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Abstract— In this paper, we propose a fast learner grasping
pipeline able to grasp objects at a specific location few minutes
after being taught by an operator. Our motivation is to ease
reconfiguration of robot according to a specific task, without
any CAD model, nor existing database, nor simulator. We
build a CNN pipeline which performs a semantic segmentation
of object, and recognizes authorized and prohibited grasping
location shown during demonstration. For that we have sim-
plified the input space, created a data augmentation process
and proposed a light CNN architecture allowing learning in
less than 5 minutes. Validation on a real 7-DOF robot shown
good performances (70 to 100% depending on the object),
with only a one-shoot operator’s demonstration. Performances
remain good when grasping similar unseen objects, and with
several objects in the robot’s workspace using few demonstra-
tions. A video highlighting the main aspects can be found at
https://www.youtube.com/watch?v=rYCIk6njBo4

I. INTRODUCTION

As part of Industry 4.0, collaborative robots are setting up
in the factories. They aim to work alongside workers, helping
them by carrying heavy loads or performing repetitive tasks.
Robotic manufacturers like Kuka or UR have made them
easily reconfigurable for simple and deterministic tasks.
Thus, these robots are adapted from large companies to
small ones, and from large series to mass customisation.
The expected benefits are: more attention of the operator
on complex tasks, a reduction in repetitive gestures, and
an increase in substation productivity. However, for non-
deterministic tasks (e.g. when the position is unknown), the
use of a robotics engineer is necessary to redeploy the robot,
requiring long working hours.

In this paper, we investigated the problem of an operator
willing to reconfigure a robot to grasp an unreferenced in-
dustrial object at a specific location. This fall under the wide
umbrella of task-oriented grasping, different use cases are
possible: a) grasping a tool by the handle or head depending
on the task the robot has to perform b) grasping an industrial
object so that it can be placed in a chosen orientation as
part of a pick and place operation or c) grasping a fragile
object by a safe location. The use of Convolutional Neural
Network (CNN) partly solves this problem since they offer
very good results for object recognition and grasping [1] [2]
[3]. However, they are accompanied by constraints such as
the use of specific databases (Cornell database [4]) or a high
training time [3]. Our motivation is to propose a fast learner
grasping system, without any need of a database, or CAD
model, or simulator, so that it can be easily reconfigure by
the operator itself.

Grasping in robotic has been studied for many years
resulting in the development of various techniques. Recently,
deep learning tools enable the rise of object agnostic grasper
following a data-driven approach [5]. We can distinguish two
main approaches: 1) the use of labelled data where grasping
location are carefully annotated on large amount of images
[1] [6], 2) the use of trial and error to learn how to grasp,
based on a simulator or a real world environment [3] [7]. The
first technique is not satisfactory when no dataset meeting a
specific needs is available, and the second is time consuming
or can damage fragile objects while learning. To overcome
those limitations, the learning from demonstration paradigm
is a promising field.

Learning from demonstration can be applied to initialize
an object-agnostic grasper to a close form solution and then
improving it by trial and error [8] [9]. However, the trial and
error stage is a limitation of those methods in an industrial
context.

Our contribution is a fast learner grasping system able to
achieve relevant task-based grasping from one shot demon-
stration without a trial and error phase.

II. RELATED WORK

This work gathers task-oriented grasping technique with
learning from few demonstrations. In Table I, we provide a
brief summary of recent task oriented grasping works.
Task oriented uses the concept of affordance introduced
by Gibson [15] which describes parts of objects according
to their functional utility. In robotics, this concept is used
for gripping and handling objects considering the work to
perform after [16] [17]. Task oriented grasper can be created
using behaviour grounded affordance [11] or spatial maps
[16] for instance. Semantic labels technique on images can
also be applied [18] [10] [19]: using specific large datasets
such as UMD [13] or shape database [12], each pixel is
labelled independently according to the part of the object
to which it belongs. Our work uses semantic labelization of
image without databases, leveraging few examples to learn.
Demonstration learning can be used to transfer knowledge
from an operator to a system, in our case to teach a robot
a precise grasping location. Most of the works address this
problem with a trial and error phase through a simulator or
directly on the real system. In [20], the authors propose a net-
work architecture and data augmentation pipeline to design
a controler to grasp very simple objects (cube, cylinders...)
from a single demonstration. However, the controler can
not integrate important constraints in task oriented grasping
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TABLE I: Brief summary of existing task oriented grasping works

