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d’Arts et Métiers. 8, boulevard Louis XIV, 59046 Lille, France (e-mail:
nathalie.klement@ensam.eu)

∗∗∗ Groupe PSA, Route de Gisy, 78943, Vlizy Villacoublay Cedex,
France

Abstract: Technological advances, promoted by the Industry 4.0 paradigm, attempt to support
the reconfigurability of manufacturing systems and to contribute to adaptive operational
conditions. These systems must be responsive to significant changes in demand volume and
product mix. In this paper, a hybrid optimisation approach is suggested to solve sequencing
and assignment problems of reconfigurable assembly lines, where mobile robots collaborate with
human operators. The objectives are: i) to define a schedule of jobs, ii) to assign tasks to the
mobile robots, and iii) to decide the allocation of robots to workstations, in order to minimise the
number of robots required. Preliminary results show that the proposed methodology can make an
efficient robot allocation under high demand variety. In addition to that, the hybrid optimisation
approach can be adapted to other configurations of assembly systems, which demonstrates its
applicability to solve problems in other contexts. Copyright c© 2019 IFAC
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1. INTRODUCTION

Manufacturing systems face a volatile demand with vary-
ing customer needs in terms of volume and product mix
(Beauville dit Eynaud et al., 2019). These systems must be
increasingly reconfigurable to react to these variations in
a rapid and cost-effective manner (Koren et al., 2016). In
this context, reconfigurable manufacturing systems (RMS)
have been widely acknowledged as suitable for handling
situations where responsiveness and productivity are of
vital importance. Indeed, RMS provide a way to achieve
a rapid and adaptive response to changes in volume and
product mix (Leitao et al., 2012).

Here, planning and scheduling aim is to determine when
and how to set a new configuration of the assembly line.
The problem consists in deciding: i) which resources should
be used to manufacture a single unit of product, and
ii) the sequence the jobs should follow (Bensmaine et al.,
2014; Nehzati et al., 2012). In short, solving this problem
involves determining the optimal resources allocation and
the job sequence. Although RMS is an active research
field, and planning and scheduling have been widely in-
vestigated, these problems need to be studied under the
Industry 4.0 paradigm. More specifically, attention should
be given to the planning and scheduling of manufacturing

systems, considering the introduction of novel technolo-
gies, such as mobile collaborative robots. First, by devel-
oping new modelling approaches for better understanding
how new robotic technologies can be applied to design
and run reconfigurable assembly systems (RAS). Second,
addressing the modelling complexity of scheduling prob-
lems and the associated computational burden, through
the development of alternative solution approaches, such
as hybrid optimisation (Li and Xie, 2006).

The objective of this paper is to present a hybrid optimisa-
tion approach, that combines a constructive heuristic and
a meta-heuristic, to solve sequencing and tasks assignment
in reconfigurable assembly lines (RAL), where tasks can
be divided between humans and collaborative robots that
share the same workstation. The remainder of this paper
is organised as follows. Section 2 discusses some existing
works on planning and scheduling problems in RMS. Sec-
tion 3 describes with more detail the problem addressed.
Section 4 presents the proposed solution approach. The
results are presented and discussed in Section 5. Section 6
presents some final remarks and future research work.



2. RELATED WORKS

Reconfigurability is an important ability that determines
the ease and cost of reconfiguration. To enable reconfig-
urability, manufacturing companies must implement some
core characteristics, such as modularity, integrability, diag-
nosability, adaptability and customisation. They facilitate
the design of manufacturing systems to be reconfigurable,
using hardware and software modules that can be inte-
grated quickly and reliably (Koren et al., 1999). They also
allow achieving the system’s functionality and scalability
required for the production of a product family to meet
market demands (Maganha et al., 2018). Without them,
the reconfiguration process will be lengthy or even im-
practicable (Koren et al., 1999). The core characteristics
of reconfigurability are outlined in Table 1.

