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A continuum damage mechanics-based
approach for the high cycle fatigue
behavior of metallic polycrystals

Charles Mareau' and Franck Morel’

Abstract

Polycrystalline elasto-plasticity models provide a general framework for investigating
the effect of microstructural heterogeneities (e.g. grains, inclusions, pores) on the
high cycle fatigue behavior of metallic materials. In this work, continuum damage-
mechanics is used to construct a set of constitutive relations to describe the
progressive degradation of certain mechanical properties at the grain scale. The
damage is considered to be coupled with the elastic behavior of the material. Special
care is taken to include the anisotropic aspect of fatigue damage and the effect of
intragranular internal stresses. The constitutive relations are then implemented within
a self-consistent model to evaluate intergranular interactions. Finally, the model is
used to investigate the high cycle fatigue behavior of polycrystalline copper. It is
shown that the influence of certain loading conditions on the high cycle behavior
is correctly reproduced. Specifically, the application of a mean shear stress does not
result in an increase in damage, however a mean normal stress is damaging. That
is, a decrease in the fatigue resistance is predicted when the mean normal stress is
increased.
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Introduction

For metallic materials, even though the ratio between the fatigue crack initiation life and
the propagation life depends on both the material properties and the loading conditions,
crack initiation is usually considered to be the dominant part of the total fatigue life
in the High Cycle Fatigue (HCF) regime in the absence of large surface or volume
defects. For single phase metallic alloys, fatigue crack nucleation is closely related to
the localization of plastic deformation in Persistent Slip Bands (PSBs) (Broom and
Summerton 1963; Klesnil and Lukas 1965; Thomson et al. 1956). As observed by
Laufer and Roberts (1966), PSBs possess a characteristic structure with ladder-like
dislocation arrangements being embedded in a matrix containing dipolar dislocation
bundles. For metallic polycrystals, because PSBs preferably develop in grains being
optimally oriented for slip (Chan 2010), the nucleation of fatigue cracks is largely
influenced by crystallographic orientation (Mu et al. 2013; Signor et al. 2016).

Several attempts have been made at using polycrystalline elasto-plasticity models
to describe the cyclic strain localization process leading to fatigue crack nucleation.
In the context of HCF, these models can be classified into two different categories.
The first category includes models that are based on an a posteriori approach where
some indicators are computed to define whether or not the conditions for initiation and
growth of a microstructurally short crack are achieved (Castelluccio and McDowell 2016;
Guerchais et al. 2014; Guilhem et al. 2010; McDowell and Dunne 2010; Przybyla et
al. 2010; Signor et al. 2016). The indicators, which are generally inspired by fatigue
criteria (Crossland 1956; Dang Van 1973; Fatemi and Socie 1988), are calculated from
stress, strain and/or energy quantities and are often space-averaged for purposes of
regularization and length scale consideration (McDowell and Dunne 2010). The second
category (Huyen et al. 2008; Luo and Chattopadhyay 2011; Monchiet et al. 2006;
Sistaninia and Niffenegger 2014; Zghal et al. 2016) use continuum damage mechanics
(Lemaitre 1996) to explicitly describe the degradation of mechanical properties. These
models introduce a specific set of internal variables, that is damage variables, whose
values represent the progression of fatigue damage. Though they require additional
constitutive relations, damage mechanics-based models provide a natural way of
evaluating the number of cycles to failure for given loading conditions.

The aim of this work is to develop a damage mechanics-based model for studying the
HCF behavior of metallic polycrystals. The final objective is to evaluate the ability of
such models to correctly describe the influence of different loading conditions on the
development of fatigue damage. The first part of this paper is dedicated to the description
of the constitutive model. It is developed at the grain scale using the general framework of
crystal plasticity. The constitutive relations are then incorporated within a self-consistent
model to consider the intergranular interactions associated with polycrystalline elasto-
plasticity. In the second part of the paper, the proposed model is used to investigate the
HCF behavior of polycrystalline copper. Special attention is given to the influence of
loading conditions (e.g. mean stress state, multiaxiality, phase shift) on the development
of fatigue damage.



Model description

In this section, a model for describing the development of HCF damage in metallic
polycrystals is proposed. The model consists of (i) a set of constitutive equations,
which are established at the grain scale, and (ii) a self-consistent method, which
captures intergranular interactions. In the following, the constitutive equations, which are
developed within the context of crystal plasticity, are first presented. The implementation
of the constitutive relations within a self-consistent model is then detailed.

