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In the current study, a theoretical method is developed to predict the vibrational behavior of

micro-circular disks ¯lled with viscous °uids and numerical results are presented to validate the

model. Vibrations with two outer boundary conditions, rigid and deformable vessel, are studied.

The coupled governing equations of both rigid and deformable vessel vibration are solved by the
analytical procedure, taking °uid–structure interaction into account. The °uid gap e®ect on the

coupled eigenfrequencies is also considered. The frequency spectrum plots of the ¯rst several

eigenfrequencies are presented in a wide range of °uid gap and elasticity ratio. The correctness
of results is demonstrated using a commercial ¯nite element software. It is shown that the

obtained results through the proposed method reveal very good agreement with the numerical

solution.

Keywords: Elasto-viscous interaction; two-dimensional coupled vibration; micro-circular

structures; ¯nite element method.

1. Introduction

Structures ¯lled with °uids and °uids surrounding structures have been gaining

momentum in engineering. Paidoussis1,2 revealed that this con¯guration is fast able to

exhibit richer dynamic and modal behaviors than the standard model of the structure

exposed to compressive loads. Due to the recent developments in science and tech-

nology, the structures dimensions could get smaller. Therefore, microscale structures

have held wide range of applications in engineering micro°uidic devices and microelec-

tronic-mechanical systems. In addition, implementing the micro°uidic–microstructure
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interaction analysis into the engineering and biological systems could be because of its

inherent attributes related to the modeling of the rigid and °exible microstructures

which are geometrically complex in nature. To study such phenomena, the task is to

choose suitable °uidmodels and structuralmodels depending on the application and to

develop an e±cient interface to couple them.

On the one hand, microstructures and micro°uidics promise a great deal of

advantages in the ¯eld of drug discovery like low sample consumption and analysis or

experiment times.3 Like any other technology, to be able to implement micro-

structures and micro°uidic,4,5 suitable production techniques have to be discovered.

Microstructures and micro°uidics systems can have various applications in micro-

resonators6 and in targeted drug delivery devices and, in view of their excellent

mechanical properties and hollow geometry. Bhirde7 showed that the hollow ge-

ometry, for example, can be considered as drug delivery system in targeted therapy

which results in a signi¯cant decrease in tumor size.

On the other hand, vascular cell biology is a ¯eld in which extensive research is

being carried out due to its relevance in biomedicine. The main obstacle is that it is

di±cult to mimic the functioning of valve tissue.8 Biology cells are encapsulated by a

membrane composed of a lipid bilayer attached to a polymer network underlying. In

order to understand and distinguish the features of cell mechanics that arise from the

components of the cell membrane, particles enclosed by a lipid bilayer (vesicles)9,10 or

a polymerized membrane (arti¯cial capsules)11 have been studied extensively by

theory and simulations.12–14 Microstructures and micro°uidics show great potential

to enable a systematic study of vascular cell biology.

Much of the early research in this domain has been focused on the internal °uid's

behavior °ows through micro-tubes. Understanding of the inner °uid °ow is cur-

rently a topic of great interest in development of engineering devices and biological

systems at the small scales. Accordingly, a rigorous understanding of the in-plane

vibration behavior of micro-circular disks ¯lled with viscous °uids is particularly

relevant. In spite of many contributions regarding the analysis of micro-circular

disks, the establishment of an e±cient and reliable mathematical model to be able to

predict vibrational behavior of micro-circular disks taking into account °uid–struc-

ture interaction remains a daunting task and is the purpose of the present paper.

This article attempts to develop a theoretical method whose main objective is to

calculate the natural frequencies of a micro-circular disks submerged in a °uid-¯lled

rigid and deformable tube (vessel). In the theoretical formulation, the °uid in the

annular space between the micro-disk (micro-structure) and vessel, and the °uid

inside the micro-disk would both be considered.

2. Mathematical Modeling

2.1. Formulation for compressible viscous °uids

Consider a viscous compressible °uid between two concentric elastic micro-disks

(elastic vessel and elastic structure) of radii r ¼ a2 and r ¼ a4 (see Fig. 1). When the
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micro-structure is completely immersed in a °uid-¯lled elastic vessel, the °uid do-

main is divided into two sub-domains, inner region and outer region. The two con-

¯gurations are inspected. One is only the outer °uid-¯lled case, and the other is the

case that the micro-structure is in contact simultaneously with inner °uid and outer

°uid. It is convenient to use polar coordinates (r; �) with origins at the center of the

micro-disks. Each micro-disk (micro-structure and micro vessel) may execute har-

monic motion with angular frequency !. The oscillation amplitude is considered to be

small enough to neglect the convective °uid inertial forces. Under these assumptions,

the unsteady linear Stokes equation can be used to model the °uid dynamics. Based

on the assumption that the °uid is Newtonian, the total stress tensor that combines

the viscous stress with pressure is given by

¾ðf;iÞðvðiÞ; pðiÞÞ ¼ �pðiÞIþ 2�i"
ðf;iÞðvðiÞÞ � 2�i

3
ðr � vðiÞÞI ð1Þ

and

"ðf;iÞðvðiÞÞ ¼ 1

2
½rvðiÞ þ ðrvðiÞÞT � ð2Þ

is the strain-rate tensor. Here, �i is the dynamic viscosity, pðiÞ is the pressure, vðiÞ is
the velocity vector, I is an unit tensor and the superscript T denotes the transpose. In

addition, i ¼ 1 indicates the inner °uid and i ¼ 2 the outer °uid. For the acoustic

problem when the °uid velocity is small compared to the dimensions of the model,

the nonlinear convection term in the Navier–Stokes equation can be neglected.

