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Abstrat

In this paper, the Solid Isotropi Material with Penalisation (SIMP) method for

Topology Optimisation (TO) of 2D problems is reformulated in the Non-Uniform Ra-

tional BSpline (NURBS) framework. This hoie implies several advantages, suh as

the de�nition of an impliit �lter zone and the possibility for the designer to get a ge-

ometri entity at the end of the optimisation proess. Therefore, important failities

are provided in CAD postproessing phases in order to retrieve a onsistent and well

onneted �nal topology. The e�et of the main NURBS parameters (degrees, ontrol

points, weights and knot-vetor omponents) on the �nal optimum topology is investi-

gated. Classi geometri onstraints, as the minimum and the maximum member size

have been integrated and reformulated aording to the NURBS formalism. Further-

more, a new onstraint on the loal urvature radius has been developed thanks to the

NURBS formalism and properties. The e�etiveness and the robustness of the pro-

posed method are tested and proven through some benhmarks taken from literature

and the results are ompared with those provided by the lassial SIMP approah.

Keywords:

Topology Optimisation; NURBS surfaes; Finite Element Method; CAD-ompatibility; Strutural

Optimisation

1 Introdution

In the last three deades, Topology Optimisation (TO) has gained an inreasing degree of interest in

both aademi and industrial �elds. The aim of TO for strutural appliations is to distribute one

or more material phases in a presribed domain in order to satisfy the requirements for the problem

at hand. Usually, the design problem is formulated as a Constrained Non-Linear Programming

Problem (CNLPP) wherein a given ost (or objetive) funtion must be minimised by meeting, at

the same time, the full set of optimisation onstraints. Classially, �rst TO methods were based

on a Finite Elements (FE) desription of the geometry [1℄. The basi idea onsists of de�ning a

ontinuous �titious density funtion varying between zero and one on the omputation domain.

The density funtion is evaluated at the entroid of eah element of a prede�ned mesh and provides

information about the topology: �void" and �solid" phases are assoiated to the lower and upper

bounds of the density funtion, i.e. zero and one, respetively. Meaningless �gray" elements (related

to intermediate values of the density funtion) are allowed but penalised during optimisation in

order to ahieve a �lear" solid-void design. So, mehanial properties of eah element are omputed

(and penalised) aording to the loal density value. Several interpolation shemes have been

developed for evaluating mehanial properties, e.g. Solid Isotropi Material with Penalisation

(SIMP) or Rational Approximation of Material Properties (RAMP) [2℄. Sine the pioneering

works on TO, di�erent strategies were proposed during the years in order to overome lassi TO

drawbaks, suh as heker-board e�et and mesh dependene. Projetion methods have been used

in [3℄ and their robustness has been investigated in [4℄. These algorithms, based on projetion and

suitable �lters, exhibit �ne features sine they integrate spei� geometri onstraints [5℄. Density-

based TOmethods are really e�ient and an be implemented in very ompat sripts [6℄. However,
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in spite of their relative simpliity, they provide a FE-based desription of the �nal geometry and

suitable postproessing must be foreast in order to obtain a smooth CAD-ompatible design. A

di�erent TO method, originated from the exigene of preisely ontrolling the boundaries of the

optimised struture, is referred in literature as Level Set Method (LSM) [7℄. A FE model is utilised

only to desribe the physis of the problem at hand, whilst the topology of the system is represented

through a suitable Level Set Funtion (LSF). In the 3D ase, the LSF is a salar funtion, de�ned

in I ⊂ R, whih represents the image of the generi point (P = {x, y, z, t}) belonging to the domain

D ⊂ R
4
. The sign of the LSF an be onventionally assoiated to material or void zones while

the zero value represents the boundary of the optimised struture [8℄. Furthermore, the evolution

of the boundary of the domain (i.e. the zero value of the LSF) is governed by the Hamilton-

Jaobi Equation and represents its fundamental solution. The LSM is haraterised by two main

advantages:

a) the LSF gives a lear impliit geometri representation of the boundary of the domain;

b) unlike density-based methods, the LSF is not a�eted by greyness e�et.

A thorough disussion on the LSM for strutural TO appliations an be found in [9℄. The LSF

an be hosen among di�erent sets of funtions, aording to loal or global support, dimension of

the loal support, mathematial nature of the funtion [10℄. Often, Radial Basis Funtions (RBFs)

are utilised beause of their versatility and simpliity [11, 12, 13℄.

Reent e�orts are �nalised to �ll in some gaps of urrent TO methods. In partiular, the main

shortoming of density-based strategies is the time onsuming postproessing phase neessary to

rebuild the boundaries of the optimum topology of the struture starting from a FE �pixelised"

domain (providing the required smoothness). The LSM represents a �rst attempt to overome

this di�ulty by introduing geometri entities to properly desribe the topology. In the proedure

disussed in [14℄, the LSM is oupled to the isogeometri analysis by means of Non-Uniform Rational

BSpline (NURBS) formalism for both LSF parametrisation and objetive funtion omputation.

However, the LSM is not free from drawbaks. Tipially, the LSM is based on the Hamilton-Jaobi

equation, that needs partiular attention to be solved: it should be properly reinitialised and the

Courant-Friedrihs-Lewy ondition must be met to satisfy spei� requirements on the time step

related to the mesh dimension [7℄. Moreover, the LSM is a�eted by the initial topology of the

domain (i.e. the initial guess) and, roughly speaking, when onsidering the lassial formulation

based on the shape derivative, holes an merge but annot nuleate in the struture [9℄. Suh a

sensitivity of the solution to the initial guess of the topology an be eliminated by means of the

topologial derivative and a �titious energeti term in the objetive funtion [15℄. Unfortunately,

solutions exhibit a dependene on the weight parameter of the energeti term in the objetive

funtion. As far as onerns density-based TO methods, a �rst enhanement was presented in [16℄

by relating the �titious density funtion to a BSpline surfae for 2D TO problems. The main

advantages of this hoie were the impliit �lter zone and the mesh-independene of the solution.
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However, any development was introdued about the handling of geometri onstraints and the

improvement of the postproessing phase required to get a CAD-ompatible shape.