Constitutive relations

For the purpose of establishing the constitutive relations, only a single grain is considered
for now. In the following, the average stress and strain states for such a grain are
represented by the stress tensor o and the infinitesimal strain tensor €. Also, plastic
deformation solely results from crystallographic slip on a set of n slip systems. In the
context of crystal plasticity, each slip system « is defined using two unit vectors: the
slip plane normal n, and the slip direction m,. For convenience, a third unit vector
k., = n, X m, is introduced as well.

Composite model The cyclic behavior of metallic alloys is largely influenced by the
development of intragranular dislocation structures. For instance, such structures have
been observed in copper (Lukas et al. 1968; Mughrabi et al. 1979), austenitic and ferritic
stainless steels (Kruml and Poldk 2001; Li and Laird 1994; Li et al. 2012) and iron
(Lukds and Kunz 2002). Though different spatial configurations can be adopted by
the dislocations (e.g. walls and channels, cells, labyrinths), dislocation structures often
consist of a soft phase (superscript s), with a low dislocation density, and a hard phase
(superscript h), with a high dislocation density. For instance, for fatigued copper single
crystals, the dislocation density reaches 10> m~2 within the walls of PSBs while it is
about 103 m~2 within the channels (Grosskreutz and Mughrabi 1975; Mughrabi 1987).

The internal stress field produced by dislocation structures is often calculated from
the application of homogenization theory (Langlois and Berveiller 2003; Lemoine et al.
1994; Pedersen 1990; Sauzay 2008). Indeed, following the idea of Mughrabi (1983), the
intragranular dislocation structure of an individual grain can be treated as a composite
material composed of a hard region, with volume fraction w, and a soft region, with
volume fraction (1 — w). As a result, within the general framework of homogenization
theory, the stress tensor o and the strain tensor € associated with a given grain are
determined from the following averaging relations:

o=wo"+(1-w)o® (D)

e=we" +(1—w)e’ 2)

Because the above two-phase description is adopted in the present work, the
mechanical behavior of a given grain requires a set of constitutive relations for both
phases and an appropriate strategy for partitioning the average stress and strain tensors
between both phases. In this work, both plasticity and damage are assumed to be



controlled by the soft phase while the hard phase is given an elastic behavior. These
aspects are discussed in the following paragraphs.

Soft phase For the soft phase, an elastic-plastic type of behavior is considered. Within
the framework of infinitesimal transformations, the corresponding strain tensor €° is
additively decomposed into an elastic contribution €*° and a plastic contribution €”>%:

€ =€ + ePF 3)

The introduction of the elastic compliance tensor S° (with the corresponding stiffness
tensor C* = szl) makes it possible to relate the elastic strain tensor to the stress tensor:

e’ =§%:0° @)

To include the influence of fatigue damage, the idea of Abdul-Latif and Saanouni (1994),
which consists of introducing a damage variable d;, with a value between 0 and 1 for
each slip system, is adopted. This concept is particularly well-suited for HCF for which
the initiation of microcracks from PSBs represents an important proportion of the total
fatigue life. In the present work, the elastic compliance tensor depends on the damage
variables according to:

- ds 1 1 1
S: (3 S N _ M _ K
s s+;(1da <u<aa>EgNa+4Gam 7 )) )

where S is the initial elastic compliance tensor corresponding to an undamaged
configuration, u is the unit step function® and ¢} = n, - 0° - n, is the normal stress
acting on slip plane «. The fourth-order tensors N,,, M, and K, are defined for each slip
system as follows:

Na:na®na®na®na (6)
My = (ng @My + My @1,) @ (Mg @ My + My @ Ny (7
Ko = (o @ ko +ka @np) @ (Mg @ ko + ko ®ng) (3)

The initial (i.e. for an undamaged configuration) Young’s modulus Eg as well as the shear
moduli G™" and G™ are obtained for each slip system from the following projections:

En = (Na i S)_l )
Gmn = (Ma ;: S)71 (10)
Ghn = (Ka s §)71 (11)

*u(z) =1ifx >0andu(zx) =0ifz < 0.