Ref Data generation CAD model & simulator Observation
[10] From CAD model Yes Training took 6 hours on Titan X GPU
[11] From simulation Yes 1.5 M of data are generated for training
[12] ShapeNet and ModelNet40 Yes Bayesian Optimisation
[13] RGB-D Part Affordance Dataset No -
[14] From few views No 20 minutes to reconstruct 3D mapping of object
ours From few demonstration No < 5 minutes of training on RTX 2080 GPU

like prohibited location. Closer to our work, [14] learns a
dense descriptors map for objects after building a 3D dense
reconstruction model of the object. As a result, they obtain
a semantic representation of the object allowing to grasp at
the desired location. We have decided to work directly on
images without any 3D reconstruction technique.
Different methodologies can be used to train a CNN
with few data: decrease the input space size, use data
augmentation or/and use transfer learning to initialize the
network. In [21] [22], the authors reduce their input space
size by using only depth from the RGB-D camera. Data
augmentation techniques increase the size and variance of the
training set, whereas transfer learning techniques accelerate
the learning process. For transfer learning, parts of pretrained
image classification architecture are used to initialize CNN.
The very rich ecosystem of image classification research
provides access to a lot of high-performance architectures
(VGG [23], Resnet [24], Densenet [25]), pretrained on large
image databases (ImageNet [26], coco [27]). Despite being
trained on RGB images, we can use those architectures for
the creation of CNN processing depth images. In the grasping
domain, many works have used this technique to create
grasping predictor [28] [29], and achieve up to 89.9% of
successful grasping on the Cornell database [1].

III. METHOD

We consider the problem of performing an antipodal grasp
perpendicular to a planar surface, on known object for
which an operator has taught authorized/prohibited grasping
location. A RGB-D camera is mounted on the robot’s wrist
and capture a fixed height top view.

Based on grasping from few demonstrations method, we
want to define a pixel wise semantic segmentation pipeline
where the input is a depth image of the scene and the output
is g = (x, y, z, θ) for grasping the object on the demonstrated
location. Coordinates (x, y, z) represent the tool center of the
gripper, and θ is the angle of the gripper in the plan. Fig. 1
describes our problem definition. We define a structure of our
pipeline allowing a fast training from few demonstrations.
This problem imposes constraints that motivated the design
of our pipeline: a) learn fast authorized/prohibited grasping
locations and b) generalize from few demonstrations.

A. Inputs & Outputs

The input is the 2D shape of object(s) laying on the table,
obtained from binarization of a depth image: table’s pixels
are set to 0 and objects’ pixels (above the table) are set to
1. We denote it as I ∈ {0, 1}n×m where (n,m) is the image

Fig. 1: First, for a new object, the system learns from operator’s demon-
stration. After few minutes of training, the system will be able to retrieve
the demonstrated location on a depthmap.

dimensions. The use of 2D shape reduces the size of the input
space and contributes to our objective of generalization.

For the output, a grasping affordance pixel wise repre-
sentation G ∈ [−1, 1]n×m is calculated, where−1 stands
for a prohibited grasping location and +1 stands for an
authorized grasping location. All pixels of the table (0 in I)
are set to 0 in G. First, we determine the highest grasping
affordance pixel (ug, vg) = argmaxu,v(G(u, v)). Then, the
grasping angle α in image frame is calculated by performing
a PCA on a sub-region of the input centered around the
grasping point. Finally, geometrical transformations based on
hand eye calibration are made to convert (ug , vg , α) to g.
Therefore, the robot can directly perform a grasping action
in its workspace.

