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Abstract: Manually annotating medical images with few landmarks to initialize 3D 

shape models is a common practice. For instance, when reconstructing the 3D spine 

from biplanar X-rays, the spinal midline, passing through vertebrae body centers 

(VBCs) and endplate midpoints, is required. This paper presents an automated spi-

nal midline delineation method on frontal and sagittal views by using Mask R-CNN. 

The network detects all vertebrae from C7 to L5, followed by vertebrae segmenta-

tion and classification at the same time. After postprocessing to discard outliers, the 

vertebrae mask centers were regarded as VBCs to get the spine midline by polyno-

mial fitting. Evaluation of the spinal midline on 136 images used root mean square 

error (RMSE) with respect to manual ground-truth. The RMSE ± standard error 

values of predicted spinal midlines (C7-L5) were 1.11 mm ± 0.67 mm on frontal 

views and 1.92mm ± 1.38 mm on sagittal views. The proposed method is capable 

of delineating spinal midlines on patients with different spine deformity degrees.  

Keyword biplanar x-rays, spine 3D reconstruction, Mask R-CNN, spinal mid-

line 

Introduction 

Scoliosis such as adolescent idiopathic scoliosis (AIS) is a three-dimensional 

(3D) local and global deformation of the spine. Clinical parameters, like the Cobb 

angle and vertebrae axial rotation, are essential both for diagnosis [1], treatment 

planning [2] and decision follow up [7]. 

The EOS system (EOS Imaging, Paris, France) allows diagnosing scoliosis, by 

taking radiographs in frontal and sagittal views in standing position in order to per-

form 3D reconstruction. In comparison with computerized tomography (CT) and 

magnetic resonance imaging (MRI), it has advantages in terms of low radiation dose 

and accurate deformity assessment in standing position [3, 4, 5]. Semi-automatic 
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3D reconstruction methods have been introduced and, for instance, the method in 

[6] is used in daily routine to measure clinical parameters. However, it requires su-

pervision and training to adjust anatomical features of a parametric statistical shape 

model. Vertebral occlusions, due to projections of soft tissues, organs, braces, air 

cavities and other bones, lead to additional manual adjustments (meantime over 12 

mins [7]), which limits their use in the clinical workflow.  

Recently, research works have aimed to automated 3D spine reconstruction [8, 

9, 10, 11]. In general, the first step is to initialize a simplified statistical shape model 

[6] thanks to several landmarks such as the spinal midline, passing through end-

plates or vertebral body centers. In [8], they use manual inputs while in [9] they rely 

on a fully convolutional neural network (CNN) combined with an additional differ-

entiable spatial to numerical (DSNT) layer to predict the locations of landmarks. In 

[11], a coarse localization based on the image intensity distribution of columns and 

rows is used, followed by a detailed statistical shape model (SSM) for landmarks 

position prediction and CNN patch-based regression models to correct the land-

marks. 

In this work, contributing to automatic statistical shape model initialization, we 

present a method to delineate the spinal midline from vertebra C7 to vertebra L5 

from both sagittal and frontal views. The method uses Mask R-CNN [14, 15] to 

segment and identify vertebrae. A post-processing method is introduced to remove 

outliers. Mask centers are regarded as vertebrae centers and polynomial fitting is 

applied to get the spinal midline. 

Materials and Methods  

Database 

 

A database of 136 biplanar X-rays of 92 asymptomatic subjects and 44 scoliotic 

patients (Cobb Angle = 34.7° ± 19.9°) has been collected retrospectively. Every 

subject underwent the EOS™ ultra-low dose system (EOS imaging, Paris, France) 

under a protocol validated by the Ethical Committee (C.P.P. Ile de France VI). 3D 

reconstructions were performed by trained experts using the method from [6] for 

T1-L5 and from [16] for cervical spine reconstruction (C3–C7). Vertebral bodies 

from digitally reconstructed spines were backprojected on frontal and sagittal views 

(Figure 1). Vertebrae masks from these projections were regarded as our manual 

ground-truth references.  

 

Pre-processing 

 

Images from sagittal and frontal views were automatically cropped based on the 

backprojected vertebral bodies to only contain vertebrae from C7 to L5, and resized 
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to 512×216 pixels. In the resizing process, original ratios were preserved. Both im-

ages were preprocessed by adaptive noise-removal filtering, median filtering and 

contrast-limited adaptive histogram equalization to decrease noise and enhance con-

trast [19]. Each pair of planar radiographs were combined into a single image with 

a fixed size of 512×512 pixels, in which the left half consisted of the sagittal pro-

jection whereas the right half included the frontal projection (Figure 2 a). 

