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Abstract

In the present paper, an analytical method is developed to investigate the effects of added mass on natural frequencies
and mode shapes of Euler-Bernoulli beams carrying concentrated masse at arbitrary position submerged in a fluid
media. A fixed-fixed beams carrying concentrated masse vibrating in a fluid is modeled using the Bernoulli-Euler
equation for the beams and the acoustic equation for the fluid. The symbolic software Mathematica is used in
order to find the coupled vibration frequencies of a beams with two portions. The frequency equation is deduced
and analytically solved. The finite element method using Comsol Multiphysics software results are compared with
present method for validation and an acceptable match between them were obtained. In the eigenanalysis, the
frequency equation is generated by satisfying all boundary conditions. It is shown that the present formulation is
an appropriate and new approach to tackle the problem with good accuracy.
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1. Introduction

Systems of a beam or rod carrying masses are frequently used as design models in engineering. The operation of the
machine may introduce severe dynamic stresses on the beam. It is important, then, to know the natural frequencies of
the coupled beam-mass and beam-mass-fluid system, in order to obtain a proper design of the structural components.
Numerous papers have been published on the vibration analysis of beams carrying concentrated masses at arbitrary
positions [1, 2, 3, 4, 5]. The problem of a vibrating simply supported beam carrying a concentrated mass at its center
was solved analytically by [6]. The Laplace transformation technique to formulate the frequency equation for beams
carrying intermediate concentrated masses have been used in [7]. In [8] Rayleigh-Ritz method was used to study
continuous beams subjected to axial forces and carrying concentrated masses. Laura [9] studied the cantilever beam
carrying a lumped mass at the top in order to obtain analytical solution by introducing the mass in the boundary
conditions. Other studies of the influence of these factors on natural frequencies of beams and rods are given in
[10, 11, 12, 13, 14, 15].

In most of the studies mentioned above the obtaining the natural frequencies of beams carrying point masses



is performed in vacuum. This paper presents an aspect of fluid-structure interaction in order to investigate the
influence of the added mass due to fluid on the natural frequencies of a beams carrying point masses submerged in
fluid (water). Fluid-structure interaction problems since long have attracted the attention of engineers and applied
mathematics. The most important applications of this theory, probably, structural acoustics [16], vibrations of
fluid-conveying pipes [17] and biomechanics. In fact many engineering fields have related interest, including naval
architecture, offshore structures, hydrodynamics, dam-reservoir systems under seismic, noise control and vibration
isolation, as well as nuclear reactor plants. As these problems are rather complicated, some simplifications are
typically adopted to facilitate their solving. In particular, it’s quite typical to ignore viscosity effects (especially in
structural acoustics) or to use local theories of interaction, such as, the one referred to as thin layer or plane wave
approximation. Therefore vibrations of fluid-coupled beams have received a great attention due to their importance
in various engineering applications. As a consequence of the fluid-structure interaction, there are coupled dynamical
equations to be solved simultaneously. A number of papers has been published in recent years investigating the
added mass effects of the interacting fluids in structures. Xing [18] examined the dynamical behaviour of a flexible
beam-water interaction system and showed that in the water domain, the natural frequencies of the coupled dynamic
system are lower than those of the flexible dry beam, indicating that the influence of water on the beam has the
effect of an additional mass.

The present manuscript deals with the coupling effect of liquid on the free vibration characteristics of a Euler-
Bernoulli beams carrying point masse submerged in water contained in a rigid rectangular container. The originality
of this study is to investigate the effects of both pointed mass and fluid interaction on the dynamics of beams under
the fixed-fixed boundary condition at the beam edge. The governing equations describing the behavior of the system
are analyzed using the separation of variables method and their solutions presented. The eigenvalue equation of
the natural vibration of the beam-water system is derived and exact solutions are obtained. Natural frequencies
and modes shapes of the beam-masse-water are investigated. The theoretical results from the present formulation
are compared to those from a finite element analysis using a commercial finite element analysis. Calculations show
that, in the water domain, the concentrated mass become less influential on the natural vibration behavior of the
coupled system. Finally, one investigates how the free surface affects the frequencies. Finding a general analytical
solution for Euler-Bernoulli beams carrying point masse submerged in fluid remains a challenge.

