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Abstract
Composite materials based on shape memory alloys (SMA) have received growing attention
over these last few years. In this paper, two particular morphologies of composites are studied.
The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is
embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which
presents elastic–plastic inclusions in an NiTi SMA matrix. In both cases, the design of such
composites required the development of an SMA design tool, based on a macroscopic 3D
constitutive law for NiTi alloys. Two different strategies are then applied to compute these
composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is
implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach
based on the Mori–Tanaka scheme is developed. In both cases, simulations are compared to
experimental data.

1. Introduction

More and more complex structures based on shape memory
alloys (SMA) are investigated nowadays, in particular when
this active material is coupled with a structural material to get a
smart composite material. This is a very wide class of materials
with respect to the nature of the matrix and the reinforcement
but also with respect to their morphologies. A first example
is the case of an SMA wire embedded in a soft matrix. But
a material composed of inclusions embedded inside an SMA
matrix can also be considered as a composite material. Such
composites are, in fact, widely used in applications because
SMA alloys are very sensitive to precipitation, and when the
precipitation of a second phase occurs in an SMA material,
one has then to consider a composite material to model the
overall response. Of course, very different simulation tools
have to be developed when we are faced with an SMA fiber

embedded in a polymer matrix or with an SMA matrix with
a dispersion of elastic or elastic–plastic inclusions. But, for
each case, a constitutive law adapted to account in a suitable
way for the behavior of the SMA materials is required. Such
models have to describe correctly thermomechanical effects
induced by martensitic transformation, but, when we want
to apply such a law to represent the response of a complex
structure, like a composite material, a compromise has to
be found between the accuracy of the description of the
fundamental physical mechanisms involved and a reasonable
number of internal variables for memory and computation
time constraints. In this paper, we choose to describe the
behavior of SMA composites having different morphologies,
using the same macroscopic constitutive equations for the
SMA component. According to the composite morphology,
very different modeling strategies will be developed. When we
have to deal with an SMA fiber embedded within a polymeric
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matrix, a finite element analysis approach is adopted, and
the SMA behavior law is then adapted to an FEA package.
To account for the influence of elastic–plastic inclusions
inside an SMA matrix we will develop a homogenization
technique based on a scale transition scheme considering
this macroscopic description of the SMA behavior. As the
volume fraction of precipitates is low in the case considered,
a Mori–Tanaka approach is very suitable. In the past few
years, many macroscopic models have been developed to
describe the SMA behavior [1–4]. Most of them consider two
kinds of martensite: a so-called thermal martensite, with a
self-accommodated structure, and a stress-oriented martensite.
Macroscopic transformation strain is only due to the second
one, assuming the existence of a constant transformation strain.
Brinson’s model [1] is focused on the orientation mechanism
(transformation from thermal to stress-oriented martensite) and
non-proportional loadings. Lagoudas’s model [2] uses an
improved pseudo-phase transition model, which differentiates
transformation temperatures for each kind of martensite. This
model can simulate non-proportional loadings. Lexcellent’s
model [3] is more focused on tension–compression asymmetry
and transformation surface shape. Peultier’s model [4] is based
on a different choice of internal variables to describe the SMA
behavior. The martensite microstructure is represented using
two variables: a scalar one, the volume fraction of martensite,
and a tensorial one which is the mean transformation strain.
This last variable is equal to zero when the martensite was
formed in a self-accommodated way and reaches a saturation
value when the martensite is strongly stress-oriented by an
applied stress. In the present work, we choose to deal with
an improved version based on Peultier’s model. This model
deals with internal loops and tension–compression asymmetry
specificities and considers the occurrence of a mechanical
detwinning mechanism within the twinned martensite [5]. Two
different composite applications are investigated using this
model, which was implemented in the FEA package ABAQUS
to design composite actuators made from NiTi snake-like
shape wires embedded in an elastomer ribbon. To take into
account the enlargement of the hysteresis size induced by the
addition of elastic–plastic precipitates in NiTiNb alloys, a scale
transition scheme using the Mori–Tanaka technique is adopted.
The matrix behavior is then described using the macroscopic
model developed and the inclusion is assumed to present
an elastic–plastic behavior. This homogenization approach
enables us to predict the effect of niobium precipitates in
NiTiNb shape memory alloys for fastening applications.