Therefore, from mass and momentum conservation in the absence of body forces, the

linearized Navier–Stokes equations of a compressible viscous °uid are governed by15

@�
ðiÞ
f

@t
þ �

ðiÞ
f r � vðiÞ ¼ 0; ð3Þ

�
ðiÞ
f

@vðiÞ

@t
�r � ¾ðf;iÞðvðiÞ; pðiÞÞ ¼ 0; ð4Þ

@�
ðiÞ
f

@pðiÞ
¼ 1

c2i
; ð5Þ

where �
ðiÞ
f represents the °uid density and ci is the speed of sound in a °uid domain.

Equation (5) is the de¯nition of the compressibility. Note that for acoustic problem, a

small variations in °uid density �
ðiÞ
f causes a small variations in °uid pressure pðiÞ by

rapid adiabatic process. In order to plainly show how the new set of partial di®er-

ential equations is derived, as in Ref. 16, we decompose using a traditional Helmholtz

decomposition into compressible and solenoidal parts as vðiÞ ¼ r�ðiÞ þ r �ªðiÞ.
Note that the potential component r�ðiÞ (curl-free component) represents dilata-

tional waves and describes the compressible part of the velocity ¯eld. The solenoidal

component r�ªðiÞ (divergence-free component) represents shear waves and
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describes the incompressible part of the velocity ¯eld. The symmetry of problem

allows to reduces the vector potential ªðiÞ into scalar potential as ªðiÞ ¼ ð0; 0;  ðiÞÞ.
Furthermore, substituting the above decomposition into Eq. (4), and by making use

of Eqs. (3) and (5), the conservation of momentum equation (4) becomes17

c2i þ
4�i

3�
ðiÞ
f

@

@t

!
r2�ðiÞ ¼ @2�ðiÞ

@t2
; ð6Þ

�ir2 ðiÞ ¼ �
ðiÞ
f

@ ðiÞ

@t
; ð7Þ

pðiÞ ¼ 4�i
3

r2�ðiÞ � �
ðiÞ
f

@�ðiÞ

@t
: ð8Þ

In the present study, both analytical and numerical methods are used to solve the

problem under consideration. The resolution procedure starts with ¯nding the an-

alytical solution, then the eigenvalue equation is obtained from the appropriate

boundary and interface conditions. Finally, the numerical solution is computed using

Comsol Multiphysics software. In order to solve the free vibration problem, a time

harmonic dependence expðj!tÞ is assumed, with j is the imaginary unit and t the

time. The two subproblems consist of determining the scalar potentials �ðiÞðr; �; tÞ
and  ðiÞðr; �; tÞ satisfying the Helmholtz Eqs. (6) and (7). Introducing a new auxiliary

variable � ¼ j
ffiffiffiffiffi
j!

p
and using previously developed techniques,18 the general solution

associated with circumferential modal number n can be expressed as

�ðiÞ

 ðiÞ

pðiÞ

8><
>:

9>=
>;ðr; �; tÞ ¼

�ðiÞðrÞ½a sinðn�Þ þ b cosðn�Þ�
ðiÞðrÞ½c cosðn�Þ þ d sinðn�Þ�

pðiÞðrÞ½a sinðn�Þ þ b cosðn�Þ�

8><
>:

9>=
>;expðj!tÞ; ð9Þ

where the radial dependence is de¯ned as

�ðiÞðrÞ ¼ A
ðiÞ
f Jnð�irÞ þB

ðiÞ
f Ynð�irÞ;

ðiÞðrÞ ¼ C
ðiÞ
f Jn

�rffiffiffiffi
�i

p
� �

þD
ðiÞ
f Yn

�rffiffiffiffi
�i

p
� �

;

and the radial dependence of pressure is obtained from Eq. (8) as

pðiÞðrÞ ¼ �i
�2

�i
� 4� 2

i

3

� �
½A ðiÞ

f Jnð�irÞ þB
ðiÞ
f Ynð�irÞ�:

In the above equations, �=
ffiffiffiffi
�i

p
is the shear wavenumber where �i is the kinematic

viscosity, � 2
i ¼ �4=ð4�i�2=3� c2i Þ, Jn and Yn are, respectively, the nth order stan-

dard Bessel function of the ¯rst and the second kind; whereas A
ðiÞ
f ;B

ðiÞ
f ;C

ðiÞ
f andD

ðiÞ
f

are unknown wave propagation coe±cients. Note that the components of velocity

¯eld are symmetric or antisymmetric in �. Because of the periodicity, the azimuthal
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modes corresponding to cosðn�Þ and sinðn�Þ are really the same, i.e., for the two

families there is no di®erence in the values of n. We proceed (for convenience) with

the terms involving sinðn�Þ for �ðiÞ; cosðn�Þ for  ðiÞ and scale the constants with a and

c. The components of velocity in the °uid region that are used lastly in boundary

condition are given by

v
ðiÞ
r

v
ðiÞ
�

( )
ðr; �; tÞ ¼

�ðiÞ0ðrÞ � n

r
 ðiÞðrÞ

h i
sinðn�Þ

n

r
�ðiÞðrÞ �  ðiÞ0ðrÞ

h i
cosðn�Þ

8><
>:

9>=
>;expðj!tÞ; ð10Þ

where the prime signi¯es di®erentiation with respect to the argument r. Then, the

pertinent stress-potentials expressions can be obtained by direct substitution of the

expansions (10) into the constitutive equation (1) as follows:

�
ðf;iÞ
rr

�
ðf;iÞ
r�

( )
ðr; �; tÞ ¼ �

ðf;iÞ
rr ðrÞ sinðn�Þ

�
ðf;iÞ
r� ðrÞ cosðn�Þ

( )
expðj!tÞ; ð11Þ

where the radial dependence �
ðf;iÞ
rr ðrÞ and � ðf;iÞ

r� ðrÞ are de¯ned as

�
ðf;iÞ
rr ¼ 2�i �ðiÞ00 ðrÞ þ � 2

i �
�2

2�i

� �
�ðiÞðrÞ � n

r2
r ðiÞ0 ðrÞ �  ðiÞðrÞ� �� �

;

�
ðf;iÞ
r� ¼ 2�i

n

r2
½r�ðiÞ0 ðrÞ � �ðiÞðrÞ� �  ðiÞ00 ðrÞ � �2

2�i
 ðiÞðrÞ

� �
:

2.2. Formulation for elastic micro-discs

The micro-disks under consideration are assumed to be linearly elastic (isotropic) for

which the constitutive equation may be written as

¾ðs;iÞðuðiÞÞ ¼ 	iðr � uðiÞÞIþ 
i½ruðiÞ þ ruðiÞT �; ð12Þ

where uðiÞ is the displacement ¯eld, ð	i; 
iÞ are Lam�e constants and i ¼ 1 indicates

the elastic micro-structure and ði ¼ 2Þ the elastic micro-vessel. The problem can be

analyzed by means of the standard methods of elastodynamics. For deriving the

partial di®erential equations, the Navier's equation in the absence of body forces can

be expressed as

� ðiÞ
s

@2uðiÞ

@t2
¼ r � ¾ðs;iÞðuðiÞÞ; ð13Þ

where uðiÞ can advantageously be decomposed using again Helmholtz decomposition

with two scalar potential functions �ðiÞ and �ðiÞ. This decomposition enables us to

separate the Navier's equation (13) in terms of two classical wave equations

ðr2 � k
ðiÞ
L

2Þ�ðiÞ ¼ 0; ðr2 � k
ðiÞ
T

2Þ�ðiÞ ¼ 0; ð14Þ
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where k
ðiÞ
L ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðiÞ
s =ð	i þ 2
iÞ

q
and k

ðiÞ
T ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðiÞ
s =
i

q
are the radial and shear

wave numbers and �
ðiÞ
s is the micro-discs materials density. Hence, using previously

developed techniques,18 the general solution of Eqs. (14) can be shown to be

�ðiÞ

�ðiÞ

( )
ðr; �; tÞ ¼ �ðiÞðrÞ sinðn�Þ

�ðiÞðrÞ cosðn�Þ

( )
expðj!tÞ; ð15Þ

where �ðiÞðrÞ and �ðiÞðrÞ are de¯ned as

�ðiÞðrÞ ¼ A
ðiÞ
s Inðk ðiÞ

L rÞ þB
ðiÞ
s Knðk ðiÞ

L rÞ;
�ðiÞðrÞ ¼ C

ðiÞ
s Inðk ðiÞ

T rÞ þD
ðiÞ
s Knðk ðiÞ

T rÞ:

Here, In and Kn are modi¯ed Bessel function of the ¯rst and second kind; A
ðiÞ
s ;B

ðiÞ
s ;

C
ðiÞ
s ;D

ðiÞ
s are unknown coe±cients to be determined by the boundary and interface

conditions. In the end, the components of displacement that used lastly in boundary

condition can be expressed as

u
ðiÞ
r

u
ðiÞ
�

( )
ðr; �; tÞ ¼

�ðiÞ0ðrÞ � n

r
�ðiÞðrÞ

h i
sinðn�Þ

n

r
�ðiÞðrÞ ��ðiÞ0ðrÞ

h i
cosðn�Þ

8><
>:

9>=
>;expðj!tÞ: ð16Þ

Consequently, the pertinent stress-potentials expressions can be obtained by direct

substitution of the expansions (16) into the constitutive equation (12) as follows:

�
ðs;iÞ
rr

�
ðs;iÞ
r�

( )
ðr; �; tÞ ¼ �

ðs;iÞ
rr ðrÞ sinðn�Þ

�
ðs;iÞ
r� ðrÞ cosðn�Þ

( )
expðj!tÞ; ð17Þ

where �
ðs;iÞ
rr ðrÞ and � ðs;iÞ

r� ðrÞ are de¯ned as

�
ðs;iÞ
rr ðrÞ ¼ 
i 2�ðiÞ00ðrÞ þ 	ik

ðiÞ
L

2


i
�ðiÞðrÞ � 2n

r2
½r�ðiÞ0ðrÞ ��ðiÞðrÞ�

( )
;

�
ðs;iÞ
r� ðrÞ ¼ 
i

2n

r2
½r�ðiÞ0ðrÞ � �ðiÞðrÞ� � 2�ðiÞ00ðrÞ þ k

ðiÞ
T

2
�ðiÞðrÞ

� �
:

2.3. Boundary conditions and eigenvalue equation

At this point, the free vibration frequencies of the coupled system shall be obtained

by application of the pertinent boundary and interface conditions. Therefore, the