Providing a areful desription of the geometry is ruial in TO not only to save time in

postproessing but, mostly, to ensure that the optimum shape of the omponent (rebuilt at the

end of TO) ould meet the design onstraints. Nowadays, ommerial software like OptiStrut

(a module of Altair HyperWorks pakage) [17℄ or Tosa (a module of Abaqus Pakage) [18℄ are

widely utilised in industrial �eld. Sine they make use of a density-based method, suitable tools are

needed to rebuild the boundary of the optimum topology. Although these tools are quite fast and

e�ient, usually the rebuilt geometry does not satisfy part (or the full set) of the design onstraints

onsidered for the problem at hand.

Typial onstraints aount for the ontrol of geometri features on the one hand and man-

ufaturing requirements on the other hand. Some onstraints an onern both aspets, like the

onstraints on the loal thikness (referred in literature as minimum and maximum member size)

of topologial branhes appearing during optimisation. The minimum member size an be taken

into aount in density-based TO algorithms through a simple riterion on the monotoniity of

the �titious density funtion along n searh diretions: typially n = 4 and n = 13 for the 2D

and 3D ase, respetively [19℄. It has been proven that this onstraint onstitutes also an impliit

�lter that an replae lassial distane-based �lters in order to prevent the heker-board e�et

in density-based TO methods. Further strategies to aount for the minimum member size in

density-based TO methods make use of projetion and �ltering tehniques, see [3℄ and [20℄. Also

the dilated and eroded desription of the topology outlined in [21℄ �nally results in an impliit

ontrol on the minimum member size. An e�ient way of handling the maximum member size

onstraint is presented in [5℄, while expliit onstraints on the members dimensions an be diretly

imposed in the framework of the LSM by introduing the `skeleton" onept, see [22℄ and [23℄.

Considering all of the previous aspets, in this paper an alternative density-based TO method

for 2D problems is presented. Taking inspiration from the work of [16℄, the proposed method is

based on the utilisation of the NURBS formalism (in the ontext of the SIMP approah) to represent

the �titious density funtion that beomes a NURBS surfae (for 2D problems). Eah point of

the NURBS ontrol net is then haraterised by three oordinates of whih two are Cartesian

oordinates and the third one is the density. The proposed approah, also alled NURBS-based

SIMP approah [24℄, is haraterised by several original features whih make it a general and

e�ient methodology for dealing with 2D topology optimisation problems. Thanks to the NURBS

formalism, the proposed methodology is fully ompatible with CAD software. The method is

extremely versatile and all the lassial geometri onstraints (minimum and maximum member

size, symmetries, et.) an be easily reformulated by means of the NURBS surfaes. Furthermore,

sine the NURBS formalism gives an exat representation of the boundary of the struture, a

new geometri onstraints on the loal urvature radius of the boundary has been formulated and

implemented. Finally, unlike the work of [16℄, the in�uene of the weights on the optimum topology
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has been taken into aount and a relevant sensitive analysis has been arried out.

Some benhmarks, taken from literature [2, 5℄, are onsidered to prove the the e�etiveness of

the NURBS-based SIMP method.

The paper is strutured as follows: �rstly, the theoretial framework of both NURBS surfaes

and SIMP method is presented. Then, the mathematial formulation of the proposed methodology

is given in Setion 3. In Setion 4, the mathematial formulation of geometri onstraints is outlined

together with the related gradient omputation. The numerial strategy is then brie�y desribed

in Setion 5. Setion 6 is dediated to the disussion of meaningful results and, �nally, Setion 7

ends the paper with some onlusions and perspetives.

2 Theoretial framework

In this Setion, the fundamental onepts and notations of the NURBS theory and SIMP TO

method are brie�y realled.

2.1 The NURBS surfae theory

Aording to the notation of [25℄, a NURBS surfae is de�ned as:

S(u, v) =

nu∑

i=0

nv∑

j=0

Ri,j(u, v)Pi,j , (1)

where Ri,j(u, v) are the pieewise rational basis funtions, whih are related to the standard

NURBS blending funtions Ni,p(u) and Nj,q(v) by means of the relationship

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

∑nu

k=0

∑nv

l=0Nk,p(u)Nl,q(v)wk,l
. (2)

In Eqs. (1) and (2), S(u, v) is a bivariate vetor-valued pieewise rational funtion, (u, v) are

salar dimensionless parameters both de�ned in the interval [0, 1], while p and q are the NURBS

degrees along u and v diretions, respetively; wi,j are the weights and Pi,j = {xi,j , yi,j, zi,j} the

Cartesian oordinates of the generi ontrol point, with i = 0, ..., nu and j = 0, ..., nv. The net of

(nu +1)× (nv + 1) ontrol points onstitutes the so-alled ontrol net. The blending funtions are

reursively de�ned by means of the Bernstein's polynomials:

Ni,0(u) =

{

1 if Ui ≤ u < Ui+1,

0 otherwise,
(3)