2. Governing equations of fluid domain

First of all, the fluid motion must be defined in order to find the coupled natural frequencies and wet mode shapes
of the beams carrying point masses in contact with the fluid. To account for the effect of the added mass in the
beam response, the acoustic mode shapes and natural frequencies are first computed for the rectangular domain
fluid assuming rigid and soft boundary conditions. The fluid is assumed non-viscous and isotropic which satisfies
the acoustic wave equation. Since no source is considered in the acoustic domain, the Helmholtz equation, which
describes a harmonic wave equation propagating in medium while neglecting dissipation, is represented as

∇2p+
ω2

c2
p = 0 (1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in a cartesian coordinate system. p is the acoustic pressure in

a fluid medium, ω is the angular frequency and speed of sound c. The Eq. (1) indicates the distribution of the
acoustic pressure p in space and can be solved if the boundary condition is knew well. The natural frequencies of
the acoustical system are obtained by assuming that the boundaries of the enclosure are hard except the boundary
Γp (zero free surface wave disturbance), hence the pressure gradients on the boundaries Γ1,Γ2 and Γ3 are set to
zero :

∂p

∂x
(0, y) = 0 ,

∂p

∂x
(L, y) = 0 ,

∂p

∂y
(x, 0) = 0 , p(x,H) = 0 (2)

The solution of (1) with boundary conditions introduced in (2) is given as

p(x, y) = P cos (αnx) cos (αqy) , n, q = 0, 1, 2, ... (3)

where αn = nπ/L, αq = (2q + 1)π/2H and P is unknown coefficient which will be determined later by imposing
the appropriate boundary conditions.



Figure 1: Sketch of beam composed of 2 uniform beam segments (denoted by (1) and (2)) carrying a point masse (denoted
m) submerged in a liquid-filled rectangular geometry.

3. Theoretical modal analysis of beams

Modal analysis of an elastic submerged structures is needed in every modern construction and have wide engineering
application especially in ocean engineering. In this study, modal analysis is important to predict the dynamic
behavior of the submerged beams. It is well known that the natural frequencies of the submerged elastic structures
are different from those in vacuum. The effect of fluid forces on the submerged beams is represented as added
mass, which decreases the natural frequencies of the submerged beams from those which would be measured in the
vacuum. This decrease in the natural frequencies is caused by the increase of the kinetic energy of the fluid-beams
system without a corresponding increase in strain energy.
The model allows to analyze the influence of the added masse on the dynamic behavior of beams with two classic
boundary conditions. The Euler-Bernoulli beams carrying point masse is submerged inside rectangular fluid domain
where the lower liquid region is represented by h. The interaction between the fluid and the Euler-Bernoulli beams
carrying point mass is taken into account to calculate the natural frequencies and modes shapes of the coupled
system. The dynamics of each beam portion are treated separately. It is assumed that the beam has aligned neutral
axis. The equation of motion for the transverse deflection of a uniform elastic beam ignoring shear deformation and
rotary inertia effects can be written in the form

EI
∂4vi(x, t)

∂x4
+ ρS

∂2vi(x, t)

∂t2
= p(x, h, t) , i = 1, 2 (4)

where vi(x, t) is the lateral deflection at distance x along the length of the beam, EI, ρ and S are the flexural
rigidity, the mass per unit volume and the cross-sectional area of the beams. Assuming time harmonic motion
at angular frequency of the form exp (jωt), but neglecting it in the subsequent expressions for clarity, the general
solutions of the ordinary differential Eq. (4) for the beams system, as shown in Figure 1, can be written in different
segments in terms of evanescent and propagating waves as

vi(x) = Aiφ(x) +Biψ(x) + Ciχ(x) +Diϕ(x) +
P cos (αmh)

EI (α4
n − k4)

cos (αnx) (5)

where the trigonometric functions

φ(x) = sin (kx) , ψ(x) = cos (kx)

represent the propagating waves, and the hyperbolic functions

χ(x) = sinh (kx) , ϕ(x) = cosh (kx)

represent the evanescent waves. Ai is a wave propagating to the left, Bi is a wave propagating to the right, Ci

is an evanescent wave decaying to the left and Di is an evanescent wave decaying to the right; k is the flexural
wavenumber and is given by

k =
√
ω

(
ρS

EI

) 1
4



The nine constants P,Ai, Bi, Ci and Di (i = 1, 2) can be found by imposing the following boundary conditions.
Eq. (5) is the general solution for the vibration modes of beams submerged in fully liquid. In the case of a coupled
system, the effect of sound field on the flexible beams carrying concentrated masse must be considered. On the
fluid-beams interface, the normal acceleration must be continuous. Therefore, the pressure in the fluid and the
deflection of a beams vi satisfy the relation :

∂p(x, h)