2. SMA behavior modeling

2.1. Kinematical description—internal variables

The model proposed here is based, on the one hand,
on a thermodynamical description of the martensitic phase
transformation, reorientation and detwinning, and on the other
hand on simplified micromechanical considerations. The aim
is to lead to a macroscopic model based on a mesoscopic
description (at the grain or single-crystal level), as proposed
by Peultier et al [4]. Three internal variables are introduced.
One of them is a scalar that defines the volume fraction of

martensite. Both others are tensorial and define, in an averaged
way, the orientation of this martensite and the accommodation
of twins, respectively. A Gibbs’ free energy potential is
defined, including a chemical part and an interaction part
between martensite variants and between grains. Driving
forces related to internal variables are derived from this
energy. An important point of modeling SMA is the ability
to capture internal loops in thermomechanical paths. The
behavior depends on the history of previous paths. Several
evolution variables and memory points are introduced to design
correctly internal cycles by means of time-evolving critical
activation forces. The non-symmetric behavior between
tension and compression is introduced through a maximum
mean transformation strain depending on loading direction.
This anisotropy formulation results from a micromechanical
analysis [6]. The transformation strain direction is determined
by a normality flow-rule assumption. All these considerations
lead to nonlinear constitutive equations, solved by a Newton–
Raphson algorithm. Thermomechanical tangent operators are
then derived. This model is able to describe superelastic
behavior, recovery stress and strain (useful to design actuators),
martensite reorientation and shape memory effect. The
numerical tool obtained is implemented in the ABAQUS finite
element code via a UMAT subroutine. This formalism is
developed in the small perturbations’ framework because
reversible macroscopic strain never exceeds 8%. A
macroscopic kinematical law can be written as an additive
decomposition of the different strain mechanisms, with the
assumption that austenite and martensite phases have the same
elastic constants:

Ei j = Ee
i j + ET

i j + E tw
i j (1)

where

(i) Ee is the macroscopic elastic strain part.
(ii) ET is the macroscopic transformation strain part.

(iii) E tw is the macroscopic accommodation of the twin strain
part.

E tw is an additional inelastic strain contribution intro-
duced in equation (1) with the transformation one. In this way,
we take into account the experimental observations made in [7]
about the twins accommodation process in NiTi alloys. The
transformation strain part is the mean of the local transforma-
tion strain on the RVE:

ET
i j = 1

V

∫
V

εT
i j(r) dV . (2)

Assuming that the transformation strain is non-zero only
in the martensite part, and considering f as the volume fraction
of martensite, which is the ratio of the martensite volume VM

inside the RVE volume V , one can write

ET
i j = VM

V

1

VM

∫
VM

εT
i j(r) dV = f

1

VM

∫
VM

εT
i j(r) dV . (3)

The mean transformation strain in the martensite part is
then defined as follows:

ε̄T
i j = 1

VM

∫
VM

εT
i j(r) dV . (4)



The macroscopic transformation strain can be written as a
function of f and ε̄T

i j :

ET
i j = f ε̄T

i j . (5)

The elastic accommodation of twins can be written using
the same formalism:

E tw
i j = 1

V

∫
V

εtw
i j (r) dV . (6)

This accommodation of twins is non-zero only in
martensite variants which appeared with twins inside.
Considering γm as the volume fraction of martensite with twins
in the RVE, and ε̄tw

i j as the mean accommodation strain in the
martensite with twins:

E tw
i j = Vγm

V

1

Vγm

∫
Vγm

εtw
i j (r) dV = γmε̄tw

i j . (7)

The volume fraction of martensite and both the mean
strain characteristic of orientation and twin accommodation
mechanisms are considered in this kinematical description.
The three variables f , ε̄T

i j and ε̄twin
i j are representative of the

material microstructure evolution, in the mean field formalism
adopted in this paper. In a straightforward way, they are chosen
as internal variables in the thermodynamical description of the
transformation of the RVE.