Table 1. Core characteristics of reconfigurabil-
ity

Characteristic Description

Modularity Modular major components that can be reused
and exchanged

Integrability Ready integration of components and future
integration of new technologies

Diagnosability Detect and diagnose causes of unacceptable
quality of products and reliability problems

Adaptability Adapt system’s capacity and functionality by
means of an adjustable structure to changed or
new situations

Customisation Manufacturing systems are designed to produce
a particular family of products

In a nutshell, modularity provides more adjustable pro-
duction resources, capable of responding to unpredictable
market demand. Integrability, on the other hand, allows
the rapid integration of these available resources (Koren
and Shpitalni, 2010). Diagnosability enables the fast de-
tection of the quality problems after reconfiguration and
contribute to reduce reconfiguration ramp-up time (Koren,
2013). Implementing adaptability is essential to cope with
the scheduling function in RMS, since it allows adjust-
ments in the capacity and functionality of the manufactur-
ing system, by means of an adjustable structure (Maganha
et al., 2018). In other words, it allows the modification
of production capacity by adding/removing resources or
changing system components (Koren et al., 1999). The
same authors referred that diagnosability and adaptability
complement each other, because scaling-up of an existing
system to cope with changing demand requires a subse-
quent ramp-up period that can be reduced dramatically by
implementing diagnosability. Finally, customisation aims
at reducing the reconfiguration cost (Koren, 2013). These
works suggest that there is the opportunity to apply opti-
misation approaches so as to improve the reconfigurability
of assembly lines, by linking the core characteristics of re-
configurability with optimised planning and/or scheduling
decision-making.

Recently, Bortolini et al. (2018) presented a structured
and updated literature review on RMS, highlighting some
works that have proposed solution approaches to solve
scheduling problems in this context. Li and Xie (2006)
applied genetic algorithm (GA) embedded with extended
time-placed Petri nets (ETPN) for RMS scheduling, aim-
ing to optimise reconfiguration costs and balanced pro-

duction. Galan (2008) proposed a meta-heuristic approach
to group products into families and then schedule these
families, minimising the total cost. Prasoon et al. (2011)
used a two-step optimisation approach to determine a
reconfigurable set-up plan. The aim was to minimise costs
and time of production, and achieve customers’ specifica-
tions as closely as possible. Valente and Carpanzano (2011)
proposed a dynamic algorithm to schedule automation
tasks over time in RMS. The objective was to determine
the sequence of automation tasks to be executed, in order
to optimise the resource utilisation, considering deadline
constraints. Chaube et al. (2012) proposed an adapted
non-dominated sorting genetic algorithm II (NSGA-II) to
generate a dynamic process plan for RMS. The authors
considered a multi objective scenario, aiming at reducing
manufacturing costs and time. Nehzati et al. (2012) used
a fuzzy-based scheduling model to deal with the job as-
signment problem in RMS. In the model, the fuzzy logic
system integrates dispatching rules and scheduling exper-
tise to guide a dynamic selection of dispatching rules in
job shops, minimising the total weighted. Azab and Naderi
(2015) considered the problem of scheduling jobs in RMS.
The authors applied a mixed integer linear programming
(MILP) model, in order to determine the configuration and
job sequence to minimise makespan. Hybrid optimisation
approaches have been also used to solve this problem
(Azab and Naderi, 2015; Li and Xie, 2006; Prasad and
Jayswal, 2018).

Increased attention has been given to planning and
scheduling problems in RAS. For instance, Meng et al.
(2006) proposed a scheduling approach to realise the
scalability and robustness of RAS. Gyulai et al. (2014)
combined discrete-event simulation and machine learning
techniques to handle the complex aspects of the planning
problem of RAS. The goal was minimising the cost of
production. Kumar et al. (2019) applied meta-heuristic
optimisation techniques to address sequencing problems
in RAS. Three objectives were considered: i) optimise
the reconfiguration time and costs, ii) fulfil products due
dates, and iii) fulfil the workload balance amongst the
workstations.