°uid–structure coupling takes place at the interfaces r ¼ a1 ð�1Þ, r ¼ a2 ð�2Þ and

r ¼ a3 ð�3Þ. Kinematic and dynamic continuity have to be ensured across

these interfaces. Thus, the °uid–structure coupling concerning the °uid is of
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nonhomogeneous Dirichlet condition (kinematic condition)

at r ¼ a1; v
ð1Þ
r ¼ @u

ð1Þ
r

@t
; v

ð1Þ
� ¼ @u

ð1Þ
�

@t
;

at r ¼ a2; v
ð2Þ
r ¼ @u

ð1Þ
r

@t
; v

ð2Þ
� ¼ @u

ð1Þ
�

@t
;

at r ¼ a3; v
ð2Þ
r ¼ @u

ð2Þ
r

@t
; v

ð2Þ
� ¼ @u

ð2Þ
�

@t
;

ð18Þ

describing mass conservation across the interface, and the °uid–structure coupling

for the micro-discs is of nonhomogeneous Neumann type (dynamic condition)

at r ¼ a1; �
ðf;1Þ
rr ¼ �

ðs;1Þ
rr ; �

ðf;1Þ
r� ¼ �

ðs;1Þ
r� ;

at r ¼ a2; �
ðf;2Þ
rr ¼ �

ðs;1Þ
rr ; �

ðf;2Þ
r� ¼ �

ðs;1Þ
r� ;

at r ¼ a3; �
ðf;2Þ
rr ¼ �

ðs;2Þ
rr ; �

ðf;2Þ
r� ¼ �

ðs;2Þ
r� ;

ð19Þ

representing the equivalence of micro-disks stresses �ðs;iÞ and °uid stresses �ðf;iÞ.
These conditions are not su±cient in order to have a fully described system. To

complete the boundary conditions, the stress free condition for the outside surface

ð�4Þ considered in this work is speci¯ed as follows:

at r ¼ a4; � ðs;2Þ
rr ¼ 0; �

ðs;2Þ
r� ¼ 0: ð20Þ

Note that in the case of deformable vessel, fourteen boundary conditions are needed.

Therefore, for a rigid vessel, it is easy to verify that the number of boundary con-

ditions is 10. Thus the solution of Eqs. (3), (4) and (13) is incorporated into the

boundary conditions given in Eqs. (18)–(20), which yields an homogeneous system of

14 algebraic equations, where the unknowns are the constants in the expressions for

the °uid velocities and the amplitudes of the structure motion

Mx ¼ 0; ð21Þ
in which M can be expressed as

M ¼

M
ð1Þ
f ða1Þ M

ð1Þ
s ða1Þ 0 0

0 M
ð1Þ
s ða2Þ M

ð2Þ
f ða2Þ 0

0 0 M
ð2Þ
f ða3Þ M

ð2Þ
s ða3Þ

0 0 0 M
ð2Þ
s ða4Þ

2
6666664

3
7777775
: ð22Þ

The elements of the sub-matrices M
ðiÞ
q ðrÞðq ¼ f; s and i ¼ 1; 2Þ are given in

Appendix A. x is the vector of unknown coe±cients and is written as

x ¼ ½A ð1Þ
f C

ð1Þ
f A ð1Þ

s B ð1Þ
s C ð1Þ

s D ð1Þ
s A

ð2Þ
f B

ð2Þ
f C

ð2Þ
f D

ð2Þ
f A ð2Þ

s B ð2Þ
s C ð2Þ

s D ð2Þ
s �T :
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For the nontrivial solution of Eq. (21), it is required that detðMÞ ¼ 0 which is the

frequency equation of the coupling system. This frequency equation can be used to

investigate the coupled natural frequencies of the system. For given dimensions,

elastic and °uid constants of the system, detðMÞ ¼ 0 constitutes an implicit tran-

scendental function of n and �. The roots � may be computed for a ¯xed n.

2.4. Weak formulation and numerical solution

The ¯nite element formulation of °uid–structure coupled model presented in this

section is based on the formulations for the solids and for compressible viscous °uids.

The used numerical formulations include the pressure formulation,19 the potential

formulation,20 the displacement formulation21 and the combination of some of

them.22 Finite element procedure is used to extract the natural frequencies. To

compute the natural vibration of a °uid alone, the °uid is typically described either by

pressure or by displacement potential variables. When the °uid is coupled with a

solid, standard methods to solve Eqs. (3), (4) and (13) consist in eliminating either the

pressure or the displacement potential.23 However, in both cases, nonsymmetric ei-

genvalue problems are obtained (see, for instance, Ref. 24). To avoid this drawback,

Morand and Ohayon25 introduce in Ref. 20 an alternative procedure which consists in

using pressure and displacement potential simultaneously. In this section we sum-

marize their approach; further details and discussions can be found in their book.25

2.4.1. Fluid domains

In order to obtain a weak formulation for Eqs. (3) and (4), ¯rstly replacing °uid

density �
ðiÞ
f by the °uid pressure pðiÞ using the constitutive Eq. (5) and introducing

the °uid displacement @wðiÞ=@t ¼ vðiÞ, we get pðiÞ ¼ �� ðiÞ
f c2ir �wðiÞ. Therefore, the