 

                          
(a) (b)                                                             

Figure 1: Ground-truth generation: (a) A digitally reconstructed 3D spine; (b) Backprojections of 

vertebrae bodies on sagittal and frontal view images. 

 

Mask R-CNN 

 

 
Figure 2: Inputs and outputs of Mask R-CNN: (a) Input image; (b) Input training labels with ver-

tebrae bounding boxes, masks and class labels. (c) Output predicted bounding boxes, masks, class labels 

and scores. On the sagittal view, vertebrae were divided into C7, T1-L4, and L5. On the frontal view, 

vertebrae were divided into C7, T1, T2-L4 and L5. 

 

Mask R-CNN [13] was chosen in this work to perform the spinal midline delinea-

tion. It is a two-stage detector that here localizes vertebrae firstly by predicting 

bounding boxes containing objects of interest, followed by joint segmentation and 

class labeling in the second stage. Mask R-CNN was proposed in 2017 as an exten-

sion of Faster R-CNN [21] for semantic segmentation. This was achieved by adding 
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a branch to the network for predicting segmentation masks on region of interests. 

The loss function for training this network was : 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘  （1） 

This is a multi-task loss function combining the loss of classification (𝐿𝑐𝑙𝑠), lo-

calization (𝐿𝑏𝑜𝑥 ) and segmentation mask (𝐿𝑚𝑎𝑠𝑘 ). We have used Mask R-CNN 

based on the implementation by Matterport Inc. [14] released under an MIT Li-

cense.  

Some classes needed to be defined. C7, L5 from sagittal view, and C7, T1, L5 

from frontal view were assigned to individual classes. On the sagittal view, verte-

brae in T1-L4 (16 vertebrae) were assigned to the same class. On the frontal view, 

T2-L4 (15 vertebrae) were assigned to the same class. In total, in both views, 18 

vertebrae had to be detected, segmented and classified into 7 classes (Figure 2 b). 

The data was split for 5-fold cross-validation without overlap for training and test-

ing with a ratio of 4:1. Augmentation techniques included randomized rotations ±3 

degrees and contrast normalization [20] to generalize unseen data. Mask R-CNN 

predicted vertebrae bounding boxes and masks with their class names and class 

probability scores (Figure 2 c) 

 

Post-processing and Evaluation 

 

 
Figure 3: Post-processing workflow. (a) Select predicted masks with class scores above 0.65.  Ground 

truth contours (red) and predicted contours (blue) are shown. (b) Ground truth mask centers are in red 

and predicted mask centers are in blue. Each predicted mask center has a corresponding point (green) 

predicted by the polynomial fit of predicted masks. (c) After removal of predicted masks with a 

horizontal distance between its blue and green points above 15 pixels. (d) Final spinal midlines fitted by 

a 6th-order polynomial function. Ground truth  in red and predicted in blue. 
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Firstly, we discarded sagittal masks and frontal masks whose class scores were 

below 0.65 (Figure 3a). Secondly, for each view, each mask center (𝑥𝑐 , 𝑦𝑐) was cal-

culated. On each view, predicted masks were fitted by a sixth order polynomial 

function: 

 𝑋𝑚 = 𝑓𝑚(𝑌𝑚),      

where (𝑋𝑚, 𝑌𝑚) represents locations of all pixels within the 𝑚th predicted mask. 

New horizontal locations of each mask centers 𝑥𝑐
′  were calculated by 𝑥𝑐

′ = 𝑓𝑚(𝑦𝑐)  

(green points in Figure 3b). Then, the horizontal distance 𝑑 was calculated as 𝑑 =

|𝑥𝑐
′ − 𝑥𝑐|. Masks were discarded if 𝑑 > 15 𝑝𝑖𝑥𝑒𝑙𝑠 (Figure 3c). Finally, remaining 

masks centers were fitted on each view by another sixth order polynomial function 

to obtain the final spinal midline on frontal and sagittal views from C7 to L5 (Figure 

3d). 

The segmentation performance was evaluated with the Dice similarity coeffi-

cient [16]. To evaluate the identification task, we defined correct detection when a 

vertebra was assigned the right class name and when its Dice value was above 0.5. 

Based on this definition, the precision and accuracy for identification were calcu-

lated. The first one calculated the percentage of correct predictions among all pre-

dictions while the later one calculated the percentage of ground-truth vertebrae that 

were correctly detected. 