2.2. Thermodynamical description

The existence of a thermodynamic potential in the two-phase
RVE is postulated, and evolution laws of internal variables
are derived from this potential. The first and second laws
of thermodynamics are combined, leading to the Clausius–
Duhem inequality:

−∂G

∂�
: �̇ − ∂G

∂T
· Ṫ − ∂G

∂Vk
· V̇k − S · Ṫ

− �̇ : E − �q · �gradT

T
dt � 0. (8)

The Gibbs free energy G considers the macroscopic stress
� and temperature T as observable variables. S represent the
VER entropy, E is the macroscopic strain and q is the thermal
flux. The internal variables Vk are:

(i) f , the volume fraction of martensite
(ii) ε̄T

i j , the mean martensite transformation strain
(iii) ε̄tw

i j , the mean twin accommodation in twinned martensite
variants.

Physical limitations on these internal variables must be
taken into account in the Gibbs free energy evolution. From
its definition, the martensite volume fraction ranges between 0
and 1. A saturated value of the mean transformation strain is
introduced with a tension–compression asymmetry parameter,
in order to represent the non-symmetric transformation surface
according to experimental results [8, 9]. Patoor et al [6]
were using a transformation yield surface formulation based
on the second (J2) and third (J3) invariants of the deviatoric
stress tensor. This expression was used to calculate the overall

response of SMA beams [10]. Peultier et al [4] have developed
a criterion based on the saturated value of the transformation
strain, which depends on the second and third invariants of the
mean transformation strain ε̄T

i j . The yield stress asymmetry is
also considered as the difference between the tensile and the
compressive transformation strains. Peultier’s criterion is here
generalized to the n-rank with respect to convexity conditions:

ε̄T
sat = K

(
1 + β

J3

J2
3
2

) 1
n

(9)

with

J2(ε̄
T
i j) = 1

2 ε̄
T
i j ε̄

T
i j J3(ε̄

T
i j) = 1

3 ε̄T
i j ε̄

T
jk ε̄

T
ki . (10)

Parameters K and β are identified from tensile and
compressive tests, considering respectively ε̄T

trac and ε̄T
comp as

saturated values in tension and compression loading cases:

K = ε̄T
trac

(
1 + β

α

)− 1
n

(11)

β =
(

1 − γ

γ + 1

)
α (12)

where α is a constant value coming from J2 and J3 invariant
definitions (α � 2.6)

γ is the ratio of transformation strain between tension and
compression at the n-rank:

γ =
(

ε̄T
comp

ε̄T
trac

)n

(13)

where K and β are characteristic parameters of the asymmetry.
If β = 0 (ε̄T

comp = ε̄T
trac), the expression of ε̄T

sat leads to the Von
Mises equivalent strain. For common NiTi materials, the ratio
between maximal compression and tension transformation
strains is approximately equal to 0.8, and n = 5 ensures the
convexity of the transformation surface.

According to experimental observations [7], accommoda-
tion of the twins process disappears at high stress levels when
plastic strain occurs. The presented model is limited to elastic
and transformation strain. Within the range of strains consid-
ered, one can assume that the accommodation of twin strain
value is not limited. These two physical constraints are intro-
duced by adding three Lagrange multipliers λi in the thermo-
dynamic potential, in order to ensure that internal variables f
and ε̄T

i j remain in their respective domains:

If f � 0, λ0 = 0 and if f < 0, λ0 > 0.
If f � 1, λ1 = 0 and if f > 1, λ1 > 0.
If |ε̄T

i j | � εT
SAT, λ2 = 0 and if |ε̄T| > εT

SAT, λ2 > 0.

Thermoelastic balance can be defined, as well as the
thermodynamical forces associated with the internal variables.
The decomposition of elastic energy and linearization of
entropy variation for martensitic transformation lead to the



following equations:

• The transformation force Ff:

Ff = �i j ε̄
T
i j −B(T −T0)−Hf f − 1

2 Hε

(
ε̄T

i j : ε̄T
i j +λ0−λ1.

(14)
The introduction of λ0 and λ1 ensures that the martensite
volume fraction remains inside the [0, 1] interval.
Hf and Hε̄T are two material parameters describing
interactions coming from phase transformation evolution
and geometrical incompatibilities. B is the Clausius–
Clapeyron slope in the (σ, T ) diagram. T0 is the
equilibrium temperature.

• The orientation force FεT , considering �D as the
deviatoric part of the macroscopic stress �:

FεT
i j

= �D
i j − Hεε̄

T
i j − λ2. (15)

The introduction of λ2 ensures that the mean transforma-
tion strain will never exceed its saturated value.