The main assumption behind equation (5) is that fatigue cracks initiate and propagate
along slip systems. This approach is thus valid for describing the nucleation and
propagation of fatigue cracks along PSBs but would be inapproppriate for some other
crack initiation mechanism (e.g. inclusion cracking). Equation (5) is constructed in such
a way that, when a slip system is fully damaged (i.e. d?, = 1), no force can be transmitted
through the corresponding slip plane, the sole exception being the case when closure
effects are activated (i.e. o2, < 0). For this specific case, a fully damaged slip system
allows transmitting forces in the normal direction n,, only. According to equation (5),
the elastic compliance tensor S° is necessarily symmetric and positive-definite. Also,
whatever the stress state is, the continuity of the relation between the stress and elastic
strain tensors is guaranteed.

To better illustrate the impact of damage on the stiffness properties, one may consider
the specific case of a single slip system. For such a situation, the actual (i.e. for a possibly
damaged configuration) Young’s modulus E” and shear moduli G™" and G*™ are

E'=E'(1-d)(1—d+du(os)" (12)
Gmn = GM (1 —d) (13)
Gt =G (1—dy) (14)

The above relations emphasize the progressive decrease of the stiffness properties
resulting from the development of damage.
Within the context of crystal plasticity, the plastic strain tensor is given by:

s 1 s
€’ = §Z(ma®na+na®ma)7a (15)

e

where 3 is the plastic shear strain associated with slip system « A yield function f,, is
introduced for each slip system to determine whether the conditions for plastic flow are
met or not. The yield function f, is given by:

fa =151 =1 (16)

In the above equation, 7 and 73 are respectively the resolved and critical shear stresses
associated with slip system a. The resolved shear stress 75 acting on the ath slip system
is given by the following projection of the stress tensor:

TS =My - 0° Ny (17)

The critical shear stress 7 represents the resistance opposing plastic slip. For a given
slip system, the resistance to plastic slip is assumed to be governed by the evolution of
the corresponding dislocation density p;,. However, rather than the dislocation density
ps.» an alternative variable ¢, is introduced for each slip system to represent isotropic
hardening. The internal variable ¢, is connected to the dislocation density p;, according
to the following equation:

a5 = b/d (18)



where b is the norm of the Burgers vector. In the present work, a simple linear relation
between the critical shear stress 7S, and the corresponding internal variable ¢ is assumed:

s, =Q> Hapq} (19)
B

where () is the hardening modulus and the H,g coefficients form a matrix that makes
it possible to consider the interactions between different slip systems. The plastic shear
strain rate ¢ is determined from the yield function f,, with a simple viscoplastic power-
law flow rule:

(fa)

N
Yo = (K) sgn (Ta) (20)

where K and N are viscosity parameters. Also, the evolution of the isotropic hardening
variable ¢Z is given by:

Go = (1= Bgg) 1l @n
where B is a material parameter characterizing the non-linearity of the isotropic
hardening rule, the asymptotic value of ¢3 being 1/B.

Following the classical approach of continuum damage mechanics (Lemaitre 1996),
the driving force for damage y;, is given by the derivative of the elastic energy density
w? regarding the corresponding damage variable d7,. The elastic energy density w? is
expressed as follows:

1
wi = 50'5 :S% ot (22)
Hence, the driving force for damage ¥ can be written as:
ows
s _ e 23
Vo= 3 (23)
1 oS?
=-0°:—:0° 24
27 “oas 7 24)
1 82 82 52
_ - s\ P Ta T _ s -2
=3 (u (02) Fn + G + G"gb) (1—-d7) 25)

where 7, is the shear stress obtained from the following projection:
7w =ko-0°-ny (26)

Expression (25) emphasizes that the development of fatigue damage on a slip plane is
controlled by the joint effect of both the normal stress o, and the shear stresses 75 and
mg,. It should be noticed that the presence of the shear stress 7, in the definition of the
driving force for damage is needed to ensure that no tangential force is transmitted in
any direction for a fully damaged slip system. Also, according to the above equation,
only the elastic strain energy contributes to the driving force for damage. An alternative
proposition, which is not explored here, would be to include all or part of the stored
energy associated with lattice defects.



By analogy with the viscoplastic flow rule (20), the evolution of the damage variable
associated with the ath slip system is described with a power-law type of relation:

s, = (<yL°“>>M (1-d3) @7)

where L and M are viscosity parameters. In the above equation, the factor (1 — d?))
is introduced to ensure that d, does not exceed the maximum value of one. Because
the damage evolution rule is based on a rate-dependent formalism, the present approach
allows considering the possible influence of the loading frequency on the HCF behavior
of metallic materials (Papakyriacou et al. 2001; Marti et al. 2015). The importance of
frequency effects can be controlled with the M parameter, the specific case of M = co
corresponding to a rate-independent situation.