We used root mean square error (RMSE) to evaluate the distance between the 

predicted and ground-truth spinal midlines:   

 

𝑅𝑀𝑆𝐸(𝑝𝑖𝑥𝑒𝑙) = √
1

𝑁
∑(𝑅𝑒𝑓𝑖 − 𝑃𝑟𝑒𝑑𝑖)2

𝑁

𝑖=1

∗ 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑠𝑖𝑧𝑒 ∗ 𝑟𝑎𝑡𝑖𝑜𝑚𝑚 (2) 

We sampled 𝑁 = 170 points from the ground-truth spinal midline between the 

C7 and the L5 body centers. 𝑅𝑒𝑓 stands for the horizontal locations of sampled 

ground-truth points. (𝑃𝑟𝑒𝑑) stands for the horizontal locations of the predicted 

points at the same vertical locations. RMSE values were transformed into millimeter 

by adjusting for the resize ratio 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑠𝑖𝑧𝑒  and multiplying by the pixel to physical 

size (mm) ratio 𝑟𝑎𝑡𝑖𝑜𝑚𝑚. 

Similarly, we used Eq.2 to evaluate the spinal midline RMSE in sub-regions 

(e.g.T1-T4) after truncating all midline (C7-L5). 

Experimental Results 

The experiments were performed on a PC with Intel Core i7 2.8 GHz CPU, 16 GB 

memory, and NVIDIA GeForce GTX 1050 GPU, based on Python. We used Res-

Net101 as the backbone architecture. 
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Segmentation and identification evaluation 

We report segmentation and identification performances in Table 1. Vertebrae L5 

has the highest average Dice scores: 0.92 in frontal view and 0.91 in sagittal view. 

Accuracy (the percentage of detected vertebrae) and precision (the percentage of 

correct predictions among all predictions) of vertebrae C7 had lower value than 

other classes in both views. 

 

Table 1: Dice similarity coefficient: mean ± SD. Identification: accuracy and precision. 

Name Dice Accuracy Precision 

C7 (Frontal)       0.88 ± 0.06 0.970 0.936 

T1 (Frontal) 0.88 ± 0.05 0.993 0.957 

T2-L4 (Frontal) 0.91± 0.05 0.992 0.999 

L5 (Frontal) 0.92 ± 0.03 1.0 0.965 

C7 (Sagittal) 0.87 ± 0.06 0.963 0.942 

T1-L4 (Sagittal) 0.88 ± 0.08 0.976 0.992 

L5 (Sagittal) 0.91 ± 0.03 0.993 0.971 

 

Spinal midline evaluation 

 

 

Table 2:  RMSE (mm) on frontal views: mean ± SD (Max) for vertebrae body centers location 

and spinal midline delineation from 136 subjects. Number (%) of subjects with RMSE>3mm. 

Frontal RMSE (mm) >3 mm 

C7 1.55 ± 1.23 (6.52) 18 (13.2%) 

T1-T4 1.18 ± 1.31 (9.42) 10 (7.35%) 

T5-T8 0.87 ± 0.85 (4.27) 5 (3.68%) 

T9-T12 0.70 ± 0.78 (7.45) 2 (1.47%) 

L1-L4 0.90 ± 0.66 (4.23) 2 (1.47%) 

L5 1.41 ± 1.24 (8.84) 10 (7.35%) 

All 1.11 ± 0.67 (5.02) 3 (2.21%) 

Table 3:  RMSE (mm) on sagittal views: mean ± SD (Max) for vertebrae body centers location 

and spinal mid-line delineation from 136 subjects.  Number (%) of subjects with RMSE>3mm. 

Sagittal RMSE (mm) >3 mm 

C7 1.91 ± 4.82 (36.05) 14 (10.29%) 

T1-T4 2.60 ± 2.36 (13.99) 39 (28.68%) 

T5-T8 1.58 ± 1.42 (13.90) 9 (6.62%) 

T9-T12 1.40 ± 1.79 (13.04) 14 (10.29%) 

L1-L4 1.02 ± 0.79(13.04) 5 (3.68%) 

L5 1.33 ± 1.94 (20) 9 (6.62%) 

All 1.92 ± 1.38(9.44) 16 (11.76%) 
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Table 2 reports RMSE (mm) values from the frontal views and Table 3 from the 

sagittal views. On the frontal views, we got an average RMSE of 1.11 mm and 0.67 

mm standard error in the C7-L5 region. T5-T8, T9-T12 and L1-L5 on frontal views 

have lower RMSE than other regions. In comparison, spinal midline delineation of 

C7-L5 on sagittal views (Table 3) had larger errors than on frontal views, with an 

average RMSE of 1.92 mm and a standard error of 1.38 mm. In T1-T4 sagittal views, 

39 subjects (28.68%) had RMSE values above 3 mm, which is almost four times 

the proportion seen in frontal views. 