However, despite the relevant contributions in this field,
there is a dearth of literature considering manufacturing
environments where the resources are assumed to be mo-
bile and where robots collaborate with human operators.
Research work in this field have been pursued by several
authors (Giordani et al., 2009; Mosallaeipour et al., 2018;
Nejad et al., 2018; Vieira et al., 2018; Yan et al., 2018). Our
foremost contribution relies in a general hybrid optimi-
sation approach to solve sequencing and task assignment
in RAL, where human and mobile robots collaborate to
manufacture products.

3. PROBLEM DESCRIPTION

The problem presented has been motivated by a manu-
facturing company that manufactures two different types
of products (A and B). The products are assembled in a
RAL composed of 10 workstations and mobile robots that
can move among the workstations whenever necessary. The
workstations follow a U-shaped layout,



The assembly of the products require the execution of a
set of tasks, each one with a given processing time and
precedence constraints. Both product types have tasks
that are performed by humans and mobile robots. Tasks
performed by humans are common to both products, while
tasks performed by robots are specific to each product
type. There is one human operator in each workstation
to perform the common tasks. All specific tasks are per-
formed by multitasking mobile robots that can coexist
with humans in a workstation. The displacement time of
robots among workstations is considered negligible. More
than one robot is allowed at a workstation, at a time.
Nevertheless, a robot cannot perform more than one task
at a time and pre-emption is not allowed.

The production plan of the assembly line is defined in
a weekly basis, containing the list of products to be
manufactured. Thus, the weekly demand plan of products
required to feed the assembly line represents a list of jobs
to be produced, including the quantity to be produced
in the week, the list of tasks to be performed in each
workstation, the set of precedence constraints of tasks of
each product, and the corresponding processing times of
each task. The workstation line cycle time is determined by
the tasks performed by the human operators. This means
that, in each workstation, the time taken by the robot(s)
to perform their operations must be equal or lower than
the time required to the human to perform its operations.

The problem can be stated as follows − a set of jobs, i.e.,
a set of products, has to be assembled in the line. Each job
is composed by a set of specific tasks to be performed by
mobile robots in each workstation. The problem consists
in determining the sequence of jobs and assigning tasks
to robots, minimising the number of robots required to
achieve the cycle time desired. To address the problem,
the main process data considered, for the workstation 1
(WS1) is shown in Table 2.

Table 2. Data of tasks to be performed in WS1

Product
WS1

Task ID Task
type

Processing
time (s)

Precedent task

A

task 0 transport 4.8
task 1 specific 9.0 task 0
task 2 specific 3.0 task 1
task 3 specific 6.0 task 1
task 5 specific 1.8 task 3

task 100 common 30.0

B

task 0 transport 4.8
task 4 specific 4.8 task 0
task 21 specific 7.2 task 0
task 22 specific 7.2 task 0
task 23 specific 7.2 task 21, task 22
task 24 specific 7.2 task 21, task 22
task 25 specific 9.0 task 23, task 24
task 100 common 30.0

Task 0 is the transportation time between the initial buffer
and WS1 or between two consecutive workstations. This
time is constant for all workstations. This means that,
after leaving a given workstation the product will take
4.8s to reach the next one. Then, the human operator
can begin the execution of the set of common tasks,
which were allocated to it (task 100). The set of tasks
allocated to humans on each workstation have a common

total processing time (30s), corresponding to the assembly
line cycle time desired. While the human operator is
performing the common tasks, one or more collaborative
robots are called to the workstation to perform, in parallel,
the product specific tasks.

4. PROPOSED APPROACH

The proposed hybrid optimisation approach uses a meta-
heuristic and a list algorithm. The principle of the method
is given in Fig. 1. The encoding used by the meta-heuristic
is a list Y of jobs. The list algorithm considers the jobs
in the list order and assign their tasks to the required
mobile robot, respecting the problem constraints. This
builds the solution X. The objective function H evaluates
the solution X. According to this evaluation, the solution
is chosen or not by the meta-heuristic. At the end of the
running, the solution given by the hybridisation is the best
list (sequence) of jobs: the one that optimises the objective
function by applying the list algorithm (Klement et al.,
2017b).