∂y
= ρfω

2vi(x) (6)

where ρf is the density of the fluid. Inserting Eq. (3) into Eq. (6) and substituting the outcome into Eq. (5) and
after some manipulations, leading to the following equation :

Aiφ(x) +Biψ(x) + Ciχ(x) +Diϕ(x) = −P
[
αm sin (αmh)

ρfω2
+

cos (αmh)

EI (α4
n − k4)

]
cos (αnx) (7)

Making use of the orthogonality of trigonometric functions, both sides of the Eq. (7) are multiplied by cos(αjx)
and then integrated over 0 < x < L to yield the following equation :

AiU +BiX + CiY +DiZ = −PL
2

[
αm sin (αmh)

ρfω2
+

cos (αmh)

EI (α4
n − k4)

]
(8)

where the coefficients U , X, Y and Z are defined as follows :

U =

∫ L

0

φ(x) cos(αnx)dx , X =

∫ L

0

ψ(x) cos(αnx)dx

Y =

∫ L

0

χ(x) cos(αnx)dx , Z =

∫ L

0

ϕ(x) cos(αnx)dx

Now the expression of the lateral movement of the beams, fully in contact with the fluid vi(x) can be formulated
using Eq. (5) and taking into account Eq. (8) as :

vi(x) = Ai [φ(x)− βU cos (αnx)] +Bi [ψ(x)− βX cos (αnx)] + Ci [χ(x)− βY cos (αnx)]

+Di [ϕ(x)− βZ cos (αnx)] (9)

where

β =
2

L

[
EI
(
α4
n − k4

)
αm tan (αmh)

ρfω2
+ 1

]
From equation (9), it can be seen that, when β → 0, the coupled system beams-mass-water is reduced to the case
of beams motion in vacuo. Now, to derive the frequency equation of beams submerged in fully fluid, one assumes
that on the interface between each portions of the beam at the position l1, the deflection, the rotation angle, the
internal shear force and bending moment of the beam must be continuous. This is satisfied when

v1(l1) = v2(l1)

v′1(l1) = v′2(l1)

v′′1 (l1) = v′′2 (l1)

EIv′′′1 (l1) +mω2v1(l1) = EIv′′′2 (l1)

(10)

where primes denote differentiation with respect to the position variable x. To complete the formulation of the
boundary-value problem, the four boundary conditions (left and right beam ends) for the beam ends considered in
this work are specified as follows :

v1(0) = v′1(0) = v2(l) = v′2(l) = 0 (11)

The boundary conditions (Eqs. 10 and 11) can be evaluated, giving rise to a linear homogeneous system of eight
equations :

Nx = 0 , x = [A1, B1, C1, D1, A2, B2, C2, D2]
T

(12)

This system can have non trivial solutions only if the determinant of the matrix N is zero, leading to the frequency
equation that takes the following form N = [N11,N21,N31,N41,N51,N61,N71,N81]

T
where the matrix N is written

down explicitly in the Appendix.



4. Results and discussion

In this paper, the results obtained by the present analytical solution for the beams carrying point masse coupled
with fluid are compared with those acquired by the finite element method (FEM) using Comsol Multiphysics
FEM Simulation Software to show the applicability, reliability and effectiveness of the presented formulation. The
mechanical and geometrical properties of the beams used in numerical computation are :
Young’s modulus E = 13 · 108 [Pa], material density ρ = 2000 [kg ·m−3], Poisson’s ratio ν = 0.3, length l = 0.6 [m],
width a = 0.006 [m] and thickness e = 0.006 [m]. The fluid density is taken to be ρf = 1000 [kg ·m−3] and the speed
of sound in a fluid c = 1500 [m · s−1]. The modeling was set up by placing the beams in a rectangular reservoir with
dimensions L = 3 [m] and H = 1 [m] and lower fluid region h = 0.5 [m]. The mass of attached masse m = 0.04 [kg].
In Tables 1 and 2, natural frequencies of beams in (Hz) unit carrying or not point masse obtained by the present
theory are presented and compared with numerical data. As can be seen, there is a very good agreement between
the present results and those of FEM and the relative difference ((FEM-Present)/Present) is 6 0.1%. This shows
that the algorithm implemented in Comsol Multiphysics [19] software for numerical computation is highly reliable
and accurate. Is the attention to use the numerical formulation in future for more general geometries and other
kind of fluid-structure interactions such as those arising in aeroelasticity for example.

Table 1: The first six natural frequencies in ”vacuo” of the beams with point mass neglected and considered.