Discussion 

   

   

Figure 4: Spinal midline delineation examples. Ground-truth in red, prediction in blue. 

 

Results showed that the proposed method was capable of automatically deline-

ating spinal midline from vertebrae C7 to L5 on X-rays radiographs from frontal 

and sagittal views acquired on either asymptomatic or scoliosis subjects (Figure 4).  

In the method, although reconstructions from C3 to L5 were available, we chose 

to detect vertebrae from C7-L5 within seven classes: C7, T1-L4 (16 vertebrae), L5 

from sagittal view, and C7, T1, T2-L4 (15 vertebrae), L5 from frontal views. This 

decision was based on properties of the spine projections on biplanar X-rays and 

the mechanism of Mask R-CNN. On the frontal views, we chose C7 as the starting 

vertebra for the spinal midline because vertebrae C3-C6 are likely to be occluded 

by patients’ head. Our preliminary experiments confirmed that the network was un-

able to combine correctly spatial location information from vertebrae in C3-C6. Due 

to similar appearances, vertebrae T2-L4 were likely to also be wrongly classified 

but ended up being correctly segmented. Quite distinct from T2-L4, vertebrae C7, 

vertebrae T1 and vertebrae L5 were correctly segmented and identified as individual 
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classes. In sagittal views, T1-T4 are commonly occluded, as confirmed by the high 

T1-T4 RMSE value in Table 3. For this reason, we did not separate T1 as an indi-

vidual class on the sagittal view. C3-C6 are clearly visible on sagittal views, but we 

did not study them in this work, keeping the same field of view on the two views. 

In our experiments, increasing the field of view had negative impacts on the outputs. 

Mean Dice values of each class, all above 0.87, compare well with [18] where 

they studied only frontal views using a smaller dataset (35 images). Our mean 

RMSE (SD) 1.11 mm ± 0.67 mm on frontal views and 1.92mm ± 1.38 mm on sag-

ittal views are also comparable with the reconstruction results in [11], with 1.6 (1.3) 

mm for mean 3D Euclidean distance (SD) errors of VBC landmark locations.  

Performances of our method was inevitably influenced by vertebral occlusion, 

especially in the thoracic region on sagittal views. In our dataset, we had many im-

ages with strong occlusions. Overlay projections of the shoulder, ribcages and hands 

contributed to the high RMSE errors in T1-T4 (sagittal views), shown in Table 2. 

As the vertebra C7 was likely occluded  by the patient’s head in frontal view and 

the shoulder in sagittal views, it has relative high errors in Table 2. Signals from 

organs, local tissues and air cavities were sometimes mistaken for vertebrae.  

From visual examination, spinal midlines with RMSE< 3mm will not likely 

cause any problem for the statistical shape model initialization. Overall, on frontal 

views, only 2.21% of spinal midlines with RMSE> 3mm might need minor correc-

tions. Influenced by vertebrae occlusion on the T1-T4 sagittal views, 11.76% of 

spinal midlines had RMSE values above 3mm. However, the errors obtained on T1-

T4 spinal midline on sagittal view could be decreased by regressing a statistical 

shape model in which greater weights would be assigned to the most reliable spinal 

midline segments. 

Recent papers exploiting convolutional networks can be divided in two catego-

ries. The first category predicts spinal landmarks [9, 17] or segments vertebrae [18] 

to measure directly some clinical parameters, mainly the Cobb angle, on landmarks 

or masks. The second category predicts landmarks and uses them to initialize a sta-

tistical shape model [11]. This enables full spine reconstruction, and the evaluation 

of more clinical parameters. In [18], vertebrae were localized using a series of tra-

ditional imaging processing steps. However, the processing steps were tuned on a 

specific dataset, thus prone to failure on other cohorts. In comparison, the proposed 

method using Mask R-CNN has demonstrated great robustness and is one of the 

most popular architecture for segmentation in computer vision. We exploited its 

potential in vertebrae identification and segmentation on biplanar X-rays in frontal 

and sagittal views. The main difficulty of applying the network to biplanar X-rays 

was the presence of outliers which were successfully removed by the post-pro-

cessing method. 
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Conclusion 

We presented an automated spinal midline delineation method on biplanar X-

rays images using a Mask R-CNN. The results suggested that we can obtain robust 

and accurate spinal midlines from C7 to L5, especially in frontal views. The spinal 

midlines in sagittal views were less accurate due to occlusions by the shoulder and 

ribcage. The method should contribute to the automated initialization of a statistical 

shape model, the first step in current spine reconstruction methods. Future works 

will focus on the detection of additional landmarks that are required for the accurate 

adjustment of a 3D spine model on biplanar X-rays images. 
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