Fig. 1. Hybridisation of a meta-heuristic and a list algo-
rithm

Several planning and scheduling problems have already
been solved with this hybrid optimisation approach (Kle-
ment et al., 2017a; Mazar et al., 2018; Silva et al., 2018).
This demonstrates that this approach can be adapted to
several problems variants (Silva and Klement, 2017).

4.1 Meta-heuristic

The stochastic descent was the based meta-heuristics cho-
sen, due to the easiness of application, thus, speeding
up the development process (Silva and Klement, 2017).
The objective was to obtain results rapidly, to evaluate
the ability of the proposed approach to solve the tasks
assignment and sequencing problems of the RAL studied.
In detail, the meta-heuristic performs in the set of all lists
Y . An initial solution is randomly computed: a list of jobs
randomly sorted between one and the number of jobs. A
neighbourhood is used to visit the set of solutions, allowing
to go from one solution to another. The neighbourhood V
is a permutation of two jobs in list Y : the job at position
i permutes with the job at position j, with i and j being
two different random numbers.

4.2 List algorithm

This hybridisation can be used to solve many problems,
provided that the list algorithm and the objective function
are adapted according to the problem considered, by
integrating the different constraints that rule the problem
and the objective to be improved. The list algorithm is
used to build the solution X from the list Y : it assigns



the tasks to the mobile robots over the horizon planning,
according to the problem constraints. List scheduling
algorithms are one-pass heuristics that are widely used
to make schedules. It is important to work with a list
algorithm, because the meta-heuristic browses the set of
lists Y . So the used algorithm needs to consider the
order of the list to assign the tasks to resources over
the planning horizon (Klement et al., 2017b). The list
algorithm developed is outlined in Algorithm 1.

Algorithm 1 List algorithm
Input: list of products, list of tasks, processing times of each task

Output: sequence of jobs, assignment of tasks to robots, allocation of

robots to workstations

1: for all products in the list do

2: for all workstations do

3: for the list of tasks do

4: while there are tasks to be performed do

5: if the task requires a robot then

6: if there are no robot in the workstation then

7: for all robots do

8: if the robot is available then

9: Call the robot to the workstation

10: Assign the task to the robot

11: Update robot’s release time

12: else

13: Update the list of tasks to be performed

14: else

15: if the robot is available then

16: Assign the task to the robot

17: Update robot’s release time

18: else

19: for all robots do

20: if the robot is available then

21: Call the robot to the workstation

22: Assign the task to the robot

23: Update robot’s release time

24: else

25: Update the list of tasks to be per-

formed

4.3 Objective function

Solutions are compared according to an objective function
that characterises the quality of the solution. The aim is to
find the solution X that minimises the number of robots
required to achieve the cycle time desired. The set of all
lists Y of jobs is browsed thanks to the meta-heuristic,
using the neighbourhood V . Lists are compared by the
list algorithm and the objective function. According to an
acceptance criterion, some lists are selected. At the end,
the meta-heuristic gives the best list Y found.

5. PRELIMINARY RESULTS

In Table 3, the demand generated for each product for a
sequence of 4 weeks is presented.

Table 3. Demand of products (in units)

Product Week 1 Week 2 Week 3 Week 4

A 256 178 190 304
B 256 118 284 304

Total 512 296 474 608

The makespan and the number of robots obtained for each
week are presented in Table 4.

Given the dimension of the problem and the number
of specific tasks for each product, only a sample of the
assignment of tasks to the robots is presented in Table 5.

Table 6 presents a small part (15 consecutive jobs) of
the sequence obtained in each week. It can be seen that
the optimal job sequence seems to be more impacted by
job product mix than by production volume. In fact, the
sequence obtained for week 1 and 4 with same product mix
but different production volumes are equal, but different
from sequences for week 2 and 3 which have different
product mixes.