B. Training Dataset

Data Capture Training is done directly from demon-
strations without using an external database. The operator’s
thumb and index fingers are covered with coloured pads
so that they can be easily identified by the RGB-D cam-
era mounted on the robot. Grasping gesture on authorized
and/or prohibited location are stored by recording fingers’
coordinates (Fig. 2-a)). Labels are generated as an image
L ∈ {−1, 0, 1}n×m with value 1 for authorized zones, 0 for
zones without information and −1 for prohibited zones. The
corresponding input I is captured from the scene (Fig. 2-
b)). Demonstrations are collected from different angles and



Fig. 2: Data capture and data augmentation pipeline

stored as tuple (Input, Label).
Data Augmentation The number of these tuples are then

increased by random translations and rotations (Fig. 2-c)).
We also erase part of the input randomly in order to give
variability in the training data. Moreover it reflects that the
camera output is noisy, and geometric shapes evolve with
the relative position of objects according to the camera.

C. Network pipeline

Architecture: to generate the output G from the input
I, the mapping function is a CNN created from a part of
Densenet 121 [25] and a light non-pretrained CNN. The
overall architecture is presented in Fig. 3, activation functions
are ”RELU” except at the output where the ”tanh” function
has been chosen to distribute the values between −1 and 1.
The dropout was set to 40% to prevent the network from
overfitting and to generalize well to unseen data. This small
convolution network has only 6914 parameters and can be
trained with our training dataset in a few batches using an
appropriate loss function.

The Loss function should allow our pipeline to generalize
from a few demonstrations, to classify a pixel wise repre-
sentation with unbalanced area sizes (as shown in Fig.2-b),
prohibited, neutral and authorized zone have different size)
and to focus on important parts to learn quickly. To do this,
we introduce a modified version of the pixel-wise L2-loss
function [30] by multiplying each pixel error by a specific
weight:

Lweighted−L2 =
1

n×m

n×m∑
i=1

ωi,labeli(predi − labeli)2 (1)

The weighted factor ωi,labeli is chosen as follows:

wi,labeli = |predi|+ λ1 ×
1

Nlabeli

(2)

where Nlabeli represents the number of pixels in L con-
taining label value labeli. The first component |predi| of
(2) is used to focus the network’s attention on interesting
parts by focusing the gradient descent over areas of interest.
The second component is used to accentuate learning over
under-represented areas of the label map by reducing the
importance of large areas. The hyperparameter λ1 balances

the two components. The benefits of this weighted loss
function is studied in section IV-C. To prevent overfitting,
we commonly use a L2 regularization loss LL2 reg applied
on the weights and bias of the network. The finale composite
loss-function is:

L = Lweighted−L2 + λ2 LL2 reg

We trained the network by stochastic gradient descent,
with a learning rate of 10−4, a momentum of 0.9, λ1 = 20
and λ2 = 5.10−5.

IV. EXPERIMENTS

To evaluate our proposed algorithm, we are holding a
series of experiments. We will study 5 points : 1) grasping
object at the right location in different positions, 2) the
benefits of our modify L2 − loss function, 3) the ability
of the algorithm to generalize to unseen similar objects, 4)
storing grasping locations of 2 different objects into the same
network 5) performing grasp in a cluttered environment.

A. Real World Experiment

We use a modified Python version of the Matlab Kuka
sunrise toolbox [31] to control a Kuka iiwa LBR 7 DOF robot
equipped with a Robotiq 2F-140 gripper. The workspace of
the robot is a 30× 30 cm flat square. An Intel®RealsenseTM

Depth Camera D415 is mounted on the wrist of the robot.
Training and computation were made on a PC with a Nvidia
RTX 2080 8Gb graphic cards and Intel®8 CoreTM i7 9700K
3.6 GHz CPU. The implementation was done in Python 3.6
using Tensorflow 1.13. We train a network for 4 epochs
with 800 tuples randomly sampled from the dataset. Between
each epoch, a new dataset is generated by performing a data
augmentation. On average the training last 250 seconds for
one object.

B. Grasping at the right location

We have to measure the ability of our network to find a
specific grasping location learned during the demonstration
phase. In Fig. 4, we present our panel of objects with the
name of their grasping locations.
Protocol: For each object, we train a specialized network
from 1 to 3 demonstrations of the same authorized grasping
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Fig. 3: Overview of our CNN pipeline

Fig. 4: Objects used for our experiment, with name of grasping locations.
Green color (resp red color) denotes authorized (resp prohibited) grasping
location. Yellow color is used to illustrate authorized/prohibited location
and vice versa, depending on the task (for example the accessibility of the
screwing operation). For the pliers, two different authorized locations are
tested separately.