• The twin accommodation force F tw
ε :

Fεtwin
i j

= �D
i j − Htwε̄tw

i j . (16)

The elastic balance is defined assuming that equilibrium is
always realized before any dissipative mechanism:

∂G

∂�i j
− Ei j = 0

Si jkl�kl + f ε̄T
i j + γmε̄twin

i j − Ei j = 0.

(17)

With Si jkl is the fourth-order compliance tensor. The
definition of a dissipation potential leads to the evolution laws
of the internal variables:
For the transformation force:

• If |Ff| < Fcrit
f or |Ff| = Fcrit

f and | d|Ff|
dt | � 0, the force

is not activated. In this case, the associated variable is
constant so ḟ = 0.

• If |Ff| = Fcrit
f and | d|Ff|

dt | > 0, the force is activated. In
this case ḟ �= 0.

For the orientation force: an associated rule is considered, so
the ‘yield’ direction is normal to the orientation surface:

˙̄εT
i j = λ̇

∂|FεT
i j
|

∂ FεT
i j

(18)

FεT
i j

is a thermodynamical force, which has a stress
dimension. The asymmetry between tension and compression
is included in the expression of the saturated transformation
strain value. The Von Mises equivalent stress is then adopted
for the expression of the orientation force norm:

|FεT
i j
| = 3

2 FεT
i j

FεT
i j
. (19)

The orientation yield surface is defined as follows:

(i) If |FεT
i j
| < Fcrit

εT or |FεT
i j
| = Fcrit

εT and |
d|F

εT
i j

|
dt | � 0 there is

no orientation. In this case, if the domain does not evolve,
˙̄εT

i j = 0. Otherwise, if ḟ > 0, the mean transformation

strain evolves in order to respect ĖT
i j = 0. Indeed, as the

orientation criteria is not activated, the new martensitic
domain appears with a self-accommodated structure, so
the macroscopic transformation strain is not modified.

Figure 1. Inner loops in a superelastic path.

(ii) If |FεT
i j
| = Fcrit

εT and | d|F
εT
i j

|
dt | > 0 the orientation force is

active. In this case ˙̄εT
i j �= 0.

For the twin accommodation force: |Fεtwin
i j

| = 0 (the

dissipation of this mechanism is neglected), so |
d|F

εtwin
i j

|
dt | = 0

and the associated variable ˙̄εtwin
i j will evolve in order to respect

this equilibrium.
γm is a function of the mean transformation strain and

the volume fraction of martensite γm( f, ε̄T
eq, ε

T
SAT), with ε̄T

eq =
|ε̄T

i j |:
• If ḟ > 0, then dγm = d f (

εT
SAT−ε̄T

eq

εT
SAT

).

• If ḟ < 0, then dγm = f +d f
f γm.

The equivalent transformation strain is expressed using the
Von Mises definition:

|ε̄T
i j | =

√
2
3 ε̄T

i j ε̄
T
i j . (20)

A macroscopic SMA model must be able to capture the
internal loop responses of the thermomechanical loading paths.
A history dependence of the simulated behavior is introduced,
with thermodynamical considerations. This formulation in
the superelastic case is shown in figures 1 and 2. The
transformation criterion |Ff| � Fcrit

f is modified by the addition
of memory force and an evolution variable that takes values in
the [0, 1] interval. This evolution variable takes zero value at
the beginning of a new loading path and is equal to 1 when the
loading path reaches the saturation state.

Fmem
f is the value of the thermodynamic force observed

at the last loading switch point. Fmin
f and Fmax

f are material
parameters. A loading switch point is detected as soon as the
following condition is satisfied:

(Ff − (1 − γf)Fmem
f )( f − f mem) < 0 (21)

where f mem is the martensite volume fraction observed at the
last loading switch point. When a loading switch point is
detected, Fmem

f is set to Ff−Fmin
f and γf is reset to zero. During

the loading, γf is expressed as

γf = | f − f mem|
f obj − f mem

(22)



Figure 2. Evolution of γf for a superelastic path.

where f obj is the martensite volume fraction that can be
obtained if the loading path reaches the saturation point (1 for
direct transformation and 0 for reverse transformation).