The RAL studied was designed to assemble a single
product family, composed by products A and B. In Table 3,
the product’s demand fluctuates during the four weeks:
from week 1 to week 2, it decreases 42%; from week 2
to week 3, it increases 28%; and from week 3 to week
4, it increases 22%. The percentage of the product mix
also vary: in weeks 1 and 4, there is a demand of 50% of
product A and 50% of product B; in week 2, 60% of A and
40% of B; and in week 3, 40% of A and 60% of B. This
RAL can cope with all these frequent changes in market
demand and product mix. This means that the RAL can
adjust its capacity and functionality to abrupt changes on
market demand. Indeed, the multitasking mobile robots
characterise highly adjustable resources, which can change
their functionality whenever necessary, in order to cope
with changes in demand or product mix. Furthermore,
to move from one workstation to another, these robots
must be integrated. These are evidences that this RAL
has four of the five core characteristics of reconfigurability
implemented: customisation, adaptability, modularity and
integrability.

In weeks 1, 3 and 4, the highest volumes are required, but
the lowest number of robots is needed. In these weeks, the
product mix varies between 50% of A and 50% of B, and
40% of A and 60% of B. In week 2, the lowest volume
is required, but the highest number of robots is needed.
Thus, when the mix of product includes more than 50%
of products A, more robots are required. However, when
the product mix includes more than 50% of products B,
the number of robots needed does not increase. This may
be justified by the number of specific tasks of each type
of product; product A has 19 specific tasks and product

Table 4. Results obtained using the hybrid
approach

Item Week 1 Week 2 Week 3 Week 4

Makespan 15630 9150 14490 18510
Number of robots 13 15 13 13

Table 5. Results: assignment of tasks to robots

Robot Product WS Task Starting time Release time

1 1 1 1 4.8 13.8
1 1 1 2 13.8 16.8
2 1 1 3 13.8 19.8
... ... ... ... ... ...
2 511 10 34 15583.8 15598.8

Table 6. Part of the sequences obtained for
each week

Week Sequence

1 [A,B,A,B,A,B,A,B,A,B,A,B,A,B,A,...]
2 [B,A,B,B,A,B,B,B,A,A,A,B,A,A,A,...]
3 [B,A,B,A,B,A,B,A,B,A,B,A,B,A,B,...]
4 [A,B,A,B,A,B,A,B,A,B,A,B,A,B,A,...]



Fig. 2. Utilisation percentage of robots in each week

B has 15. Thereby, while product demand impacts on
the makespan (the highest the volume, the highest the
makespan), product mix impacts on the number of robots
needed to perform the specific tasks

The utilisation percentage of robots are presented in Fig. 2.

As can be seen, the utilisation percentage of robots is
around 40%. Therefore, in this RAL, managers should
analyse the trade-off between achieving the minimum
makespan and investing in mobile robots that might have
low utilisation percentages.

6. CONCLUSION

Results show that the RAL proposed can cope with high
demand variety in terms of mix and volume. In this case,
the demand variety can be accommodated by changing
the number of collaborative robots in use and the tasks
allocated to each one.

To solve the sequencing and assignment problems in the
RAL, this paper proposes a hybrid optimisation approach,
that combines a list algorithm with a meta-heuristic. This
approach allowed to obtain a good sequence of products,
the number of robots needed and the assignment of tasks
to the robots that minimise the number of robots required.
The proposed approach was tested using a large-scale
instance, showing its ability to solve real-world problems.
The metaheuristic used was the stochastic descent. The
encoding of more efficient meta-heuristics, e.g. simulated
annealing, is envisaged as a development. Previous re-
search work in the field of RMS has shown that simulated
annealing may provide interesting solutions in reduced
computational time (Rabbani et al., 2014).

Future research should consider further constraints, such
as considering displacement time for robots in the assem-
bly line, and setup times when the robot change from one
task to another, to obtain a more realistic approach of
the problem. Moreover, the integration of robots assistance
in manufacturing is a relevant research concern (Giordani
et al., 2009). Evaluating these and other evolvable aspects
of the Industry 4.0 paradigm will allow the design and
operation of quite efficient RAL.
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