Stokes equation and Cauchy stress tensor are written only in terms of the °uid

displacements as

�
ðiÞ
f

@2wðiÞ

@t2
�r � ¾ðf;iÞðwðiÞÞ ¼ 0 ð23Þ

and

¾ðf;iÞðwðiÞÞ ¼ �
ðiÞ
f c2i ðr �wðiÞÞIþ 2�i

@

@t
"ðf;iÞðwðiÞÞ � 2�i

3

@

@t
ðr �wðiÞÞI: ð24Þ

Note that this pure displacement-based formulation tends to lock for a nearly in-

compressible °uid.22

To derive the weak form of the Stokes equation, following the standard approach

and using tensor notation, we multiply Eq. (23) by appropriate momentum test

function �wi and integrate over the °uid volume �
ðiÞ
f to obtainZ

�
ðiÞ
f

�
ðiÞ
f

@2wðiÞ

@t2
�r � ¾ðf;iÞ wðiÞ� 	
 �

�wid� ¼ 0: ð25Þ
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During the interaction, the °uid particle and the structure move together in the

normal direction of the boundary. Note that the normal on the interface on the solids

n
ðiÞ
s is opposite the normal on the °uid n

ðiÞ
f , that is n

ðiÞ
s ¼ �n

ðiÞ
f . Integrating by parts

the Cauchy-stress term present in the Eq. (25) and taking into account boundary

conditions, we get for inner °uid (domain �
ð1Þ
f )Z

�
ð1Þ
f

�
ð1Þ
f

@2wð1Þ

@t2
�w1d�þ

Z
�

ð1Þ
f

¾ðf;1Þðwð1ÞÞ : "ðf;1Þð �w1Þd�

þ
Z
�1

¾ðf;1Þðwð1ÞÞ � n ð1Þ
s �w1d� ¼ 0; ð26Þ

and for outer °uid (domain �
ð2Þ
f )Z

�
ð2Þ
f

�
ð2Þ
f

@2wð2Þ

@t2
�w2d�þ

Z
�

ð2Þ
f

¾ðf;2Þðwð2ÞÞ : "ðf;2Þð �w2Þd�

þ
Z
�2

¾ðf;2Þðwð2ÞÞ � n ð1Þ
s �w2d�þ

Z
�3

¾ðf;2Þðwð2ÞÞ � n ð2Þ
s �w2d� ¼ 0: ð27Þ

Substituting of the Cauchy stress tensor Eq. (24) in Eqs. (26) and (27), we arrive at

the weak form of the Stokes equationZ
�

ð1Þ
f

�
ð1Þ
f

@2wð1Þ

@t2
�w1 þ c21ðr �wð1ÞÞðr � �w1Þ


 �
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@

@t

Z
�

ð1Þ
f

"ðf;1Þðwð1ÞÞ : "ðf;1Þð �w1Þ �
1

3
ðr �wð1ÞÞðr � �w1Þ


 �
d�

þ
Z
�1

¾ðf;1Þðwð1ÞÞ � n ð1Þ
s �w1d� ¼ 0; ð28Þ

Z
�

ð2Þ
f

�
ð2Þ
f

@2wð2Þ

@t2
�w2 þ c22ðr �wð2ÞÞðr � �w2Þ


 �
d�

þ 2�2
@

@t

Z
�

ð2Þ
f

"ðf;2Þðwð2ÞÞ : "ðf;2Þð �w2Þ �
1

3
ðr �wð2ÞÞðr � �w2Þ


 �
d�

þ
Z
�2

¾ðf;2Þðwð2ÞÞ � n ð1Þ
s �w2d�þ

Z
�3

¾ðf;2Þðwð2ÞÞ � n ð2Þ
s �w2d� ¼ 0: ð29Þ

2.4.2. Solid domains

In order to obtain a weak formulation for solid domains, ¯rstly, Eq. (13) is multiplied

by a test function �u ¼ ð�u1; �u2Þ. Integrating by parts in �
ðiÞ
s (i.e., using Green's

formula for tensor ¯elds) and taking into account the boundary conditions, we obtain
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for inner solid (structure �
ð1Þ
s )Z

�
ð1Þ
s

� ð1Þ
s

@2uð1Þ

@t2
�u1d�þ

Z
�

ð1Þ
s

¾ðs;1Þðuð1ÞÞ : "ðs;1Þð�u1Þd�

�
Z
�1

¾ðf;1Þðwð1ÞÞ � n ð1Þ
s �w1d��

Z
�2

¾ðf;2Þðwð2ÞÞ � n ð1Þ
s �w2d� ¼ 0 ð30Þ

and for outer solid (vessel �
ð2Þ
s )Z

�
ð2Þ
s

� ð2Þ
s

@2uð2Þ

@t2
�u2d�þ

Z
�

ð2Þ
s

¾ðs;2Þðuð2ÞÞ : "ðs;2Þð�u2Þd�

�
Z
�3

¾ðf;2Þðwð2ÞÞ � n ð2Þ
s �w2d� ¼ 0: ð31Þ

Applying the standard Galerkin discretization method, we have for a ¯nite element

wð1Þ ¼ H
ðfÞ
1 W1; r �wð1Þ ¼ ðr �H ðfÞ

1 ÞW1 ¼ B1W1;

wð2Þ ¼ H
ðfÞ
2 W2; r �wð2Þ ¼ ðr �H ðfÞ

2 ÞW2 ¼ B2W2;

uð1Þ ¼ H
ðsÞ
1 U1; uð2Þ ¼ H

ðsÞ
2 U2;

whereH
ðfÞ
1 ;H

ðfÞ
2 ,H

ðsÞ
1 andH

ðsÞ
2 are the interpolation matrices, andW1;W2;U1 and

U2 are the vectors of solution variables. By introducing X ¼ fW1;W2;U1;U2gT ,
discretization of the weak formulations (Eqs. (28)–(31)) induces a symmetrical

system in wð1Þ;wð2Þ;uð1Þ and uð2Þ formulation as

ðKþ j!C� !2MÞX ¼ 0; ð32Þ
where K;C and M are the global sti®ness, damping and mass matrices and