location (with eventually a prohibited grasping location) un-
der different object positions. Then we evaluate the network’s
ability to find those locations on 36 unseen positions of the
object. The evaluation is done by placing the object at 9
points of the workspace and by rotating it in 4 orientations
(0°, 90°, 180° and 270°). A grasp is counted as good each
time the object is caught at the authorized location.
Results & Discussion Our pipeline achieved good results
(Table II) with only one demonstration, especially when the
object has geometrical differences and a simple geometry.
Indeed for bulb, screw and pliers, the grasp success in the
authorized location is over 90%. For socket wrench (81%
and 86%) and cup (70%), the decrease in performance
respectively comes from the geometric similarity of the
authorized/prohibited grasping location, and a more com-
plex geometry. Adding 1 or 2 demonstrations from other
positions seems to solve that issue. For socket wrench and
cup grasping, results raised over 90% of success with 2

TABLE II: Results of our grasping test, percentage (number) of good
grasps over the 36 unseen positions.

Object Location Number of demonstration(s)
1 2 3

Socket handle 81% (29/36) 92% (33/36) 94% (34/36)
wrench head 86% (31/36) 94% (34/36) 94% (34/36)

Pliers handle 97% (35/36) 100% (36/36) 100% (36/36)
head 92% (33/36) 97% (35/36) 97% (35/36)

Bulb foot 100% (36/36) 92% (33/36) 97% (35/36)
Cup handle 70% (25/36) 92% (33/26) 97% (35/36)

Screw head 97% (35/36) 100% (36/36) 100% (36/36)

Fig. 5: Different segmentation quality results. The top images (cups) were
trained showing one authorized grasping location (handle), The bottom
images (socket wrench) were trained showing one authorized (handle)
and one prohibited (head) grasping location. The left column shows bad
segmentation resulting in bad grasping decision, the middle one shows
average segmentation, and the right one shows good segmentation of the
object. For the purpose of illustration, outputs where reoriented and resized.
Those outputs were obtained using networks trained on 3 demonstrations.

demonstrations. In these worst cases, we suppose that data
augmentation does not reproduce efficiently the different
possible views of the shape of an object. Prediction quality
evolves depending on the input image. In Fig. 5, we can
see different cases where the system outputs good, average
or bad segmentation of the object. Bad segmentation occurs
when current shape is very different from the demonstrated
one. It shows limitation in the generalization abilities of our
system.



TABLE III: Influence of the weighted L2 loss. Training was made with
a set of 3 demonstrations.

Object Location L2 loss weighted L2 loss
Socket handle 61% (22/26) 94% (34/36)
wrench head 86% (31/36) 94% (34/36)

Pliers handle 92% (33/36) 100% (36/36)
head 72% (26/36) 97% (35/36)

Bulb foot 94% (34/36) 97% (35/36)
Cup handle 75% (27/36) 97% (35/36)

Fig. 6: Similar objects used to test our algorithm generalization abilities.

C. Benefits of the weighted L2 loss function

We measure the impact of our weighted loss function by
comparing results with and without it.
Protocol We follow the same protocol as presented in section
IV-B with the exception that we change the training method
by setting all weights ωi,labeli to 1 (regularization parameter
λ2 remains equal to 5.10−5). Training is performed using
3 demonstrations and results are compared with the corre-
sponding ones of the previous experiment.
Result & Discussion Table III highlights that adding our
weights in the L2 cost function has improved the system
performance in every case. Moreover, without weights, we
noticed that a bad behavior could occurred: the training fails
to focus on the important location (+1 and −1) and does
not converge to a solution. This experiment validates the
relevance of our proposed loss function.

D. Grasping similar objects

We measure the ability of our algorithm to generalize the
grasping location learned for an object to another similar
one.
Protocol We used networks trained in section IV-B to
perform the test with similar objects (Fig. 6). Similar objects
were closed from the original ones but with different size or
geometry.
Result & Discussion In Table IV, except for bulb 2, we
observe a good ability of the network to generalize grasping
location to other similar objects with no degradation of
the performances compare to those obtained on the trained
object. Taking a closer look at the different bulbs grasping

Fig. 7: Bulbs grasping affordance pixel wise representations. From left to
right : bulb model on which the training was done, bulb 1, and bulb 2 .