Hard phase For the hard phase, which occupies the dislocation rich region of the
studied grain, a purely elastic behavior is assumed. This assumption is consistent with
the experimental results of Tabata et al. (1982) who observed dislocations to glide much
faster in the soft phase than in the hard phase in aluminium single crystals. Also, on a
modelling perspective, a similar assumption is used by Sauzay (2008) to evaluate the
internal stresses associated with dislocation structures. As a result, the strain tensor €” is
linearly connected to the corresponding stress tensor o according to:

e =sh:a" (28)

where S" (with C"* = S"" ") is the elastic compliance tensor. Since no damage is
considered for the hard phase, the elastic compliance tensor is given by:

st =§ (29)

Voigt model To partition the strain tensor of a given grain between both phases, different
strategies, usually relying on the Eshelby inclusion formalism (Langlois and Berveiller
2003; Lemoine et al. 1994; Pedersen 1990; Sauzay 2008), have been proposed. In the
present work, the approach originally proposed by Mughrabi (1983), which is based
on the Voigt approximation, is followed. It consists of assuming that the strain state
is uniform within both phases. Thus, for a given grain, the strain tensors €” and €®
associated with the hard and soft phases are:

e€=c"=¢ (30)

In the original version of Mughrabi (1983), the composite model is developed for an
individual slip system while a grain scale formulation is preferred in the present work.
For the specific case of single slip, whether the Voigt model is applied for an individual
slip system or at the granular level is not important as both strategies lead to the exact
same results. However, for multiple slip, when working at the slip system level, the
determination of the internal stress tensor corresponding to a given set of internal shear
stresses is generally not possible. In the present work, the Voigt model is therefore applied
at the granular level to avoid the aforementioned difficulties.



While the implementation of the Voigt approximation is straightforward, it completely
ignores the influence of the spatial configuration adopted by dislocations. Also, because
it provides an upper bound estimation of the effective behavior (Bornert et al. 2001), the
adoption of the Voigt approximation generally leads to an overestimation of the internal
stresses.

For a given grain, the adoption of the elastic-plastic decomposition leads to:

e=¢€“+¢€ 3D
The elastic strain tensor is determined from the elastic compliance tensor S as follows:
e€=S:0o (32)

The effective properties of a composite grain are obtained from the application of
homogenization theory (Nemat-Nasser and Hori 1998). More specifically, the averaging
relations (1) and (2) together with the strain localization equation (30) allow determining
the elastic stiffness tensor C (with C = S™1):

C=wC"'+ (1-w)C* (33)
The plastic strain tensor €, which is deduced from (1), is given by:
e =(1-w)S:C°: €’ 34)

According to the above relations, the internal stress tensor «® associated with the soft
phase, which controls the development of plasticity, is such that:

z’=0-0" 35)

=I-C°:S):04+C°:I-(1—w)S:C?%) :€"* (36)

where I is the fourth-rank identity tensor. The above relation shows that the adoption
of the Voigt approximation leads to a description of kinematic hardening which is
quite similar to the linear hardening rule of Prager (1955). Indeed, when damage is not
significant (C? : S =~ ), the internal stress tensor ° ~ wC? : €P* changes linearly with
the plastic strain tensor €P°.

The hard phase volume fraction w is progressively modified during a cyclic
deformation process. Following the idea of Estrin et al. (1998), the evolution of the hard
phase volume fraction is governed by the following evolution rule:

=AW -w)> |yl (37)

where W represents the asymptotic value of w and A is a material parameter controlling
the evolution rate. Based on TEM observations, Evrard et al. (2010) found that the above
equation provides a correct description of the hard phase volume fraction evolution
in cyclic plasticity. Also, because of the development of internal stresses is directly
connected to the evolution of the hard phase volume fraction, the W and A parameters
govern intragranular kinematic hardening.