Ni,p(u) =
u− Ui

Ui+p − Ui
Ni,p−1(u) +

Ui+p+1 − u

Ui+p+1 − Ui+1

Ni+1,p−1(u), (4)

where Ui is the i-th omponent of the following non-periodi non-uniform knot vetor :

U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, Up+1, . . . , Umu−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}. (5)
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It is noteworthy that the size of the knot vetor is mu + 1,

mu = nu + p+ 1. (6)

Analogously, the Nj,q(v) are de�ned on the knot vetor V, whose size is mv:

V = {0, . . . , 0
︸ ︷︷ ︸

q+1

, Vq+1, . . . , Vmv−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1

}, (7)

mv = nv + q + 1. (8)

The knot vetors U and V are two non-dereasing sequenes of real numbers that an be

interpreted as two disrete olletions of values of the dimensionless parameters u and v. As the

ontrol points, also the knot vetors omponents form a net. One basi property of the blending

funtions is the loal support property : Ni,p(u) = 0 if u is outside the interval [Ui, Ui+p+1[. Hene,

it is evident that Ri,j(u, v) = 0 if (u, v) is outside the retangle [Ui, Ui+p+1[×[Vj , Vj+q+1[, i.e. the

loal support assoiated to the ontrol point Pi,j . The loal support property is of paramount

importane to understand all the advantages of the NURBS formulation of the SIMP method in

the ontext of TO. For a deeper insight in the NURBS theory, the reader is addressed to [25℄.

2.2 The lassi SIMP method

The SIMP method is brie�y disussed here for the minimum ompliane 2D problem subjet to an

equality onstraint on the volume [2℄. Let us onsider a retangular referene domain D ⊂ R
2
in

a Cartesian orthogonal frame O(x, y). Let D be de�ned as

D = {(x, y) ∈ R
2|x ∈ [0,W ], y ∈ [0, H ]}, (9)

whereW and H are two referene lengths of the domain (that an vary depending to the onsidered

problem) along x and y axes, respetively. The goal is to �nd the optimal distribution of a given

isotropi material on D by minimising the ompliane (i.e. the virtual work of external applied

loads) with an imposed volume fration f of the design domain. The material distribution (void

and material zones) a�ets the sti�ness tensor Eijkl(x), whih is variable over the domain D. Let

Ω ⊆ D be the material domain. In the SIMP approah, Ω is determined by means of a �titious

density funtion ρ(x) ∈ [0, 1] de�ned over the whole design domain D. Suh a density �eld is

related to the material distribution: ρ(x) = 0 means absene of material, whilst ρ(x) = 1 implies

ompletely dense base material. The relationship between the sti�ness tensor Eijkl(x) and the

density �eld ρ(x) is

Eijkl(ρ(x)) = ρ(x)αE0
ijkl , (10)

where E0
ijkl is the sti�ness tensor of the isotropi material and α ≥ 3 a suitable parameter that

aims at penalising all the meaningless densities between 0 and 1. Let u be the displaement vetor

6



�eld and l(u) the ompliane of the struture, namely

l(u) =

∫

D

ρ(x)αE0
ijklεij(u)εkl(u)dD. (11)

In Eq. (11), εij (i, j = 1, 2, 3) are the omponents of the strain tensor. The FEM-disretised

version of Eq. (11) is:

c = {UFEM}T [K] {UFEM} , (12)

where [K] is the global sti�ness matrix of the struture de�ned as

[K] =

Ne∑

e=1

ραe [Ke] . (13)

In Eq. (12), {UFEM} is the vetor of the degrees of freedom (DOFs), also alled nodal generalised

displaements, of the struture representing the solution of the problem:

[K] {UFEM} = {F} , (14)

wherein {F} is the vetor of the nodal generalised external fores. In Eq. (13), ρe is the �titious

density omputed at the entroid of the generi element e, whilst [Ke] is the non-penalised element

sti�ness matrix expanded over the full set of DOFs of the struture. The problem of determining the

optimum topology whih minimises the ompliane subjet to a onstraint on the overall volume

an be stated as follow:

min
ρe

c(ρe),

subjet to:







[K]{UFEM} = {F},
V (ρe)

Vtot
=

∑Ne

e=1 ρeAe

WH
= f,

ρmin ≤ ρe ≤ 1, e = 1, ..., Ne.

(15)

In Eq. (15), Vtot is the overall volume of the de�nition domain D, V (ρe) is the volume of the

material domain Ω, while f is the �xed volume fration; Ae is the area of element e on the x − y

plane and ρmin represents the lower bound imposed to the density �eld in order to prevent any

singularity for the solution of the equilibrium problem.

It must be pointed out that the SIMP method an lead to numerial issues, e.g. the well-known

heker-board e�et, related to the lak of mutual dependeny among the design variables, i.e. the

pseudo-densities ρe de�ned at eah element entroid. To repair these issues, a distane-based �lter

is usually employed [2℄. For the sake of ompleteness, the derivative of the ompliane with respet

to the elements �titious densities an be dedued by means of the adjoins method [2℄:

∂c

∂ρe
= −αρα−1

e {UFEM}T [Ke]{UFEM}, e = 1, ..., Ne. (16)
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Moreover, Eq. (16) an be simpli�ed by de�ning the ompliane of the single element:

ce = ραe {UFEM}T [Ke]{UFEM}. (17)

Thus, the sensitivity analysis for the ompliane �nally writes:

∂c

∂ρe
= − α

ρe
ce, e = 1, ..., Ne. (18)

The sensitivity of the volume fration is

1

Vtot

∂V

∂ρe
=

Ae

WH
, e = 1, ..., Ne. (19)

3 The NURBS-based SIMP method: mathematial formula-

tion

In the framework of the proposed approah, the pseudo-density �eld haraterising the SIMP

method is related to a suitable NURBS salar funtion:

ρ(u, v) =

nu∑

i=0

nv∑

j=0

Ri,j(u, v)ρi,j . (20)

The shape of the NURBS is a�eted by the value of the �titious density at eah ontrol point,

i.e. ρi,j , as well as by the value of the other parameters involved into the de�nition of the NURBS

salar funtion, namely the degrees of the blending funtion, i.e. p and q, the number of ontrol

points (nu + 1) × (nv + 1), the weights wi,j and the value of the knot vetors omponents, as

illustrated in Eqs. (2) and (4). The dimensionless parameters u and v an be arbitrarily de�ned.