K ¼

K
ðfÞ
1 O O O

O K
ðfÞ
2 O O

O O K
ðsÞ
1 O

O O O K
ðsÞ
2

2
6666664

3
7777775
; M ¼

M
ðfÞ
1 O O O

O M
ðfÞ
2 O O

O O M
ðsÞ
1 O

O O O M
ðsÞ
2

2
6666664

3
7777775

C ¼

C
ðfÞ
1 �D

ðfÞ
1 O O O

O C
ðfÞ
2 �D

ðfÞ
2 O O

O O O O

O O O O

2
666664

3
777775

and the submatrices of Eq. (32) are de¯ned by

K
ðfÞ
i ¼

Z
�

ðiÞ
f

�
ðiÞ
f c2iB

T
i Bid�;

UT
i K

ðsÞ
i Ui ¼

Z
�

ðiÞ
s

¾ðs;iÞðuðiÞÞ : "ðs;iÞð�uiÞd�;
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WT
i C

ðfÞ
i Wi ¼

Z
�

ðiÞ
f

2�i"
ðf;iÞðwðiÞÞ : "ðf;iÞð �wiÞd�;

D
ðfÞ
i ¼

Z
�

ðiÞ
f

2�i
3
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i Bid�;

M
ðfÞ
i ¼

Z
�

ðfÞ
i

�
ðiÞ
f H

ðfÞ
i

T
H

ðfÞ
i d�;

M
ðsÞ
i ¼

Z
�

ðiÞ
s

�
ðiÞ
s H

ðsÞ
i

T
H

ðsÞ
i d�:

2.4.3. Finite element modeling

In this section, the commercially available FEA package COMSOL Multiphysics26 is

used to solve the symmetrical Eq. (32). This modeling procedure requires two

modules, one for simulating the elastic solids (structure and vessel) and the other for

viscous °uids. Each module provides a wide range of equations, which is needed in

specifying subdomains and boundaries. The theories and equations behind this model

are based on the governing equations in Sec. 2. The solids and °uids are simulated

using the Lagrange-Quadratic element and Lagrange-P2P1 element, respectively.

The solids and °uids elements at the interface shared the same node and have

extremely ¯ne meshing to capture the details during coupled vibrations.

The complete coupled system is simulated and presented in this section. Two

modules (Fluid Flow and Structural Mechanics) are used in this simulation. For this

purpose, some variables are set to make the connection between these two modules.

At °uid–structure interface, kinematic and dynamic continuity has to be ensured.

The complete coupled problem has to ful¯ll the condition that the location of the

°uid–structure interface coincides for both ¯elds. Thus, the °uid–structure interac-

tion boundary condition concerning the °uid is of an inhomogeneous Dirichlet type

(kinematic condition), and the °uid–structure boundary condition for the solids are

given by an inhomogeneous Neumann condition (dynamic condition). For modeling

of the coupled system, the eigenfrequency solver is selected to solve the model and

give the ¯rst eleven eigenvalues. According to this solver, time for solving the model

is 6.176min and the number of degrees of freedom is 454919.

3. Results and Discussion

In this section, a numerical study is carried out to verify the validity of the theo-

retical method. We consider an elastic micro-structure ¯lled with viscous °uid (inner

°uid) enclosed within an elastic or rigid tube (vessel) shown in Fig. 1. The annulus

between the tube is ¯lled with viscous °uid (outer °uid). The geometry and material

properties of the microstructures and the viscous °uid are presented in Table 1. In

order to obtain the roots of the resulting frequency equation given in Eq. (21), the

Mathematica software27 is used. To validate the analytical results, the eigenvalues
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and mode shapes are computed using Comsol Multiphysics Software. To simplify the

presentation of results, natural frequencies are normalized and introduced as the

nondimensional frequency, which is de¯ned by !a2=�. As it is known that the °uid-

¯lled annular gap and elasticity of vessel a®ect the motion of the circular disk, an

example is included to illustrate the e®ect of inner and outer °uids in conjunction

with elasticity of tube. Table 2 shows the comparison of the ¯rst 11 frequencies by

FEM and the theoretical calculation (Eq. (21)). The very good agreement is revealed

between the results through the proposed method (Exact) and those of numerical

Table 1. Geometric and material properties.

Parameters of the system Value

Inner °uid radius, a1 ¼ a 5 [
m]

Outer °uid radius, a3 15 [
m]
Structure radius, a2 5.5 [
m]

Elastic tube radius, a4 15.5 [
m]

Inner °uid density, �
ð1Þ
0

1000 [kg/m3]

Outer °uid density, �
ð2Þ
0

1000 [kg/m3]

Inner °uid dynamic viscosity, �1 0.01 [Pa � s]
Outer °uid dynamic viscosity, �2 0.01 [Pa � s]
Structure material density, �

ð1Þ
s

1200 [kg/m3]

Tube material density, �
ð2Þ
s

1200 [kg/m3]

Structure material Young's modulus, E1 2 � 106 [Pa]

Tube material Young's modulus, E2 6 � 107 [Pa]

Structure material Poisson's ratio, �1 0:4

Tube material Poisson's ratio, �2 0:4

(a) Geometry of model (b) First coupled mode

Fig. 1. (a) Schematic describing the interaction of elastic micro-structures with a viscous °uids. (b) First

coupled kinematic mode shape associated with the circumferential modal number n ¼ 2.
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solution (FEM) and the mode shapes are not in order with the parameter n. Table 2

shows also that the fundamental frequency is always with the n ¼ 2. In the following,

we study the nondimensional frequency curves of n ¼ 2 with the changing of the

other models parameters.

