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Abstract – Dry fabrics can be investigated in aeronautic field to contain debris. Such structures are most
of the time modeled with finite elements leading to heavy time calculations especially due to contact treat-
ment. An alternative way to compute efficiently contact treatment in case of textile under dynamic impact
is proposed in this work. An original 3D Discrete Element Method (DEM) is carried out. It consists in a
discrete representation of the fabrics at meso (yarn) and macro (textile) scales. The geometrical and me-
chanical modeling are first described taking into account a brittle elastic behavior for yarns and frictional
contact between them. Then basic concepts of the DEM and the mesoscopic model with contact manage-
ment are presented. An impact simulation scenario is performed to validate the implementation. Results
are compared with simulations using the Finite Elements Method but also with available experimental
datas.
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1 Introduction

The weaving of high strength resistant yarns is com-
monly used in industrial applications as an impact en-
ergy absorber. Protective clothing, debris containment or
textile-reinforced polymer are some examples of applica-
tions where dry fabrics made of stacking of 2D weaved
plies (plain weaves or satin for instance) are largely en-
countered. Such dry fabrics are considered in this paper,
involving impact velocity higher than 80 m.s−1.

To simulate an impact on a dry fabrics and thus
predict damages on the structure, two scales can be
considered:

– the macromechanical approach consists in modeling
the textile as a continuous media. A homogenized me-
chanical behaviour is adopted to simulate the fabrics
deformation and failure using either the finite element
method in [1, 2] or an analytical solving in [3, 4]. Dis-
crete modeling approaches are also used in [5–7] by
setting a mass-spring type network;

– at the mesomechanical scale, each yarns of the textile
is explicitly modeled and the complex contact effects
between the yarns during the impact is dealt with.

a Corresponding author: jeremie.girardot@u-bordeaux.fr
1 Institut of Mechanics and Mechanical engineering (I2M), Dept. durability of materials, assemblies and structures Esplanade

des Arts et Métiers, 33400 Talence, France

The finite element method provides strain and stress
fields in [8–11].

Other numerical approaches can be found in the lit-
erature but dedicated to different textile applications like
the dry fabric forming using a mixed macro-mesoscale
model in [12, 13] or the braiding and roving applications
in [14, 15] where each fibers are modelled at the mi-
croscale.

For the ballistic impact, macro and meso approaches
tend to predict the dry fabrics behavior and the projectile
velocity. Comparison between these two scale approaches
can be found in [10, 16]. It shows reasonable agreements
between velocity measurements during an impact under
fully fixed fabrics edges. Nevertheless, the friction be-
tween the yarns and the boundary conditions when two
edges are fixed and the others free (for a rectangular fab-
rics) can not be properly described.

A mesomechanical approach is thus desirable to catch
precisely local mechanisms mainly due to contact interac-
tion between yarns. Using a standard finite element can
lead to high CPU time when contacts are involved. While
allowing a simple modeling of the yarns network including
contacts, the present Discrete Element Methods [17] can
be an efficient alternative to reduce time calculations. An
original use of the DEM for continuous media is developed
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Fig. 1. Stress/strain curve for aramid [20] (a), Kevlar km2 [21] (b), and Kevlar 129 and Twaron 3360 [10] (c) at different
strain rates.

in [18, 19], and is used in this work to model a
yarn. The major benefits of this approach is the nat-
ural consideration of contacts between elements and
a reduced time calculation using a temporal explicit
integration scheme.

2 Mechanical model

2.1 Yarn behavior

The Figure 1 shows different results from the littera-
ture with several stress/strain curves in longitudinal di-
rection, for different kind of fiber material and at different
strain rates. During these tests, several fibers are tested
in the same time and thus the behavior is associated to
the yarn one. It is relevant that a brittle linear elastic
behavior is a good assumption to model a typical yarn
material. In the present work, the yarn will be assumed
to be a 2D-orthotropic material following a linear elastic
behavior without strain rate dependencies. A brittle fail-
ure is assumed based on a maximum strain criterion. No
damage laws are included in the model.

In agreement with the literature, several assumptions
are done:

– transverse compression is neglected as its transverse
modulus is small compared to the longitudinal modu-
lus (more than a decade) [22];

– poisson effect, in-plane shear and bending stiffnesses
are also neglected according to the parameter study
performed in the same range of impact speed in [10]. In
this work, it is also mentionned the value of the trans-
verse stiffness has no influence on the macroscopic re-
sponse of the textile during the impact. Therefore, a
minimal value is required in order to well describe the
itegrity of the yarn in the transverse direction.