For 2D TO problems, the most intuitive hoie is to relate them to the Cartesian oordinates of

the global frame as:

{

u = x
W ,

v = y
H .

(21)

In Eq. (20), the ontrol points ρi,j and the weights wi,j are the design variables of the NURBS-

based SIMP method. They are olleted in two olumn arrays ξ and η. Suitable boundaries are

imposed to satisfy the density �eld requirements for the TO problem:

ξ = {ρ0,0, ..., ρnu,0, ρ0,1, ..., ρnu,1, ..., ρ0,nv
, ..., ρnu,nv

},
ρi,j ∈ [ρmin, 1], ∀i = 0, ..., nu, ∀j = 0, ..., nv.

(22)

η = {w0,0, ..., wnu,0, w0,1, ..., wnu,1, ..., w0,nv
, ..., wnu,nv

},
wi,j ∈ [wmin, wmax], wmin, wmax ∈ R, ∀i = 0, ..., nu, ∀j = 0, ..., nv.

(23)

Without loss of generality, in this work the two knot vetors U and V are onsidered uniformly

distributed in the interval [0, 1] and both the degrees of the blending funtions and the number of
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ontrol points are �xed a priori. In this bakground, the 2D TO problem an be stated as:

min
ξ,η

c(ρ(ξ,η)),

subjet to:







(
∑Ne

e=1 ρ
α
e [Ke]){UFEM} = [K]{UFEM} = {F},

V (ρe)

Vtot
=

∑Ne

e=1 ρeAe

WH
= f,

{g(ξ,η)} ≤ {0},
ξk ∈ [ρmin, 1],
ηk ∈ [wmin, wmax],
∀k = 1, ..., (nu + 1)× (nv + 1).

(24)

In Eq. (24), {g(ξ,η)} is the vetor olleting the onstraints of di�erent nature (geometri,

tehnologial or physial), whilst ρe is the value of the pseudo-density for the generi element,

ρe = ρ(ue, ve) = ρ
(xe
W
,
ye
H

)

, (25)

where (xe, ye) are the Cartesian oordinates of the element entroid.

The new formulation implies two new variables sets, di�erent from the element densities, so a

sensitivity analysis should be arried out. It an be proven (see Appendix A) that the derivatives

of both the ompliane and the volume with respet to the �titious density at eah ontrol point

an be expressed as

∂c

∂ρs,t
= −α

∑

e∈Is,t

ce
ρe
Rs,t(ue, ve), (26)

1

Vtot

∂V

∂ρs,t
=

1

WH

∑

e∈Is,t

AeRs,t(ue, ve), (27)

while for the weights

∂c

∂ws,t
= − α

ws,t

∑

e∈Is,t

ce
ρs,t − ρe

ρe
Rs,t(ue, ve), (28)

1

Vtot

∂V

∂ws,t
=

1

WHws,t

∑

e∈Is,t

Ae(ρs,t − ρe)Rs,t(ue, ve). (29)

In Eqs. (26)-(29), Is,t represents the loal support related to the generi ontrol point [25℄. One

the sensitivity analysis has been provided, a suitable gradient-based algorithm an be utilised as a

tool for the solution searh of problem (24).

The SIMP approah revisited in the NURBS mathematial framework is haraterised by the

following features (whih implies just as many advantages):

1. The number of design variables is unrelated to the number of elements. In the lassi SIMP

approah, eah element introdues a new design variable. In the NURBS framework, the

auray of the topology desription is haraterised solely by the number of points of the

ontrol net, i.e. (nu + 1)× (nv + 1);
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2. The loal support property of the NURBS blending funtions de�nes an impliit �lter zone.

The size of suh a �lter zone is related to the dimensions of the loal support of the blending

funtions, i.e. to the omponents of the knot vetors as well as to the degrees of the basis

funtions. It should be remarked that TO �lters reate a mutual dependeny area among the

elements densities, i.e. the design variables in standard SIMP formulations. In the ase of

NURBS, the inter-dependene is automatially provided thanking the NURBS loal support,

without the need of de�ning a �lter on the mesh elements densities.

3. The NURBS formalism allows taking into aount a wide onstraints gamma, sine a math-

ematially well-de�ned desription of the geometrial bounds of the optimum topology is

always available during the iterations of the optimisation proess. Nevertheless, loal infor-

mation, suh as the loal normal and tangent vetors, an be easily dedued from standard

NURBS formulae.

4 Geometrial onstraints: mathematial formulation

In this Setion, two lassial geometri onstraints in TO, i.e. the minimum and maximummembers

size, as well as a new onstraint on the loal urvature radius will be formulated in the mathematial

framework of the proposed NURBS-based SIMP approah. They will onstitute the omponents

of the onstraint vetor {g(ξ,η)} appearing in the CNLPP (24).