TABLE IV: Ability of the Network to generalize to an unseen similar
object. The network was trained after demonstrations on an object and the
test was performed on unseen similar objects. In red, the results obtained
on the object used for training are recalled

Object Location Number of demonstration(s)
1 2 3

Smaller socket
handle

78% 92% 94%
wrench (28/36) (33/36) (34/36)

81% 92% 94%

New plier handle
97% 100% 100%

(35/36) (36/36) (36/36)
97% 100% 100%

Bulb 1 foot
100% 92% 97%

(36/36) (33/36) (35/36)
100% 92% 97%

Bulb 2 foot
89% 78% 81%

(32/36) (28/36) (29/36)
100% 92% 97%

affordance pixel wise representations (Fig. 7), the demon-
strated knowledge is quite well transferred to bulb 1 with
a precise segmentation of the unseen object. On the other
hand, the shape of bulb 2 is quite different from the first bulb,
and the segmentation gives an unprecise result, especially for
the authorized location where grasping affordance values are
low.

E. Store grasping locations of 2 different objects into the
same network

Storing several object segmentation into the same network
allows to not use a specific one for each task. We done a
preliminary experiment, limited to two couples of objects, to
test the ability of our system.
Protocol We train a network with demonstrations from 2
objects (1 to 3 demonstration(s), for each object). Then, for
each object, we separately evaluate the grasping accuracy,
under the 36 positions.
Results & Discussion We limited our experiment to two
couples of objects because the performances (Table V) shows
a quite limited ability of our pipeline to grasp 2 objects
with 2 different grasping strategies. By working directly
with the depthmap from the RGB-D camera, we probably



TABLE V: Grasping accuracy results for coupled of objects sharing the
same network.

Number of demonstrations Plier Bulb
Bulb Socket Wrench

1 + 1
29/36 72% 26/36 76%23/36 29/36

2 + 2
32/36 74% 30/36 90%21/36 35/36

3 + 3
32/36 90% 31/36 90%32/36 34/36

Fig. 8: The three groups of similar objects used in our test.

could improve the performances (however, it will increase
the training time). It is a direction for future experiments.

F. Grasping in a clutter environment

Grasping several identical or similar objects laying on a
workspace surface is a important task in industry. It allows
thereafter to place these objects in boxes for example.
Protocol Experiments are done on three different groups of
similar objects (Fig. 8) with their corresponding specialized
network trained from 3 demonstrations. For each groups,
several objects are placed in the robot’s workspace leaving
the grasping location free of access. We let the robot grasps
the objects one by one until the workspace is cleaned, when
a failure occurs we remove the object manually. We repeat
this process with other object’s configurations until we reach
20 attempts for each group
Results & Discussion: Table VI shows performances slightly
under those of individual objects. It is a promising result as
our proposed algorithm, despite being trained with one object
in it workspace, achieve relevant actions when several spaced
object are presented to it. Few attempts to grasp objects
touching each other has led to bad segmentation of objects.

TABLE VI: Grasping accuracy results for cluttered similar objects

Bulbs Socket wrench Screws
19/20 (95%) 17/20 (85%) 19/20 (95%)

V. CONCLUSION

In this work, we show that fast reconfiguration of a robot
to grasp objects is possible from 1 (or more) demonstra-
tion. Furthermore, our pipeline achieves promising results to
generalize to unseen similar object or to clean a workspace
composed of several spaced and similar objects. Moreover,
architecture does not require any dataset, CAD model or
simulation. Our method combines a reduce state space, a
light CNN plugged on a pretrained network and weighted

loss function and then is able to quickly learn from few data.
Our CNN network pipeline fulfills our initial motivation of
creating a task-oriented grasping system that can be quickly
reconfigure by an operator from the field.

Our work presents limitations that suggest future works.
The selected input space limits our algorithm to simple 2D
shapes. Working directly with the depthmap from the RGB-
D camera will allow to consider more complex 3D objects.
Semantic segmentation of objects may fail in some cases.
Detecting these failing cases would allow the operator to
be asked for more demonstrations. This work is a step in
setting up collaborative robots in factories and demonstrates
that operators can simply and rapidly configure them by
demonstration.
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