3. Numerical solution

The model is implemented in such a way that it will be easily
used with most commercial FEA packages, or with a scale
transition scheme like the Mori–Tanaka method. The Newton–
Raphson algorithm is adopted to solve the system obtained
by the equilibrium condition of thermodynamical forces. The
variables of the system can be divided in two parts:

• increments of driving variables: 
Ei j and 
T
• increments of solution variables: 
�, 
 f , 
ε̄T

i j , 
λε̄T

and 
λε̄tw .

In each increment, a driving variable perturbation
unbalances the system. The Newton–Raphson algorithm
iterates to find the solution variable increment that balances
the following system:

|Ff − (1 − γf) Fmem
f | = Fmin

f + (1 − γf) Fmax
f

|Fε̄T
i j
| = Fcrit

ε̄T


ε̄T
i j = 
λε̄T

3

2

Fε̄T
i j

|Fε̄T
i j
| |Fε̄tw

i j
| = 0


ε̄tw
i j = 
λε̄tw

3

2

�i j − �kk
3 δi j

�i j − �kk
3 δi j

Ei j − Si jkl�kl − f ε̄T
i j − γmε̄tw

i j = 0.

(23)

A prediction is made using Hooke’s law and, with a
return mapping approach, the effective behavior is determined.
The equation system is simplified if one or more mechanisms
are deactivated. The SIMULA+ Mathematical Object
Library is used for tensor definition and some mathematical
operations [11].

4. Implementation in the FE code ABAQUS

The ABAQUS FE code offers the possibility to define a
specific material behavior using the subroutine UMAT (User
MATerial), where the user has to define the increment of stress
and internal variables due to an increment of total strain and
temperature. This condition justifies the choice made here to
use the total strain as a driving variable instead of the stress.
An interface is developed in order to convert the implemented
model variables definitions to ABAQUS requirements, according
to some differences in variables’ storage strategies (for
example, SIMULA+ uses a two-dimensional table to store a
symmetric tensor and ABAQUS uses a one-dimensional table
with Voigt formalism). The user coding must also return a
mechanical tangent operator ∂
�i j

∂
Ekl
, which has to be coherent

with the solving algorithm. To ensure this condition, it is
extracted from the Jacobian matrix provided by the Newton–
Raphson algorithm. A summary of the solution strategy is
illustrated in figure 3.

5. Application to composite materials and structure
design

5.1. Numerical simulation of an SMA/elastomer composite
response

When an SMA actuator is embedded in an elastomer, structural
interactions between the components appear. Such effects were
revealed by photoelasticimetry in a study of a snake-like NiTi
wire/elastomer ribbon composite where the superelasticity
effect was involved [12]. In the case presented here, both
initial martensitic and austenitic states are considered, then
superelasticity and reorientation behaviors are simulated. In
order to develop such SMA/elastomer applications, it is
important to take into account these interactions with an FEM
approach and to use convenient constitutive laws for both
components. For the SMA part, a macroscopic constitutive
law is used. A temperature-dependent elastic law is adopted to
model the behavior of the elastomer part. A 0.75 mm diameter
nearly equiatomic NiTi wire (48.9 at.% Ni), cold-worked at
44.7%, was formed into a snake-like shape. To keep this
shape and obtain thermomechanical properties such as shape
memory effect and superelasticity, the snake-like wire was
annealed at 450 ◦C for 20 min. NiTi snakes were embedded in
12 mm × 2 mm elastomer ribbons. The elastomer was chosen
according to its stiffness and temperature range of use. The
aim is to obtain stiffnesses of the same order of magnitude for
the elastomer and for the snake wire. The elastomer used is an
ALLRANE PX 14325 polyurethane produced by the Allrim
Company. An ageing treatment at 40 ◦C for 48 h was applied
to the specimens, leading to stable elastomer properties. The
global shape of the composite is shown in figure 4. In order to
perform the modeling of the SMA, one needs transformation
temperatures, maximum transformation strain in the tensile
loading path and some pseudo-hardening parameters of the
NiTi wire. Tensile tests in austenite initial state (above Af)
and martensitic state (below Mf), cooling at constant stress and
differential scanning calorimetry are also performed on straight



Figure 3. Sketch of the numerical strategy adopted.

Figure 4. SMA/elastomer composite ribbon.

Table 1. Material parameters of the NiTi wire for the SMA model.