4.1 Minimum Member Size

The minimum member size onstraint is used in TO to provide a minimum admissible size of

strutural elements. Here, the formulation proposed by [19℄ is onsidered. The intuitive idea

onsists of imposing the monotoniity of the �titious density funtion in a irular area having

a diameter equal to the minimum member size (dmin). The irular area is skethed around eah

mesh element and the monotoniity is heked every time along four diretions (0◦, 90◦, ±45◦).

Mathematially speaking, the monotoniity of a funtion on an interval I along a diretion γ an

be heked by means of the following integral:

Mγ(f) =

∫

I

|∇f · γ| − |
∫

I

∇f · γ|. (30)

Mγ(f) is stritly equal to 0 if f is monotone and grater than 0 otherwise. Therefore, the onstraint

on the minimum member size is formulated as follows:

gdmin
=

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ

− σ ≤ 0, (31)

where Ne is the number of mesh elements, γi the heking diretion (i = 1, ..., 4), θ a penalising

exponent and σ is used to relax the onstraint and to provide numerial stability. Of ourse,Mγi
(ρ)
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is the monotoniity integral and its evaluation domain is the irular zone having diameter dmin

and entred at the entroid of eah element. The expliit expression of Mγi
(ρ) is

Mγi
(ρ) =

∫ dmin/2

−dmin/2

|∇ρ · γi|ds−
∣
∣
∣
∣
∣

∫ dmin/2

−dmin/2

∇ρ · γids

∣
∣
∣
∣
∣
. (32)

In Eq. (32), s is a suitable absissa along the urrent heking diretion γi. In partiular,

γ1 = [1, 0]t, γ2 = [0, 1]t, γ3 = [
√
2/2,

√
2/2]t and γ4 = [

√
2/2,−

√
2/2]t. In order to formulate a

disrete version of Eq. (32), let us onsider a regularmapped mesh of square elements. Then, Nγi
is

the number of mesh elements spanning the diameter dmin along γi diretion. It is straightforward

to verify (see [19℄) that Eq. (32) hanges into

Mγi
(ρ) =

Nγi
−1

∑

j=1

|ρj+1 − ρj | −
∣
∣ρNγi

− ρ1
∣
∣ . (33)

It is remarked that j in Eq. (33) is just a mute index that sweeps the interval [0, dmin], like the

absissa s in Eq. (32). Furthermore, a smooth approximation of the absolute funtion has been

employed to regularise the onstraint evaluation for the gradient based algorithm, namely

|z| ≈
√

z2 + ǫ2 − ǫ, (34)

with ǫ = 0.01. The �nal expression of Mγi
(ρ) to be implemented is

Mγi
(ρ) =

Nγi
−1

∑

j=1

(√

(ρj+1 − ρj)2 + ǫ2 − ǫ

)

−
√

(ρNγi
− ρ1)2 + ǫ2 + ǫ. (35)

As far as the sensitivity analysis is onerned, the derivative of the minimum member size

onstraint with respet to the NURBS ontrol points writes:

∂gdmin

∂ρs,t
= θ

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ−1


∑

γi

∂Mγi
(ρ)

∂ρs,t



 . (36)

Analogously, the derivative with respet to the NURBS weights is

∂gdmin

∂ws,t
= θ

Ne∑

e=1




∑

γi

Mγi
(ρ)





θ−1


∑

γi

∂Mγi
(ρ)

∂ws,t



 . (37)

The only di�ult onsists in evaluating the terms

∂Mγi
(ρ)

∂ρs,t
and

∂Mγi
(ρ)

∂ws,t
. The detailed om-

putation is arried out in Appendix B and the �nal result is provided here:

∂Mγi
(ρ)

∂ρs,t
=

Nγi
−1

∑

j=1

(ρj+1 − ρj) (Rs,t(uj+1, vj+1)−Rs,t(uj , vj))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
Rs,t(uNγi

, vNγi
)−Rs,t(u1, v1)

)

√

(ρNγi
− ρ1)2 + ǫ2

,

(38)
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∂Mγi
(ρ)

∂ws,t
=
ρs,t
ws,t

∂Mγi
(ρ)

∂ρs,t
+

+
1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj) (ρjRs,t(uj , vj)− ρj+1Rs,t(uj+1, vj+1))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
ρ1Rs,t(u1, v1)− ρNγi

Rs,t(uNγi
, vNγi

)
)

√

(ρNγi
− ρ1)2 + ǫ2

]

.

(39)

In Eqs. (38) and (39), it is assumed ρj = ρ(uj, vj).

4.2 Maximum Member Size

The maximum member size is used in TO in order to limit the maximum thikness of topologial

elements. Using the maximum and the minimum member size simultaneously is a smart hoie

to obtain strutures with uniform dimensions. This aspet ould be partiularly advantageous in

additive manufaturing prodution in order to avoid residual stresses in the �nal struture: in fat,

a relevant di�erene in strutural members size implies a di�erene in the amount of exposed surfae

(thinner elements will hill faster than massive parts), thus leading to a non-uniform heat exhange.