3.1. E®ects of inner °uid, outer °uid gap and elastic vessel

In the analysis, two cases are inspected. First case is when only the outer annular

°uid is considered, and the second case is when the elastic micro-disc is coupled with

outer annular °uid and inner °uid. The nondimensional frequency !a2=� is plotted

versus circumferential mode number n in Fig. 2. For smaller values of circumferential

mode number, the di®erence of the nondimensional frequencies between the two

cases is relatively small. Nevertheless, when circumferential mode number increases,

this di®erence increases also. In other words, the inner °uid relatively a®ects the

nondimensional frequencies for higher circumferential modes, and the outer annular
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Outer and inner fluid

Fig. 2. Nondimensional frequency curves !a2=� versus n.

Table 2. Nondimensional natural frequencies !a2

� with a °uid ¯lled rigid

vessel.

In vacuum Outer °uid only Outer and inner °uid

n Exact FEM n Exact FEM n Exact FEM

2 1.557 1.557 2 0.060 0.060 2 0.040 0.040
3 4.367 4.367 3 0.456 0.456 3 0.238 0.238

4 8.275 8.275 4 1.338 1.338 4 0.621 0.621

5 13.188 13.188 0 1.774 1.774 5 1.227 1.227

6 19.015 19.015 5 2.764 2.764 0 1.627 1.627
0 21.240 21.240 1 4.655 4.655 6 2.087 2.087

7 25.668 25.668 6 4.824 4.824 7 3.221 3.221

1 29.961 29.961 7 7.612 7.612 1 3.862 3.862
8 33.057 33.057 8 11.206 11.206 8 4.639 4.639

9 41.096 41.096 9 15.661 15.661 9 6.342 6.342

10 49.705 49.705 10 20.999 20.999 10 8.322 8.322
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°uid a®ects those of lower circumferential modes. Furthermore, it is expected that

the di®erence between the nondimensional frequency of the two cases may be ac-

celerated when we reduce the outer °uid gap. This e®ect of the outer °uid gap is

shown in Fig. 3 for the two models. This ¯gure shows that the nondimensional

frequencies increase with the outer °uid gap. In other words, a narrow gap tends to

reduce the nondimensional frequencies. When the °uid gap a3 � a2 is less than about

2, the natural frequencies are not a®ected by the sti®ness of the tube. This behavior is

also found for second coupled mode (n ¼ 3). However, the sti®ness of the tube is very

signi¯cant when the °uid gap a3 � a2 is greater than 4. A swirling of °uid along the

structure edge will make change in °uid velocity and it will decrease the natural

frequencies due to an increase of the added mass.

The e®ect of elastic tube (vessel) on the natural frequencies is shown in Fig. 4 for

the two cases. The main e®ect of the constraint imposed on an elastic °uid-¯lled tube

by an elastic micro-structure ¯lled with compressible °uid is to reduce the natural

frequencies. This behavior is also found for second coupled mode (n ¼ 3). The main
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Fig. 3. Variation of nondimensional frequency of ¯rst mode (n ¼ 2) versus °uid gap for the two models

(rigid and deformable tube (vessel)).
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Fig. 4. Variation of nondimensional frequency of ¯rst mode (n ¼ 2) versus Young's modulus ratio.
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reason is the increase of the e®ective radial inertia due to the normal stresses in the

°uid in the annulus, necessary to maintain the constant volume in the system. For

the lower elasticity ratio E2=E1, the di®erence of the nondimensional natural fre-

quencies is relatively small between the two cases. However, the di®erence increases

with increasing elasticity ratio and converges to the asymptotic value found in the

case of the rigid tube (Table 2).

3.2. Modes shapes

In order to verify the validity of coupled formulation for °uid–structure analysis

implemented in the Comsol Multiphysics software, it is checked in Figs. 5–7 that the

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 5. Continuity of the two ¯rst x-component of velocity ¯eld associated with the circumferential modal

number.

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 6. Continuity of the two ¯rst y-component of velocity ¯eld associated with the circumferential modal

number.
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(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 7. Continuity of the normal stress associated with the circumferential modal number.

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 8. Two ¯rst structure (i ¼ 1) and vessel (i ¼ 2) deformed kinematic mode shapes for the deformable
vessel model associated with the circumferential modal number.

A. El Baroudi & F. Raza¯mahery

Fig. 9. First mode shapes for the circumferential wavenumber n ¼ 2, 9 0 � out of phase. 



velocity, displacement and stress are accurately calculated : the °uid velocity and

solid velocity are identical, normal °uid stress and normal structure stress are

identical, in accordance with the boundary conditions Eqs. (18) and (19). In addi-

tion, the ¯rst and second serial modes of the circumferential mode number n ¼ 2 and

n ¼ 3 are typical apparent 90� out of phase modes, as shown in Figs. 8 and 9.

Furthermore, Figs. 10 and 11 show the link between the vorticity and the mode

shape. Indeed, the deformed wall is due to the pressure and vorticity ¯elds. It should

also be noted that for the structure, the kinematic deformations are homothetic to

the spatial deformations because @u=@t ¼ j!u. Furthermore, Fig. 12 shows the

presence of Stokes eddies in the case of a rigid vessel. These Stokes eddies cross the

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 10. Two ¯rst coupled deformed kinematic mode shapes for the rigid vessel model associated with the
circumferential modal number. The color for °uid domain corresponds to the vorticity magnitude and the

color for solid domain corresponds to the velocity magnitude.

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 11. Two ¯rst coupled deformed kinematic mode shapes for the deformable vessel model associated

with the circumferential modal number.
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microstructure due to the no slip wall condition and to the mass conservation across

the °uids-microstructure interface. However, when the vessel wall was assumed to be

elastic, the Stokes eddies will migrate to the inside of the domain, as shown in Fig. 13.