Modes Neglected Considered Diference

at l/3 at l/2

Present FEM Present FEM Present FEM (%)

1 13.81 13.81 8.57 8.57 7.50 7.50 0

2 38.07 38.07 29.10 29.10 38.07 38.07 0

3 74.64 74.64 73.37 73.37 59.36 59.36 0

4 123.38 123.38 110.07 110.07 123.38 123.38 0

5 184.31 184.31 162.20 162.20 156.94 156.94 0

6 257.43 257.43 255.06 255.06 257.43 257.43 0

Table 2: The first six natural frequencies in ”water” of the beams with point mass neglected and considered in the case of
zero free surface wave disturbance.

Modes Neglected Considered Diference

at l1 = l/3 at l1 = l/2

Present FEM Present FEM Present FEM (%)

1 1.76 1.76 1.74 1.74 1.73 1.73 0

2 8.34 8.34 8.00 8.00 8.34 8.34 0

3 19.82 19.82 19.82 19.82 17.99 17.99 0

4 38.49 38.49 35.71 35.71 38.49 38.49 0

5 63.84 63.84 58.18 58.18 58.07 58.07 0

6 97.68 97.68 97.34 97.34 97.68 97.68 0

This present work, the effects of concentrated mass and add mass on the coupled natural frequencies of beams are
presented with the present method.
First, one investigates how the dense fluid (added mass) affects the natural frequencies. Due to the practical
applications, the natural frequencies of beams coupled with fluid are listed in Table 2. It is evident from Table 2
that when the beams is submerged fluid, the natural frequencies of the beams takes lower values. Also, tables 1
and 2 show that when the concentrated mass is placed at x = l/2 (symmetric problem), only the symmetric modes
(odd modes) are affected.



Secondly, in order to see the influence of concentrated mass m on the vibration characteristics of the beams, the
first six natural frequencies of beams are listed in Table 1. It is seen that the concentrated mass decreases the
natural frequencies in vacuo (higher 20%). In water, it is interesting to note that the concentrated mass become
less influential on the natural frequencies of the beams (Table 2). Figures 2-7 show also that the concentrated mass
modifies the modal shapes in vacuum. The presence of the fluid has low influence on the modal shapes because the
added mass is diagonal (Figures 8-13). The coupling is light in such a case.

Thirdly, one investigates how the free surface affects the frequencies. The above mentioned discussions are obtained
in the case of zero free surface wave disturbance (p = 0 at Γp in Figure 1). In order to investigate the influence
of the free surface on the natural frequencies of beams, the free surface wave disturbance Γp is governed by the
equation

∂p

∂y
= −1

g

∂2p

∂t2
(13)

and g = 9.81 [m · s−2] is the acceleration due to gravity. Figures 14-19 shows the natural frequencies and mode
shapes of the submerged beams without point mass, varying with the free surface. The free surface decreases
significantly the natural frequency. This behavior is also found for submerged beams with point mass.

The study also shows that the concentrated mass do not affect the coupled natural frequencies in the case of free
surface wave disturbance. Comparing different boundary conditions, it is observed that added mass factor has
a greater effect with free surface on the coupled natural frequencies. Therefore, the effect of free surface is very
significant.

(a) f = 13.81 Hz (b) f = 8.57 Hz (c) f = 7.50 Hz

Figure 2: The first natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field of
beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.

(a) f = 38.07 Hz (b) f = 29.10 Hz (c) f = 38.07 Hz

Figure 3: The second natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field
of beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.

(a) f = 74.64 Hz (b) f = 73.37 Hz (c) f = 59.36 Hz

Figure 4: The third natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field of
beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.

(a) f = 123.38 Hz (b) f = 110.07 Hz (c) f = 123.38 Hz

Figure 5: The fourth natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field
of beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.



(a) f = 184.31 Hz (b) f = 162.20 Hz (c) f = 156.94 Hz

Figure 6: The fifth natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field of
beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.

(a) f = 257.43 Hz (b) f = 255.06 Hz (c) f = 257.43 Hz

Figure 7: The sixth natural frequency and mode shape of beams in ”vacuo”: the colors pertain to the displacement field of
beams. (a) without point mass. (b) with point mass at l/3. (c) with point mass at l/2.

(a) f = 1.76 Hz

Figure 8: The first natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 8.34 Hz

Figure 9: The second natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 19.82 Hz

Figure 10: The third natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.