Self-consistent model

Because the constitutive relations have been developed at the grain scale, an appropriate
method for considering the intergranular interactions resulting from the polycrystalline
aspect of metallic materials is needed. In the present work, the method proposed by
Mareau and Berbenni (2015), which is only briefly described here, is used. This approach
aims at estimating the effective behavior of a representative volume element being
formed by different constituents with an elastic-viscoplastic behavior. For the specific
case of polycrystalline materials, each constituent corresponds to the set of grains sharing
the same crystallographic orientation and the same shape.

The effective behavior of the representative volume element is given by the relation
between the macroscopic stress rate tensor 3 and the macroscopic strain rate tensor E.
The macroscopic quantities 3 and E are connected to their microscopic counterparts o
and € according to:

. 1 _
E:V/VddV:d (38)
) 1 _
E:V/VédV:é (39)

The first step for the estimation of the effective behavior consists of writing the local
constitutive relations in the following rate form:

e=¢"+é (40)
=S:64+a+M:0+7 (41)
with:
s=% s lmda=e 5.6 (42)
oo
8ép —1 . .
M=—B=M  "and3=¢"-M:o (43)
oo

where C (respectively B) is the elastic (respectively viscoplastic) tangent moduli tensor,
« (respectively 3) is the elastic (respectively viscoplastic) back-extrapolated strain rate.

The self-consistent approximation (Hershey 1954; Kroner 1958) is then used to obtain
independent estimations of the effective properties associated with either a purely elastic
or a purely viscoplastic behavior. The effective elastic stiffness tensor C* and the effective
back-extrapolated strain rate A" are given by the application of the self-consistent
approximation to the purely elastic problem:

C*=C:A° (@4
S*=C*! (45)
A"=S AT . C: a (46)



When the grains are assumed to have an ellipsoidal shape, the elastic strain localization
tensor A® is calculated for each constituent from the elastic Eshelby tensor T according
to:
AC = (I4+T9:s*:(C—C*)™" (47)
In a similar fashion, the effective viscoplastic properties, which are represented by the
effective viscosity tensor B* and the effective viscoplastic back-extrapolated strain rate
B’ are obtained from the application of the self-consistent approximation to the purely
viscoplastic problem:

B*=B:AB (43)
M* =B*! (49)
B ' =M*:AB" :B: 3 (50)

where AP is the viscoplastic strain localization tensor which depends on the viscoplastic
Eshelby tensor T5:

AB = (I+TP :M*: (B—BY)) " (51)

Finally, the solutions to the purely elastic and purely viscoplastic problems are combined
to obtain the strain localization rule:

¢= E+TC (ée—A*)+TB:(eP—B*)

—TC:S*:C<é€—d—AC:(S*:Z+A*_é7))
7TB:M*531(ép*ﬂ+AB:(M*;EJFB*,ETD)) (52)

+(TC—TB) : (ép—AB:?—AB:TB:M*: (B:B—B*:B*)>

The above relation makes it possible to connect the local strain rate € to the prescribed
macroscopic strain rate E without using a complex numerical procedure. Indeed, only
the self-consistent solutions of the purely thermoelastic and viscoplastic heterogeneous
problems are needed to estimate the interactions between the different constituents.

Application to polycrystalline copper

In this section, the proposed model is used to describe the development of HCF
damage in pure polycrystalline copper. For this application, the representative volume
element consists of 500 equiaxed grains with random crystallographic orientation.
Crystallographic slip is assumed to occur on the twelve {111}(110) slip systems. In
this section, the strategy used for parameter identification is first presented. Some results
concerning the influence of the loading conditions are then exposed.

The stress-controlled loading conditions being examined in the following are listed
in Table 1. These conditions correspond to different combinations of normal (311) and



Name Normal stress >11 Shear stress Y19

Reversed tension Se sin (27 ft) 0

(Lukas and Kunz 1989)

Repeated tension Sa + Sg sin (27 ft) 0

(Lukas and Kunz 1989)

Reversed torsion 0 T, sin (27 ft)
(Agbessi 2013)

Repeated torsion 0 T, + Tg sin (27 ft)
Reversed tension-torsion (in-phase) Se sin (27 ft) T, sin (27 ft)

(Pejkowski et al. 2014)
Reversed tension-torsion (out-of-phase) Sy sin (27 ft) T,sin (2r ft + 7/2)
(Pejkowski et al. 2014)

Table 1. List of loading conditions applied to the copper polycrystalline aggregate. The
corresponding references for experimental data are also given.

shear (X12) stresses. The loading frequency, which is denoted by f, is fixed to 10 Hz for
the application of stress-controlled loading conditions.