Indeed, the vessel wall is no longer a streamline, but a °ow source, where the

velocities of the °uid particles are no longer equal to zero.

4. Conclusion

The characteristics of vibration analysis of two micro-circular disks subjected to

compressible °uid, based on the linear two-dimensional elasticity theory are

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 12. Streamlines of the ¯rst two eigenmodes for the rigid vessel model associated with the circum-
ferential modal number.

(a) First mode n ¼ 2 (b) First mode n ¼ 3

Fig. 13. Streamlines of the ¯rst two eigenmodes for the deformable vessel model associated with the

circumferential modal number.
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investigated. The Helmholtz decomposition theorem is employed to formulate the

solution for free in-plane vibrations of the micro-circular disks. The coupled natural

frequencies of vibration of the microdisks-°uids system were studied theoretically

and numerically. A numerical model (FEM) was developed using the Comsol Mul-

tiphysics software. The very good agreement is revealed between the results through

the proposed method and those of numerical solution. The e®ects of outer and inner

°uids on the natural frequency is investigated in order to evaluate the modal be-

havior of the microdisks-°uids system. It is found that the inner °uid tends to reduce

the nondimensional frequencies for higher circumferential modes, and the outer °uid

tends to reduce those of lower circumferential modes. Furthermore, the results

obtained in this paper can serve as benchmark solutions and as a reference to assess

the accuracy of approximate methods. Additionally, the studying of the viscoelastic

e®ects should be explored in future work.

Appendix A

Expressions for the sub-matrices M
ðiÞ
q ðrÞ:

To make it clear and simple, the components of velocity, displacement and stress

tensor are presented in the following form:

for fluid domain :
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The detailed expressions of the sub-matrices M
ðiÞ
q ðrÞ in Eq. (22) are de¯ned as

follow:

M
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f ða1Þ ¼

v
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;
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The elements in the sub-matrices M
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q ðrÞ are calculated according to the following

formulations:

ðv ðiÞ
1 ; v

ðiÞ
2 ÞðrÞ ¼ ðJ 0

n;Y
0
nÞð�irÞ;

ðv ðiÞ
3 ; v

ðiÞ
4 ÞðrÞ ¼ n

r
ðJn;YnÞ

�rffiffiffiffi
�i

p
� �

;

ðv ðiÞ
5 ; v

ðiÞ
6 ÞðrÞ ¼ n

r
ðJn;YnÞð�irÞ;

ðv ðiÞ
7 ; v

ðiÞ
8 ÞðrÞ ¼ ðJ 0

n;Y
0
nÞ

�rffiffiffiffi
�i

p
� �

;

ðF ðiÞ
1 ;F

ðiÞ
2 ÞðrÞ ¼ 2�i ðJ 00

n ;Y
00
n Þ þ � 2

i �
�2

2�i

� �
ðJn;YnÞ


 �
ð�irÞ;

ðF ðiÞ
3 ;F

ðiÞ
4 ÞðrÞ ¼ 2�i

n

r2
½rðJ 0

n;Y
0
nÞ � ðJn;YnÞ�

�rffiffiffiffi
�i

p
� �

;

ðF ðiÞ
5 ;F

ðiÞ
6 ÞðrÞ ¼ �i

2n

r2
t½rðJ 0

n;Y
0
nÞ � ðJn;YnÞ�ð�irÞ;

ðF ðiÞ
7 ;F

ðiÞ
8 ÞðrÞ ¼ �i 2ðJ 00

n ;Y
00
n Þ þ

�2

�i
ðJn;YnÞ


 �
�rffiffiffiffi
�i

p
� �

;

ðu ðiÞ
1 ;u

ðiÞ
2 ÞðrÞ ¼ ðI 0

n;K
0
nÞðk ðiÞ

L rÞ;
ðu ðiÞ

3 ;u
ðiÞ
4 ÞðrÞ ¼ n

r
ðIn;KnÞðk ðiÞ

T rÞ;

ðu ðiÞ
5 ;u

ðiÞ
6 ÞðrÞ ¼ n

r
ðIn;KnÞðk ðiÞ

L rÞ;

ðu ðiÞ
7 ;u

ðiÞ
8 ÞðrÞ ¼ ðI 0

n;K
0
nÞðk ðiÞ

T rÞ;

A. El Baroudi & F. Raza¯mahery



ðS ðiÞ
1 ;S

ðiÞ
2 ÞðrÞ ¼ ½2
iðI 00

n;K
00
nÞ þ 	ik

ðiÞ
L

2ðIn;KnÞ�ðk ðiÞ
L rÞ;

ðS ðiÞ
3 ;S

ðiÞ
4 ÞðrÞ ¼ 
i

2n

r2
½rðI 0

n;K
0
nÞðk ðiÞ

T rÞ � ðIn;KnÞðk ðiÞ
T rÞ�;

ðS ðiÞ
5 ;S

ðiÞ
6 ÞðrÞ ¼ 
i

2n

r2
½rðI 0

n;K
0
nÞðk ðiÞ

L rÞ � ðIn;KnÞðk ðiÞ
L rÞ�;

ðS ðiÞ
7 ;S

ðiÞ
8 ÞðrÞ ¼ 
i½2ðI 00

n;K
00
nÞðk ðiÞ

T rÞ � k
ðiÞ
T

2ðIn;KnÞðk ðiÞ
T rÞ�;

where primes denote di®erentiation with respect to the position variable r.
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