These assumptions are reinforced by the fact that the im-
pact velocity will remain up to 80 m.s−1 in our case. At
this speed, no non-linear effect are observed yet like buck-
ling or wrickling (effect especially coming from bending
and compressive stiffnesses [23]).

Yarn

Fibers

1

2

Fig. 2. Framework for yarn modeling.

The local frame is shown in Figure 2 with the 1-
longitudinal direction and the 2-transverse one.

Strain-stress relation is then reduced to an in-plane
behavior: (

ε11

ε22

)
=

( 1
E1

0
0 1

E2

) (
σ11

σ22

)
, (1)

with E1 and E2, respectively denote the Young modulus
in 1− and 2− direction. The yarn failure criterion is based
on the maximum strain.

2.2 Contacts

Two contact interactions occur during an impact on a
dry fabrics: the first between the yarns and the impactor
and the second between the yarns themselves.

These contacts induce friction and in order to model
it, a friction force

−−−−→
Ffriction is used. It is supposed to be

proportional to the normal contact force
−→
Fn as:

−−−−→
Ffriction = μ (||−−→vslip||) .||−→Fn||.

−−→vslip

||−−→vslip|| . (2)

The friction coefficient μ (||−−→vslip||) is based on a regular-
ized Coulomb law depending on the slipping velocity so
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Fig. 3. Regularization laws for Coulomb contact model.

called −−→vslip. This slipping velocity corresponds to the rela-
tive velocity between two bodies (for example between the
impactor and on of the yarn of the fabric). Two friction
coefficients are used to build the Coulomb law. The first
coefficient corresponds to the static friction μs which is
always greater than the second kinetic friction coefficient
μk. The regularization function could be either a piece-
wise linear function or a decreasing exponential function
below [11] (Fig. 3). Such an exponential regularization law
is chosen and implemented in the present model (Eq. (3)).

The friction function μ (||−−→vslip||) becomes:

μ (||−−→vslip||) = μk + (μs − μk).e−α||−−→vslip||, (3)

where α is the exponential life time arbitrary fixed to
10−3.

3 DEM approach

3.1 Basic concepts

Originally, the DEM is suitable to model granular me-
dias taking into account the contact between the grains.
For instance, it has been useful to treat the friction be-
tween two bodies involving a third body [24]. The method
has been recently extended [18] to model continuous me-
dia by using no-mass beams so that it could be used to
deal with the continuous phase of the media before it
becomes discontinuous when cracks occur. The present
DEM is then able to manage cracks propagations inside
the media with no extra numerical difficulties. Moreover,
its ability to easily catch contacts between several parts
tends to make the DEM be a relevant method to simulate
impacts on dry fabrics.

Inertia of the considered media is concentrated on the
Discrete Elements (DE). The DE shape depends on the
nature of the physical problem adressed. In the present
study, a spherical shape is adopted.

(a) Yarn section.

Yarns

Fibers

Discrete Element

Directions for bonded elements

(b) Full yarn with connectivity with elements.

Fig. 4. Geometric yarn modelling.

The numerical solving consists in satisfying the dy-
namical equilibrium of each element subjected to external
forces (contact and mechanical behavior) using an explicit
integration scheme [19].

The next section deals with the geometric modelisa-
tion of the yarn with spherical DEs.

3.2 Geometric modelisation

Each yarn is modeled as a deformable body follow-
ing the mechanical behavior presented in Section 2.1. It
is discretized using multiple discrete elements, as it could
be done with FE [11]. DE are uniformly distributed in
the yarn section, supposed to be elliptical (Fig. 4a). At
this stage, improving the description of the elliptic sec-
tion by adding DE is out of the scope. These elements
are connected each other following a grid pattern which
represents the orthotropic behavior (see Fig. 4b). Same
diameter and density are adopted for each DE. The DE
are kept spherical to prevent from heavy calculations due
to the contact treatment. As the representation of a yarn
with spaced spherical shapes is not naturally, a sensitivity
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analysis on the discretization thiness of the grid pattern
is presented in the beginning of Section 4.2.3. Several
geometric configurations with different DE overlappings
(up to 70%) have been tested. No significant influence
on the results (impact velocity and rupture mechanisms)
has been observed. So, the yarn modelisation shown in
Figure 4a is a good compromise for impact simulations.

The fabrics result is shown in Figure 5a with its asso-
ciated connectivity pattern (Fig. 5b). The weaving is a 2D
plain and the trajectories of yarns are built with periodic
sinusoisidal functions such that no interprenetrations oc-
cur between all the DEs, and also to respect the crimp
coefficient of the fabric.