(a) f = 38.49 Hz

Figure 11: The fourth natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 63.84 Hz

Figure 12: The fifth natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 97.68 Hz

Figure 13: The sixth natural frequency and mode shape of beams in water in the case of zero free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 0.014 Hz

Figure 14: The first coupled natural frequency and mode shape of beams in water in the case of free surface wave disturbance.
The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

5. Conclusion

This paper presents an analytical solution for the dynamic system of Euler-Bernoulli beams carrying point mass
submerged in fluid media. Separation variable technique and orthogonality of trigonometric functions are used



(a) f = 0.022 Hz

Figure 15: The second coupled natural frequency and mode shape of beams in water in the case of free surface wave
disturbance. The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 0.027 Hz

Figure 16: The third coupled natural frequency and mode shape of beams in water in the case of free surface wave
disturbance. The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 0.032 Hz

Figure 17: The fourth fourth coupled natural frequency and mode shape of beams in water in the case of free surface wave
disturbance. The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

(a) f = 0.036 Hz

Figure 18: The fifth fourth coupled natural frequency and mode shape of beams in water in the case of free surface wave
disturbance. The colors pertain to the displacement field of beams and to the absolute acoustic pressure.



(a) f = 0.039 Hz

Figure 19: The sixth coupled natural frequency and mode shape of beams in water in the case of free surface wave
disturbance. The colors pertain to the displacement field of beams and to the absolute acoustic pressure.

to overcome the difficulty of evaluating the effects of fluid loading. The numerical results calculated using the
Comsol Multiphysics FEM Simulation Software are compared with analytical results and show good agreement. It
is concluded that the methodology proposed by this paper can be widely applied to most boundary conditions of
Euler-Bernoulli beams with infinite number of mass points. This study takes into consideration both fluid loading
and concentrated mass loading effects, both of these factors are important in engineering. Numerical results of the
natural frequencies and mode shapes of the beams-fluid with or without point masse are presented.
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Appendix B. Matrix elements

The matrix N in Eq. (12) is defined as follows :

N11 = {a11, a12, a13, a14, 0, 0, 0, 0.}
N21 = {a21, a22, a23, a24, 0, 0, 0, 0.}
N31 = {a31, a32, a33, a34, a35, a36, a37, a38.}
N41 = {a41, a42, a43, a44, a45, a46, a47, a48.}
N51 = {a51, a52, a53, a54, a55, a56, a57, a58.}
N61 = {a61, a62, a63, a64, a65, a66, a67, a68.}
N71 = {0, 0, 0, 0, a75, a76, a77, a78.}
N81 = {0, 0, 0, 0, a85, a86, a87, a88.}

where

a11 = u1(0) , a21 = u′1(0)

a12 = u2(0) , a22 = u′2(0)

a13 = u3(0) , a23 = u′3(0)

a14 = u4(0) , a24 = u′4(0)

a31 = u1(l1) , a41 = u′1(l1)

a32 = u2(l1) , a42 = u′2(l1)

a33 = u3(l1) , a43 = u′3(l1)

a34 = u4(l1) , a44 = u′4(l1)

a35 = u1(l1) , a45 = u′1(l1)

a36 = u2(l1) , a46 = u′2(l1)

a37 = u3(l1) , a47 = u′3(l1)

a38 = u4(l1) , a48 = u′4(l1)

a51 = u′′1(l1) , a61 = EIu′′′1 (l1) +mω2u1(l1)

a52 = u′′2(l1) , a62 = EIu′′′2 (l1) +mω2u2(l1)

a53 = u′′3(l1) , a63 = EIu′′′3 (l1) +mω2u3(l1)

a54 = u′′4(l1) , a64 = EIu′′′4 (l1) +mω2u4(l1)

a55 = u′′1(l1) , a65 = EIu′′′1 (l1)

a56 = u′′2(l1) , a66 = EIu′′′2 (l1)

a57 = u′′3(l1) , a67 = EIu′′′3 (l1)

a58 = u′′4(l1) , a68 = EIu′′′4 (l1)

a75 = u1(l) , a85 = u′1(l)

a76 = u2(l) , a86 = u′2(l)

a77 = u3(l) , a87 = u′3(l)

a78 = u4(l) , a88 = u′4(l)



and using Eq. (9), the quantities ui(x)(i = 1, 2, 3, 4) are defined as follows

u1(x) = φ(x)− βU cos (αnx)

u2(x) = ψ(x)− βX cos (αnx)

u3(x) = χ(x)− βY cos (αnx)

u4(x) = ϕ(x)− βZ cos (αnx)
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