E (MPa) ν εT
tensile max εT

comp max

55 900 0.3 0.05 0.04

B (MPa ◦C−1) MS (◦C) Af (◦C) rf

5 −10 48 0.3

Fε (MPa) Hf (MPa) HεT (MPa) Htwin (MPa)
150 2.2 650 8000

wires (annealed in the same conditions) to find these material
parameters. Parameters for the SMA NiTi wire are presented
in table 1.

The ABAQUS numerical model is presented in figure 5.
The circular section of the wire is modeled with an equivalent
rectangular section having the same surface and the same
quadratic momentum values. This allows us to use hexahedral
elements for the whole structure. Complex heterogeneous
stress fields impose the use of a complete 3D model to
obtain accurate responses. A previous study pointed out that
such fields are present in the vicinity of the SMA/elastomer
interface [12]. Therefore, the wire as well as the areas near this
interface are meshed more finely.

Comparison between experimental tensile tests and
simulation, at various temperatures, is shown in figure 6.
From 23 to 80 ◦C, the material behavior is either superelastic

Figure 5. Finite element mesh of the composite.

or with residual transformation strain. Material parameters
were identified from 80 to −60 ◦C tensile tests and from DSC
experiments. At room temperature, two plateaus are observed:
the first one corresponds to the R-phase transformation and
the second one to the stress-induced martensite transformation.
Because the R-phase transformation is not taken into account
in the present model, a significant discrepancy is observed
between experimental and simulated responses for lower strain
levels (less than 1.5%). However, it can be noted that
superelasticity and martensite reorientation behaviors are well
described by the model. The SMA/elastomer composite
behavior is simulated using the ABAQUS FEM code. Figure 7
shows a comparison between numerical and experimental
tensile tests at different temperatures (23 and 80 ◦C). Simulated



Figure 6. NiTi wire tensile behavior at various temperatures.

Figure 7. Comparison between experimental response and numerical
simulation for the SMA/elastomer ribbon.

and experimental responses are very close for the 80 ◦C
isothermal test. But for the 23 ◦C isothermal test, one observes
that the simulation overestimates the composite behavior from
4% to 8% relative elongation. In both cases, FEM results
show that martensite is only present at the top of the loops,
on the edges of the wire, with non-symmetric values of f in
the tensile or compressive fibers. This asymmetry is induced
by transformation surface asymmetry and structural effects
present in a curved beam. The transformation is in an advanced
state for the 23 ◦C simulation, but small areas are nearly fully
transformed (with more than 75% martensite).

5.2. Effect of Nb in NiTiNb—numerical simulation

Commercial Ni47Ti44Nb9 shape memory alloy is generally
adopted for fastening applications thanks to its wide
transformation hysteresis, compared with classical NiTi. Due
to its large hysteresis, at room temperature the material
can be either in austenite or in martensite phase according
to its previous loading history, i.e. austenite when cooled
from high temperature or martensite when heated from low
temperature. It has been shown that the reverse transformation
temperature As can increase by 80 ◦C under tensile loading
in the martensitic state [13]. This phenomenon is attributed
to the addition of niobium: scanning electron microscopy

Table 2. Plastic parameter values for niobium inclusions.

E (MPa) ν σY (MPa) H (MPa) n

85 000 0.3 90 700 4

(SEM) and x-ray diffraction (XRD) observations showed the
presence of ellipsoidal-shaped niobium-rich precipitates in
NiTiNb according to observations by Zhang et al [14]. This
phase has been studied to quantify what kind of inclusions
increases reverse transformation temperatures, and what are
its properties. Nanoindentation tests revealed that niobium-
rich precipitates have an elastic–plastic behavior with a low
yield stress. In order to optimize the performance fastener
made from this alloy, we consider NiTiNb as a composite
material having elastic–plastic Nb inclusions embedded in an
NiTi matrix. A homogenization scheme using the Mori–
Tanaka model [15] is considered. The Mori–Tanaka method
is one of the few explicit scale transition schemes that is
suitable to save computational cost in structural analysis.
Moreover, in our case, we consider a composite with a low
concentration of spherical inclusions and an isotropic behavior
for both inclusions and the matrix. In such a case, it was
established that the Mori–Tanaka solution coincides with the
upper Hashin–Shtrikman bound when the inclusion is softer
than the matrix [16]. Numerical results corresponding to this
approach for the composite are investigated.