Consequently, the ourring temperature gradient will onstitute one of the most important auses

of residual stresses, see [26℄. In this work, Guest's formulation [5℄ has been revisited by making use

of NURBS. The proedure is not so far from that proposed by Poulsen for the minimum member

size. However, the onstraint does not onern the monotoniity of the �titious density funtion

but is expliitly imposed on the material phase: in fat, a heking irular region is drawn around

eah element entroid (whose diameter dmax is equal to the desired maximum member size). Let

Ωe be the irular region; thus, the following ondition must be met for eah element in a 2D

struture:

∑

i∈Ωe

ρ̂iAi ≤
πd2max

4
(1− ψ), ∀e. (40)

In Eq. (40), i is a mute index to indiate the elements in the irular zone Ωe (built around

element e), ψ is a relaxing parameter (ψ = 0.05), Ai is the area of element i and ρ̂i is the projeted

�titious density funtion. In this work, suh a projetion is performed through the relation

ρ̂e = ραe , (41)

where α is the same parameter used for the penalisation of the SIMP, refer to Eq. (10). Of ourse,

it is not possible to impose a onstraint for eah mesh element and a suitable aggregation strategy

must be provided. A simple sum is not reommended here beause of ompensatory e�ets. Let

12



ae be the left term of Eq. (40), so

ae =
∑

i∈Ωe

ρ̂iAi. (42)

An e�ient aggregation tehnique onsists of hoosing the maximum value of a among the

mesh elements and making use of it in the formulation of the maximum member size onstraint.

However, in order to insert the maximum operator in a gradient-based algorithm, a suitable smooth

approximation should be given:

amax =

(
Ne∑

e=1

aχe

)
1

χ
, (43)

wherein χ is a tuning parameter whose value should be big enough. Therefore, the onstraint is

formulated by ombining Eq. (40) with Eq. (43):

amax =

(
Ne∑

e=1

(
∑

i∈Ωe

ρ̂iAi

)χ)
1

χ
≤ πd2max

4
(1− ψ). (44)

Then, Eq. (44) is arranged in order to be dimensionless and put in the form of a standard

inequality onstraint for the CNLPP (24) as follow

gdmax
=

(
∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ
)
1

χ

πd2max

4
(1− ψ)

− 1 ≤ 0. (45)

It is remarked that the χ parameter has been hosen χ = 10 at the beginning of the iterations and

it is inreased up to 35 by a ontinuation method.

In this ase, the sensitivity analysis with respet to the NURBS ontrol points and weights is

straightforward (see Appendix B for mathematial passages):

∂gdmax

∂ρs,t
= α(gdmax

+ 1)

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ρα−1
i Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ , (46)

∂gdmax

∂ws,t
=
ρs,t
ws,t

∂gdmax

∂ρs,t
+

−α(gdmax
+ 1)

ws,t

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ραi Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρ̂iAi

)χ .

(47)
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4.3 Loal Curvature Radius

This kind of onstraint has an interest for funtional and manufaturing requirements. Ideally,

if the boundary of the struture is mathematially de�ned, the loal radius of urvature an be

evaluated and its minimum value an be identi�ed. Then, the minimum value of the urvature

radius an be onstrained to be superior to an admissible referene value. In the framework of

lassial SIMP approah, it is not possible to formulate this kind of onstraints sine the boundary

of the struture is not de�ned (nor in impliit neither in expliit way). Conversely, in the ontext of

the NURBS formulation, a desription of the boundary is available at eah iteration by establishing

a utting plane for the NURBS surfae representing the �titious density funtion. Let Ω ⊆ D be

the material domain and ρcut ∈ [ρmin, 1] the threshold utting value for the density �eld. In order

to have a preise desription of the ontour, it an be assumed that







(x, y) ∈ Ω, if ρ(x, y) > ρcut,
(x, y) ∈ ∂Ω, if ρ(x, y) = ρcut,
(x, y) ∈ D r Ω, if ρ(x, y) < ρcut.

(48)

For an impliit 2D urve, the expression of the urvature writes [27℄

κ = −

{
∂ρ

∂y
− ∂ρ

∂x

}







∂2ρ

∂x2
∂2ρ

∂x∂y
∂2ρ

∂x∂y

∂2ρ

∂y2













∂ρ

∂y

−∂ρ
∂x







((
∂ρ

∂x

)2

+

(
∂ρ

∂y

)2
) 3

2

. (49)

Similarly to the minimum member size onstraint, the derivatives an be arranged through the

NURBS notation, so the urvature radius an be ahieved:

r = − 1

WH

(

H2

(
∂ρ

∂u

)2

+W 2

(
∂ρ

∂v

)2
) 3

2

(
∂ρ

∂u

)2
∂2ρ

∂v2
− 2

∂ρ

∂u

∂ρ

∂v

∂2ρ

∂u∂v
+

(
∂ρ

∂v

)2
∂2ρ

∂u2

. (50)

Hene, the onstraint an be formulated as

min
∂Ω

|r(x, y)| ≥ r. (51)

The absolute value is approximated by means of Eq. (34), whilst the minimum operator has been

estimated through the Kreisselmeier-Steinhauser funtion [28℄. Let Nr be the number of radius

evaluation on the ontour of the struture. Eq. (51) hanges into the following relation:

gr = 1 +
1

rτ
ln

(
Nr∑

k=1

exp

(

−τ(
√

r2k + ǫ2 − ǫ)

))

≤ 0, (52)

where τ should be big enough.
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The derivatives of the onstraint on the loal urvature radius with respet to design variables

(ontrol points and weights) an be expressed as follows:

∂gr
∂ρs,t

= −1

r

∑Nr

k=1

exp
(

−τ(
√

r2k + ǫ2 − ǫ)
)

rk
∂rk
∂ρs,t

√

r2k + ǫ2

∑Nr

k=1 exp
(

−τ(
√

r2k + ǫ2 − ǫ)
) , (53)

∂gr
∂ws,t

= −1

r

∑Nr

k=1

exp
(

−τ(
√

r2k + ǫ2 − ǫ)
)

rk
∂rk
∂ws,t

√

r2k + ǫ2

∑Nr

k=1 exp
(

−τ(
√

r2k + ǫ2 − ǫ)
) , (54)

where the gradient of the generi urvature radius an be evaluated thanking to Eq. (50). Details

are provided in Appendix B.