In order to build a fracture criterion, the macroscopic damage variable D is now
introduced. The macroscopic damage variable D is defined from the initial (i.e.
undamaged) elastic compliance tensor S* and the current (i.e. damaged) stiffness tensor
C* according to: B

D=|I-C*:S" (53)
For the present application, fracture is assumed to occur when the macroscopic damage
variable D reaches a critical value D, of 0.5.

Material parameters

The material parameters for copper are presented in Table 2. The strategy used to
identify the model parameters is as follows. First, the elastic constants have been taken
from Méric et al. (1994)". For the interaction matrix H, the proposition of Asaro and
Needleman (1985), which consists of distinguishing between coplanar and non-coplanar
systems, is adopted. Second, the parameters associated with the viscoplastic flow rule,
the isotropic hardening rule and the kinematic hardening rule (i.e. the composite model)
have been determined from the different strain-controlled cyclic tests performed by
Mabhato et al. (2016) (see Figure 1). It should be mentioned that the initial dislocation
density was assumed to be negligible so that the isotropic hardening variables ¢}
were initially assigned a zero value. Third, as shown in Figure 2, the damage-related

T~For a {119}(111) slip system, the corresponding Young’s modulus Egg is 202 GPa and the shear moduli
G and G*™ are both equal to 24.9 GPa. For comparison purposes, the effective Young’s modulus E* of
the polycrystalline aggregate is 125 GPa and the effective shear modulus G* is 46.2 GPa



Elasticity

C11 (GPa) C12 (GPa) Cy4 (GPa)
159 122 81
Viscoplasticity
K (MPa) N
32 20
Isotropic hardening
@ (MPa) B H°P (coplanar) H°B (non-coplanar)
25 10 1 1.4
Kinematic hardening
W A
0.05 2
Damage
L (MPa) M
0.27 6

Table 2. Material parameters for pure copper.
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Figure 1. Evolution of the stress amplitude as a function of the number of cycles for different
strain-controlled cyclic tests. The experimental results have been obtained by Mahato et al.
(2016).

parameters have been adjusted to reproduce the experimental results of Lukds and Kunz
(1989) who conducted fully reversed tension stress-controlled fatigue tests (R, = —1)
on polycrystalline copper.
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Figure 2. S-N curves for polycrystalline copper for reversed tension (R, = —1) and repeated

tension (R, = 0). The experimental results have been obtained for reversed and repeated
tension by Lukas and Kunz (1989).

Cyclic behavior

The macroscopic behavior of the polycrystalline aggregate for reversed tension is first
discussed. The evolution of the macroscopic damage variable D as a function of the
number of cycles NV is plotted in Figure 3 for different stress amplitudes. The evolution
of the hard phase volume fraction as a function of the number of cycles IV is shown
in Figure 4. For all stress amplitudes, the hard phase volume fraction tends rapidly to
the asymptotic value of 5%, which is given by the W parameter. The transient regime,
which corresponds to the progressive development of dislocation structures, therefore
corresponds to only a small fraction of the total fatigue life. Also, according to the
estimations made by Mughrabi (1983) for copper single crystals, the hard phase volume
fraction is about 10% in PSBs. The hard phase volume fraction could therefore be
underestimated by the present model, likely because intragranular internal stresses are
not accurately evaluated with the Voigt model.

As shown in Figure 5, the progressive development of damage results in a decrease of
the effective Young’s modulus. Nevertheless, because of closure effects, the decrease is
more significant for tension than for compression.

Influence of mean stress

The proposed model has been used to investigate the influence of mean normal and shear
stresses on the HCF behavior of polycrystalline copper. As shown in Figure 6, for the case
of fully reversed torsion (R, = —1), model previsions are found to be in good agreement
with the experimental data of Agbessi (2013). More specifically, the fatigue limit at 10°
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Figure 3. Evolution of the macroscopic damage variable as a function of the number of
cycles for reversed tension for different stress amplitudes.
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Figure 4. Evolution of the hard phase volume fraction as a function of the number of cycles
for reversed tension for different stress amplitudes.

cycles, which is about 60 MPa for fully reversed torsion, is correctly predicted by the
model.