In order to lead to the thermomechanical constitutive law,
the NiTi matrix is described using the model presented in the
first part of this paper. The constitutive equation can be written
as follows:

σ̇ M
i j (r) = LM

i jkl(r)ε̇M
kl (r) − MM

i j Ṫ (24)

where LM and MM are respectively the mechanical and thermal
tangent operators and M stands for the matrix.

Nb-rich inclusions are assumed to present an elastic–
plastic behavior. An algorithm for plasticity developed by
Simo and Hughes [17] has been adopted to model inclusions’
behavior, using the Von Mises yield condition (radial return
method, originally proposed by Wilkins in 1964). A swift
hardening law is considered for isotropic hardening:

σeq = σY + Hiso p
1
n (25)

where σY is the plastic yield stress, p is the cumulated plastic
strain, and Hiso and n are two hardening parameters. These last
have been identified on a tensile test curve on pure niobium
samples [18], whose corresponding material parameters are
presented in table 2.

The inclusion constitutive equation can be written as
follows:

σ̇ I
i j (r) = L I

i jkl(r)ε̇I
kl(r) − C I

i jkl(r)αI
kl Ṫ (26)

where L I and αI are respectively the mechanical and thermal
tangent operators, C I the elasticity tensor, and I stands for
inclusion.

Experimental study shows that Nb-rich inclusions are
present in a relatively small fraction (10%), the matrix



Figure 8. Homogenization strategy for NiTiNb global behavior
determination.

Figure 9. Elastic–plastic Mori–Tanaka solution.

is well defined and inclusions are well distributed. For
this kind of microstructure, stress concentration and strain
inhomogeneities associated with the inelastic behavior are not
very pronounced when we consider spherical inclusions, and
the Mori–Tanaka scheme gives a very good estimation of
the solution for isotropic media and for a volume fraction of
inclusions up to 30% [19]. This approach is then adopted
to lead to the effective behavior, starting from matrix and
inclusion behavior, as illustrated in figure 8. The strain rate
on the boundary of the inclusion is assumed to be equal to the
strain rate in the matrix [20, 21], as illustrated in figure 9:

ε̇I
i j = ε̇M

i j + Ti jkl(LM
klmn − L I

klmn )ε̇I
mn . (27)

T is a fourth-order interaction tensor derived from Eshelby
inclusion theory. The global strain rate is assumed to be the
sum between inclusion strain rate and matrix strain rate, each
one being pondered by its volume fraction ( f I is the volume
fraction of inclusions):

Ėi j = f Iε̇I
i j + (1 − f I)ε̇M

i j . (28)

The concentration fourth-order tensor is introduced:

ε̇I
mn = Amni j Ėi j . (29)

From equations (27) and (28) we get

Amni j = [Ii jmn − (1 − f I)Ti jkl(LM
klmn − L I

klmn )]−1. (30)

Table 3. Material parameter values for the Ni–Ti matrix.

E ν ε̄Ttrac

i j ε̄Tcomp

i j Ms

70 000 0.3 0.05 0.039 −101

Fε Af b Hvar Hgrain Htwin

160 63 5.9 5 2100 8800

Table 4. Plastic parameter values for niobium inclusions.

E (MPa) ν σY (MPa) H (MPa) n

85 000 0.3 90 700 1

The strain inside matrix is determined as

ε̇M
i j = 1

1 − f I
((Ii jmn − f I Ai jmn)Ėmn). (31)

The strain in each phase can derived from macroscopic
strain (29) and (31). So, by taking into account the constitutive
equations for inclusion and matrix (26) and (24), the effective
constitutive law is derived as follows:

�̇i j = Leff
i jmn Ėmn − Meff

i j Ṫ . (32)

with
Leff

i jmn = f I(L I
i jkl − LM

i jkl)Aklmn + LM
i jmn

Meff
i j = f IC I

i jklα
I
kl + (1 − f I)MM

i j .
(33)

We apply this homogenization scheme to describe two
loading cases: a tension–compression one and a shape memory
sequence on an SMA containing 20% of elastic–plastic
inclusions. Material parameters are chosen using experimental
results, and are presented in table 3 for the SMA matrix
and in table 4 for niobium inclusions, considered to have a
constant hardening so that n = 1. Figure 10 represents
the evolution of effective stress with effective strain for the
tension–compression loading. The variation of stress with
strain in each phase is also illustrated.