3.3 Mechanical behavior in the DEM

3.3.1 Yarn inertia

The DE density is simply determined by writting the
mass equality between the real yarn and its geometric
representation. It leads to the following expression of the
density ρmicro of each DE:

ρmicro = ρmacro
3abLyarn

4NyarnR3
, (4)

with R, Lyarn, ρmacro and Nyarn respectively denote the
DE radius, the length of the yarn, the yarn density and
the number of DEs in the yarn section. a and b are the
semi-minor and semi-major axis of the ellipse, drawn in
Figure 4a.

3.3.2 Yarn stiffness

Mechanical behavior in the DEM is modeled thanks
to bonds connected between DE described in the previous
section. The 2D-orthotropic behavior of yarns is modeled
with a pattern of longitudinal and transversal no-mass
springs. Each spring is connected to two adjacent dis-
crete elements. Two different stiffnesses are considered:
K1 for the longitudinal springs (direction 1) and K2 for
the transversal ones (direction 2). K2 is assumed to be
proportional to K1. The ratio K1

K2
= 10 will be adopted

after sensitivity analysis (see Sect. 4.2). It will be observed
that the main role of this transverse stiffness is to ensure
the yarn cohesion in the transverse direction during the
impact.

K1 can be easily obtained from material and geomet-
rical parameters:

K1 =
E1S

N22R
, (5)

K2 = 10K1, (6)

where E1, R, S, and N2 are respectively the Young mod-
ulus in 1−direction, the radius of a spherical DE, the area
of the yarn section and the number of DE in the trans-
verse direction.

Finally, each spring exerts two forces
−−→
Fs/1 and

−−→
Fs/2 re-

spectively on the two discrete elements at its ends (noted
1 and 2) expressed as:

(a)

⎧⎨
⎩

−−→
Fs/1 = KiΔL−→n ,

−−→
Fs/2 = −KiΔL−→n ,

(b) ΔL
L0

= εmax, (7)

where Ki(i ∈ [1, 2]) is the corresponding longitudinal or
transversal stiffness, ΔL the difference between the cur-
rent length and the initial length L0 of the spring and −→n
the normalized vector of the support joining the centers
of two adjacent DE. When the failure criterion is reached,
(Eq. (7)b), the spring is removed from the calculation.

3.3.3 Contact management

The contact between DE is naturally taken into ac-
count. When an interpenetration is detected (i.e. when
the distance between two DE centers becomes smaller
than the sum of the DE radii), the reaction force

−→
Fn which

takes place betwen the DEs is computed as:

−→
Fn = ±δKc

−→n , (8)

where δ represents the interpenetration between two DEs
and −→n the unit normalized support vector. The contact
stiffness Kc is assumed to be the same order of magnitude
as K1 by numerical convenience and after sensitivity anal-
ysis.

The friction is taken into account by applying a tan-
gential force

−→
Ft using the friction coefficient μ and the

previously computed normal contact force:

−→
Ft = μ (||−−→vrel||) ||−→Fn||

−−→vrel

||−−→vrel|| , (9)

where −−→vrel is the relative velocity in the tangential plane
between two DE. It is obtained by a projection of the
velocity difference in the tangential plane:

−−→vrel = (−→v1 −−→v2) −−→n .(−→v1 −−→v2).−→n . (10)

The function μ (||−−→vrel||) comes directly from the Equa-
tion (3).

4 Impact simulation on plain weave textile

4.1 Sensitivity analysis

Several simulations of impact are performed on a
154 mm×154 mm square plain weave ply fully clamped on
its edges. The diameter projectile is 4 mm diameter, and
its initial velocity is 40 m.s−1. The geometry parameters
for the yarns and the textile are detailed in Table 1:

– the width and the thickness of each yarn (related to
the parameters a and b in Fig. 4a) ;
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(a) (b)

Fig. 5. Final Fabrics representation with the warp yarns in green and the weft yarns in red (a), and its associated connectiv-
ity (b).

Table 1. Input parameters for the sensitivity analysis.

Yarn width (mm) 0.59
Yarn thickness (mm) 0.115

–
Distance between yarns (mm) 0.746

Thickness (mm) 0.265
Crimp (%) 4.12

–
Longitudinal stiffness M.N.m−1 5
Transversal stiffness M.N.m−1 5

Contact stiffness M.N.m−1 5
Density kg.m−3 1000

Failure strain % 5
Static friction µs 0.2

Dynamic friction µd 0.2

– the distance between two yarns (adequate parameter
for a plain weave), the final thickness and the crimp
of the weaving.