5 Numerial Strategy

A suitable numerial strategy is desribed with the preise aim of solving the CNLPP formulated

in Eq. (24). It is noteworthy that the proposed algorithm, exluding the postproessing phase,

has been developed in MATLAB: only the FEM analysis, whih is needed for evaluating both

objetive and onstraint funtions, has been arried out by means of a ommerial FE ode (in

this ase ANSYS). This is a very important advantage beause the proposed methodology is tested

and interfaed with a widespread and widely ustomisable FEM software. Usually, the Method

of Moving Asymptotes (MMA) is employed in TO [29℄. Instead of the MMA, in this work the

MATLAB loal optimization toolbox and in partiular the ative-set algorithm of the fminon

family [30℄ with non linear onstraints has been utilised to solve problem (24).

The ative-set algorithm (ACS) is part of a speial lass of Sequential Quadrati Programming

(SQP) algorithms for onstrained optimisation problems whih an tolerate some iterative steps out

of the feasible region. This fat allows for an e�ient exploration of the feasible domain (espeially

its boundary) in CNLPPs. The ACS method produes a sequene of sub-problems approximating

the CNLPP at hand by exploiting the information provided by the gradient and by using only the

violated onstraints, whih onstitute, as a matter of fat, the â��ative-setâ��. Then, these sub-

problems are iteratively solved. Partiularly, the ACS approximation is quadrati and the ACS

algorithm is a quasi-Newton method that makes use of the Broyden-Flether-Goldfarb-Shanno

(BFGS) formula to approximate the Hessian in order to save omputational time, see [31℄. The

robustness and the e�ieny of SQP methods in solving CNLPPs have been largely tested and they

onstitute a well-established lass of gradient-based algorithms [31℄. Moreover, SQP algorithms an

be lassi�ed as �globally onvergent� algorithms, in the sense that, provided a feasible starting point,

the onsequent solution found by the algorithm will always respet the optimality onditions for

onstrained optimisation, i.e. the so-alled Karush-Kuhn-Tuker (KKT) onditions. Of ourse,

the aforementioned features of SQP algorithms do not prevent from falling on a loal optimum,
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whih is a ommon feature shared by all the other gradient-based algorithms (inluding MMA).

Furthermore, the problem nature depends on the hosen objetive and onstraint funtions, so

nothing an be a priori stated about the onvexity of the CNLPP at hand when these quantities

are omputed numerially through a FEM analysis. A deeper disussion on the onvexity of TO

problems, uniqueness of solution and dependene on initial data an be found in [2℄ and it is

out of the sopes of this paper. A syntheti sheme of the proposed numerial strategy and its

appliation to TO problems is shown in Fig. 1: inherent details onerning eah blok are given

in the following.

Figure 1: NURBS-based SIMP algorithm - syntheti sheme

• Preproessing The design domain together with geometry, mesh, loads and boundary

onditions for the strutural problem at hand are established. Meanwhile, the NURBS is

de�ned on the design domain in terms of number of ontrol points (nu + 1) and (nv + 1)

and blending funtions degrees p and q. The objetive funtion must be delared and the
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optimisation onstraints (if any) should be de�ned too. Furthermore, some Non-Design

Regions (NDRs) or symmetry onditions an be set at this stage.

• Optimisation blok. The generi CNLPP of ompliane minimisation subjet to m

inequality onstraints an be stated in the form

min
ξ,η

c(ξ,η),

subjet to:

Gi(ξ,η) ≤ 0, i = 1, ...,m,

(55)

where the FE equilibrium state equation has been negleted and all inequality onstraints,

inluding bounds on the design variables, are expressed in the ompat form G(ξ,η) ≤ 0.

Classi SQP methods hange the onstrained optimisation problem into an unonstrained

minimisation problem through a suitable Lagrangian funtion L(ξ,η,Λ) de�ned as

L(ξ,η,Λ) = c(ξ,η) +Λ
T
G(ξ,η), (56)

where Λ is a olumn vetor onstituted of m Lagrange multipliers, whose omponents must

ful�l the following onditions

λi = 0, if Gi(ξ,η) ≤ 0
λi > 0, if Gi(ξ,η) > 0

∀ i = 1, ...,m.
(57)

A diret solution of problem (55) in terms of both design variables and Lagrange multipliers

is not possible. Therefore, a sequene of quadrati approximations of the initial problem is

generated and eah problem is solved in an iterative loop.

Before proeeding with the algorithm desription, it should be remarked that a suitable

initialisation is needed. In partiular, an initial guess for the design variables (NURBS on-

trol points and weights) is required for starting the solution searh. Aording to the notation

of Setion 3, let ξ0 and η0 be the initial vetors of ontrol points and weights respetively:

suitable lower lb and upper ub bounds must be de�ned

{
lbξ ≤ ξ0 ≤ ubξ,
lbη ≤ η0 ≤ ubη.

(58)

Moreover, some options for the ACS fminon algorithm are set in this phase: the onver-

gene tolerane on the objetive funtion and on the design variables must be established.

Moreover, a threshold on the maximum number of iterations is also introdued as a further

stop riterion. The option on the gradient provision (sensitivity analysis formulae for both

objetive funtion and non-linear onstraints) is ativated here. Let (ξk,ηk) be the values

of design variables at iteration k: they are utilised in two main steps.
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Firstly, the objetive and onstraints funtions need to be alulated. To this aim, the

NURBS representing the �titious density is evaluated at the entroids of the elements and

this information is transferred from MATLAB to ANSYS in a suitable format (whih an be

de�ned by the user). The SIMP riterion (13) is used to ahieve the penalisation of mehan-

ial properties and to perform the FEM analysis. Then, the required mehanial quantities

are registered for eah element and transferred to MATLAB. Now, it is possible to update

the objetive funtion (the ompliane ck = c(ξk,ηk)) and onstraints (Gk = G(ξk,ηk)).