Also, to evaluate the influence of the mean stress, the model predictions for repeated
tension (12, = 0) are shown in Figure 2 together with the experimental results of Lukas
and Kunz (1989). The decrease observed for the fatigue limit at 10° cycles for R, = 0 is
correctly described by the model. However, the slope change observed for the S-N curve
is largely underestimated by the model. Such discrepancies are possibly explained by the
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Figure 5. Evolution of the Young’s modulus as a function of the number of cycles for reversed
tension (S, = 140 MPa).
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Figure 6. S-N curves for polycrystalline copper for reversed torsion (R, = —1) and repeated

torsion (R- = 0). The experimental results have been obtained for reversed torsion by
Agbessi (2013).

cross section reduction observed as a consequence of cyclic creep. Indeed, as mentioned
by Lukds and Kunz (1989), the cross section reduction associated with the application of
a positive mean stress may cause a progressive increase in the true stress amplitude. This
aspect, which is important for high maximum stresses, is not considered in the present
model as it relies on the infinitesimal deformation theory where no distinction is made
between the nominal and true stresses.



The model previsions for repeated torsion (R, = 0) are displayed in Figure 6. When
comparing to the case of reversed torsion (R, = —1), the S-N curve is almost unchanged,
which is consistent with the work of (Sines 1959) who concluded that the fatigue limit of
metals subjected to cyclic torsion is not affected by a superimposed mean shear stress.

It should be mentioned that differences regarding the influence of mean normal and
shear stresses are correctly captured thanks to the composite model. To highlight this
specific aspect, the average stress and strain tensors have been computed for the soft
phase for both tension and torsion. As shown in Figure 7, the stress state of the soft
phase, which governs the development of fatigue damage, is unaffected by the application
of a macroscopic mean shear stress to the polycrystalline aggregate. However, the cyclic
behavior of the soft phase is found to be significantly affected by the application of a
macroscopic mean normal stress.

Influence of phase shift

To evaluate the influence of a phase shift on the HCF behavior of polycrystalline copper,
the case of combined tension and torsion is now examined. The normalized S, — T,
diagram showing the evolution of the fatigue limit at 105 cycles is presented in Figure
8 for both in-phase and out-of-phase combined tension and torsion. The experimental
results of Pejkowski et al. (2014), who conducted multiaxial fatigue tests on ETP
copper for various T,/S, ratios, have been used to obtain estimations of the fatigue
limit at 10° cycles. For in-phase loading modes, the quantitative agreement between
experimental and numerical data is correct. Also, when a 90° phase shift is introduced,
the beneficial influence on fatigue strength is correctly reproduced by the polycrystalline
model. The beneficial effect of a phase shift is however quantitatively overestimated. This
overestimation is possibly explained by the definition of the driving force for damage.
According to expression (25), for a given system, the driving force y> depends on the
corresponding damage variable d7, but is independent on the other damage variables.
The interactions between different damage variables are therefore not considered here
though they could impact damage development, especially for non-proportional loadings.
Indeed, for such loading conditions, different systems can be activated during one loading
cycle and the resulting interactions may facilitate the development of fatigue damage.

Conclusions

In this work, a polycrystalline model for describing the development of HCF damage in
metallic polycrystals has been proposed. The constitutive relations are written at the grain
scale using the general framework of crystal plasticity. A damage variable is attached to
each slip system to include the anisotropic aspect of fatigue damage. Also, a two-phase
composite model is used to evaluate the internal stresses associated with the formation of
intragranular dislocation structures. Constitutive relations have finally been implemented
within a self-consistent model to account for intergranular interactions.

The proposed approach has been used to model the HCF behavior of a copper
polycrystal. The two-phase composite model is found to be a key ingredient for capturing
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Figure 7. Cyclic behavior of the soft phase for reversed and repeated torsion (T,, = 80 MPa,
top) and for reversed and repeated tension (S, = 120 MPa, bottom). The stress-strain curves
have been obtained for the 1000th loading cycle.

the effect of mean normal and shear stresses. Also, although a limited number of damage-
related parameters have been introduced, the influence of a phase shift is qualitatively
well reproduced. Further work should focus on the description of the interactions
between damage variables. Indeed, such interactions are likely to play an important role
in the development of HCF damage for complex cyclic loading paths. The extension of
the proposed constitutive relations to finite strain elasto-plasticity will also be explored.
This aspect is important for investigating the role of pre-straining, such as encountered
in metal forming, on the HCF behavior of metallic materials.
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