The longitudinal and transverse stiffnesses, the contact
stiffness, the density and the failure strain are the chosen
parameters to perform the sensitive analysis. The basic
configuration for this sensitivity analysis (basic value for
the parameters) is also included in Table 1. Static and
dynamic friction coefficients are both equal to 0.2.

The effects of those parameters is appreciated on the
response of the projectile velocity versus the time. The
Figure 6 shows the typical displacement field during the
begining of the impact, meaning before any yarn failure.
For a better understanding, the spherical impactor is not
plotted. The displacement is null around each boundaries
of the fabrics the deformation of the textile is maximal
under the projectile and spreads along the yarns.

In Figure 7, each projectile velocity curve is plotted.
Figure 7a shows the results from simulations using dif-

ferent values of longitudinal, transverse and contact stiff-
nesses. The values of these parameters are 2 M.N.m−1,
5 M.N.m−1 and 8 M.N.m−1. It appears that only the lon-
gitudinal stiffness modifies the macroscopic response of
the projectile velocity. As expected, the more the yarn is
rigid, the more it slows down the projectile. It is observed
that contact stiffnesse has no influence on the projectile
velocity.

0

1.74e-3

8.7e-4

[m]

Fig. 6. Out-of-plane displacement field (z) [m] at the begin-
ning of an impact (vprojectile = 40 m.s−1).

In Figure 7, each curve corresponds to simulation us-
ing a different failure strain. The black dots represent the
first failure in the textile which always occurs in the loca-
tion under the projectile. The failure strain has no influ-
ence on the first part of the velocity curve but does have
on the moment of the first failure. After the first failure,
the projectile is passing through the textile and a residual
velocities of 17.2 m/s and 23.8 m/s are obtained respec-
tively for failure strains equal to 4% and 3%. For a strain
failure of 5%, a failure is observed but is not sufficient for
the total break down of the textile. For a strain failure of
6%, no failure occurs.

In Figure 7, it appears that the yarn density has an
influence only on the beginning of the impact where the
uncrimping mechanism is occuring. However, it does not
play a major role on the projectile velocity. Indeed, with
a range of value of density from 500 to 3000 kg.m−3, the
projectile always reach a velocity of 20 m.s−1 at the time
75 μs.

For all simulations, the results plotted in Figure 7
show a very good numerical stability using the Verlet
explicit time integration scheme without any artificial
damping added. Our implementation is self-stable.
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Fig. 7. Projectile velocity during the impact for various in-
put parameters: (a) longitudinal, transversal and contact stiff-
nesses, (b) failure strain (black circles point out the first fail-
ure) and (c) density.

Table 2. Input parameters based on [10].

Yarn Modulus E1 (GPa) 62
Yarn width (mm) 0.59

Yarn thickness (mm) 0.115
Yarn density (kg.m−3) 1310

Yarn failure strain % 5.48
–

Distance between yarns (mm) 0.746
Thickness (mm) 0.265

Crimp (%) 4.12
–

yarn/yarn static friction 0.23
yarn/yarn dynamic friction 0.19
impactor/yarn static friction 0.18

impactor/yarn dynamic friction 0.18

4.2 Real impact test

A 5 cm×5 cm square plain weave ply of Kevlar fibers
with two clamped edges and two free edges is considered
in this experimentation based on [10]. Three projectile ve-
locities are addressed: 60 m.s−1, 90 m.s−1 and 245 m.s−1.
Only a quarter of the domain is modeled thanks to the
double symmetry of the plain weaving. The projectile is
a rigid sphere with a diameter of 5.35 mm. The impact
is located at the center of the fabrics, at the cross in-
tersection of two yarns. Datas needed for simulations are
summarized up in Table 2.

4.2.1 Qualitative results

Figure 8 shows the damage progression during impact.
A well-known pyramidal shape deformation is retrieved
(Fig. 9). The unweaving caused by the impact as well
as the yarns failure under the projectile can be captured.

Fig. 8. Out-of-plane displacement field (z) [m] at different
times for the impact at 245 m.s−1.

Fig. 9. Typical pyramidal shape during an impact.

The opposition of a yarn, initially not fixed at its ends,
accompanying the projectile until it passes through the
textile is remarkable, Figure 8c.

CPU time for this calculation is between 7 h for the
60 m.s−1 velocity impact and 2.5 h for the 245 m.s−1

one. These times are greatly lower than these observed
in similar simulations using FEM [10] where CPU time
are around 17 hours and 8 hours for the same impact
velocities.

