obtained his PhD from University of
Mditerrane, Marseille, France in 2007. His re-
search interests include artificial intelligence,
graphs, constraint programming and metamod-
eling, and the application of these technics to
mechatronic products design.

Lionel Roucoules is currently professor at Arts
et Métier ParisTech, France (www.ensam.eu). He
develops his research in the Information and
System Science Laboratory. The context of his
research is integrated design and collaborative
IT platform in a global PLM vision. His specific
interest is product-process interface.