During the tensile part of the loading, the effective stress
evolution can be decomposed into three stages. In the first one,
both matrix and inclusions behave elastically. At 30 MPa, the
inclusion stress reaches the niobium critical yield stress, so the
plasticity is activated. Consequently, the effective behavior is
affected. When effective stress exceeds 100 MPa, the matrix
stress reaches the transformation critical stress and the stress-
induced transformation occurs, leading to the third stage of
loading.

During the compression part, three stages are also
observed. The first one is related to elasticity in each phase
until 125 MPa for the effective stress. At this stress level,
the stress in the elastic–plastic inclusion is about −120 MPa
and the plasticity is activated. The second and third stages are
linked to reorientation of the martensite until the saturation of
reorientation.

Finally, in the following tension loading, three stages
appear, respectively corresponding to elasticity, plasticity into
inclusions and martensite reorientation. It is worth noting
that the plastic phenomenon induces a hysteresis enlargement:
indeed, at the same effective strain level of 4%, the effective

8



Figure 10. Tension–compression cycles for (1) effective behavior of NiTiNb, (2) SMA matrix response and (3) niobium inclusions.

Figure 11. Strain–stress results.

stress is not the same in the first (138 MPa) and second
(167 MPa) cycles whereas the matrix stress value is the same.

In the second case, a shape memory loading is applied,
constituted by tension at a temperature below Mf followed by
unloading until the zero stress level, then a heating at constant
strain. Simulations are made with various inclusion fractions
and results are shown in figures 11 and 12. The temperature has
been decreased to −20 ◦C, then an effective strain of 6% has
been applied. After unloading until zero stress level, heating
has been applied until 200 ◦C.

Figure 11 shows that the inclusions’ fraction has no impact
on the effective critical orientation stress. When the stress in
the matrix reaches the critical orientation stress of martensite
variants, an increase of effective stress results in a higher stress
increase in the inclusions. These last ones will consequently
easily come into the plastic domain, which explains that matrix
martensitic orientation and inclusion plastic strain start at the
same point.

The inclusion fraction strongly influences the effective
stress developed on heating for constraint recovery. The
recovery stress decreases when the inclusion amount in-
creases.

Figure 12. Stress–temperature results.

The third and most interesting point is the comparison
between cases where the imposed effective strain is not the
same. In the case of 10% inclusions, two loadings have been
applied: the first up to a strain of 6% and the second up to a
strain of 4% (respectively ‘0.1’ and ‘0.1p’ in figures 11 and 12).
A predeformation imposed at the martensitic state permits us
to increase the reverse starting temperature. Figure 12 shows
that the higher the strain during loading, the higher the reverse
transformation starting temperature. In the first case, this
temperature is equal to 40 ◦C whereas it is about 10 ◦C in the
second case. To analyze the influence of the inclusion shape, a
finite element analysis has to be performed in order to compare
it with predictions obtained by the Mori–Tanaka scheme.

6. Conclusion

Two applications of SMA composite design are presented. For
each of them, the same constitutive macroscopic law for the
SMA part is developed. This model describes transformation,
orientation and accommodation of the twins mechanism.
Moreover, tension–compression asymmetry and internal loops
paths are taken into account. The model is implemented
in a finite element code to simulate thermomechanical paths
applied to composite structures. This tool is used to
describe the behavior of an SMA/elastomer composite, and



the comparison with experiments shows that such structures
can be simulated for various loadings when SMA is either
in the martensite or austenite state. Heterogeneous stress
fields induced by structural interactions are in accordance with
previous photoelasticimetry observations [12]. A modified
version of the model, including a Mori–Tanaka scale transition
scheme, is developed in order to describe the influence
of elastic–plastic niobium inclusions in commercial NiTiNb
alloys. This modified model will be used to design industrial
applications by means of a finite element code. Further work in
the field of composite structures as well as materials containing
inclusions is necessary. One of them is the improvement of the
SMA constitutive law by including the R-phase transformation
which occurs in NiTi SMAs. Experimental tests for industrial
applications are also necessary to validate the simulation’s
capability for complex loading paths. Finally, microstructural
observations and comparison with micromechanical models
will lead to a better knowledge of strain mechanisms present
in SMA-based material, to upgrade macroscopic predictions in
the field of SMA smart structures.
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