4.2.2 Energy balance

This study was the opportunity to compute the energy
balance during an impact. Thus, strain energy, contact en-
ergies (due to stiffness and friction) and kinetic energies
(for the fabrics and for the projectile) can be assessed at
each time of calculation. The energy balance during the
impact at 245 m.s−1 is plotted in Figure 10a. The pro-
jectile kinetic energy decreases until the last yarn failure
occurs (at time around 80 μs), then it remains constant.
On the same time, a competition occurs between woven
kinetic and strain energies. When a failure occurs in the
fabric, the stored strain energy is released and transferred
into kinetic energy. Friction effects during the impact in-
duce a constant increasing energy. One can verify that the
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Fig. 10. Energy balance (a) and energy conservation error
(b) during an impact at 245 m.s−1.
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Fig. 11. Projectile velocity with an initial velocity of
245 m.s−1 for an increasing overlapping of the Discrete El-
ements in the grid pattern geometry.

energy due to the artificial contact stiffness (named con-
tact in Fig. 10a) is insignificant compared to the others.

Finally, the conservation energy error during the simu-
lation can be evaluated (Fig. 10b). During the simulation,
it never exceeds 0.7%.

4.2.3 Projectile velocity

First of all, a discretization analysis is performed and
the impactor velocity is plotted in Figure 11 for three
different thinesses for the grid pattern: normal, fine and

Fig. 12. Two different impact locations: at the cross inter-
section of two yarns (left) and between four yarns (right).

finer. They correspond respectively to an (overlapping =
0%), fine (overlapping = 50%), finer (overlapping = 75%).
Despite a better representation of the surface due to the
overlapping, the impactor velocity evolution remains the
same, whatever the discretization is. Consequently, in or-
der to keep good numerical performance, the normal grid
pattern is always used. The reader should notice that only
a high velocity impact is performed for this analysis.

The evolution of the projectile velocity is plotted
in Figure 13a for the three initial impactor velocities:
60 m.s−1, 90 m.s−1 and 245 m.s−1. DEM results are com-
pared with FEM results [10]. For each velocity, DEM and
FEM results are coincident at the beginning of impact;
the “decrimping” of the fabrics is well described. In con-
trast, they don’t match when the first yarn failures occur
resulting in a change of slope. This change appears later
with DEM. Nevertheless, the slope becomes zero when
the projectile passes through the fabrics; its velocity re-
mains constant. A second change of slope is observed for
the 245 m.s−1 impact which is not observed for the FEM
results. It is due to friction between the impactor and
the fabrics after the yarn failures. This phenomenon is
also observed in more recent simulation work using FEM
in [25]. Results for 60 and 90 m.s−1 are qualitatively in a
good agreement with those found in [10].

DEM results are also compared with an experimen-
tal measurement found [26] for the initial impact velocity
of 245 m.s−1, presented in Figure 13b. Two impact loca-
tions are also considered: the first is located at the cross
intersection of two yarns (noted cross in Fig. 13b) and the
second is located on the space between four cross intersec-
tion (noted space in Fig. 13b). The Figure 12 illustrates
these two conditions. The predicted residual impactor ve-
locity for the cross condition is 185 m.s−1 whereas exper-
imental result [26] and FEM prediction [10] respectively
give 207 m.s−1 and 5m.s−1. So, it is underestimated with
DEM and overestimated with FEM. However, the space
condition leads to a good agreement with the experimen-
tal value of 207 m.s−1. Indeed, this condition seems to
represent better the reality of an impactor in contact with
a fabrics.

5 Conclusion

Present results clearly show the capabilities of the
DEM to deal with impact on dry fabrics at mesoscopic
scales. Qualitative results are mainly demonstrated in this
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Fig. 13. Predictions and measurements of projectile velocity
for various impact velocity .

paper but quantitative results are encouraging. It also
shows the advantage of a mesoscopic approach to simu-
late impact on fabrics and correctly predict the residual
velocity.

But one of the major advantage using the DEM is the
time calculation which is at least three times smaller than
a simulation using the FEM. Simplicity of the mechani-
cal model using bonds between discrete elements and the
dedicated LCM (Link Cell Method) contact detection al-
gorithm [17] are the main reasons.

Future impacts simulations will be performed on the
interlock 3X weaving varying the number of DE and im-
pact conditions to analyze the mass and velocity im-
pactor but also the prestressed effects on global responses
and failure progression in the textile. Then, coupling DE
model to a continuous one is intended to be able to
model larger woven target. Dry fabrics in hybrid struc-
tures (CFRP + Textile) for impact applications are also
explored. Draping fabrics is another possible use of the
method, not yet investigated.
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