Furthermore, thanks to the sensitivity analysis (refer to Setion 3 and Setion 4), the deriva-

tives an be easily omputed (∇ck, (∇Gi)k, i = 1, ...,m).

Seondly, the aforementioned quantities are used, together with the previous evaluation

of Lagrange multipliers, to approximate the Hessian matrix aording to the BFGS formula

(refer to [30℄ and [31℄). The approximated Hessian matrix Hk = HBFGS(ξk,ηk, ck, (Gi)k,

∇ck, (∇Gi)k, (λi)k−1), i = 1, ...,m, is employed to state the ative-set quadrati program-

ming (QP) approximated problem, namely

min
d

Qk(d) = min
d

1

2
d
T
Hkd+∇cTk d,

subjet to:

Akd ≤ bk,

(59)

whose design variables are the searh diretion omponents olleted in the vetor d. In

Eq. (59), Ak is the oe�ient matrix, whilst bk is a vetor of onstants, both given by

the linearization employed by ACS algorithm for the optimisation onstraints. The QP

problem (59) an be solved taking advantage of one of the several methods in literature,

see [31℄. Hene, the urrent searh diretion (dk) is evaluated, together with the urrent

value of Lagrange multipliers ((λi)k). The last operation onsists of �nding a suitable step

length (sk) along the searh diretion dk. For a deeper insight into the matter, the reader

is addressed to [31℄. Finally, variables an be updated as follows:

{
ξk+1

ηk+1

}

=

{
ξk
ηk

}

+ skdk,

k = k + 1.
(60)

Thus, the onvergene riteria an be heked. The algorithm stops either if the maxi-

mum number of iterations is reahed or if the predited hange of one among the following

quantities is less than a suitable threshold value (10−6
):

� the objetive funtion

� the gradient norm of the Lagrange funtion

� the vetor of design variables.
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Of ourse, the latter set of riteria makes sense only if the objetive funtion and the imposed

onstraints are dimensionless.

• Postproessing. The result of the optimisation is a �titious density distribution on the

referene domain represented through a NURBS salar funtion. The outstanding advantage

provided by the NURBS formulation stands on the possibility to export a CAD ompati-

ble entity in order to rebuild in a straightforward way the boundary of the optimised 2D

struture. However, it is neessary to adapt the result to the NURBS formalism: in fat, a

standard NURBS surfae is impliitly de�ned by means of relations similar to Eq. (1). In-

deed, eah physial oordinate is funtion of the dimensionless parameters u and v. Thus, a

full desription of a NURBS surfae is obtained through relations like x = x(u, v), y = y(u, v)

and z = z(u, v), where the respetive oordinates of ontrol points appear. Normally, the

dimensionless parameters are not related to the physial oordinates x, y and z. Standard

format �les for NURBS data exhange (.igs) require ontrol points oordinates in the three

physial diretions. However, in this disussion, we make use of a NURBS salar funtion

ρ (u, v) wherein the physial oordinates x and y are related to u and v through Eqs. (21).

Hene, it is not neessary to introdue x and y oordinates of ontrol points during the op-

timisation but they must be provided in the postproessing phase in order to set up the .igs

�le. Now, the z-oordinate of eah ontrol point is simply the value of the �titious density

for the onsidered ontrol point (i.e. ρi,j , i = 1, ..., nu, j = 1, ..., nv) provided by the TO

optimisation; x and y oordinates of ontrol points should be hosen in suh a way that the

following onditions are met:

{

x =
∑nu

i=0

∑nv

j=0 Ri,j(u, v)Pxi,j
,

y =
∑nu

i=0

∑nv

j=0 Ri,j(u, v)Pyi,j
.

(61)

The solution of problem (61) is known in literature and referred as Greville's absissae [32℄,

de�ned through the knot vetors and degrees, namely







Pxi,j
=
W

p

∑p
k=0 Ui+k, ∀j = 1, ..., nv,

Pyi,j
=
H

q

∑q
k=0 Vj+k, ∀i = 1, ..., nu.

(62)

One the omputation is done, all the NURBS information are olleted into an .igs �le and

the NURBS an be imported in a CAD software. Before proeeding, a threshold value for

the density funtion is omputed in MATLAB in suh a way that optimisation onstraints

are met: a suitable plane plaed at this density value an be ut by means of the NURBS

surfae in the CAD software in order to retrieve the �nal 2D boundaries of the optimised

struture. Finally, a further .igs �le is reated with the �nal 2D geometry and it an be

transferred to the FEM software for heking operations (i.e. in order to verify the value of

both objetive and onstraint funtions on the rebuilt struture). A summarizing sheme of

the Postproessing phase is depited by Fig. 2.
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Figure 2: Postproessing - syntheti sheme

6 Results and disussion

Some meaningful results are presented in this Setion in order to prove the e�etiveness of the

proposed algorithm. The topologies of eah optimised geometry is shown here on the �nal rebuilt

struture after postproessing phase. The CAD ompatibility of NURBS is fully exploited, so

useless elements have been easily ut o�: therefore, the objetive funtion and onstraints are eval-

uated on the �true struture" instead of on the meshed referene domain (wherein �void" elements

still hold on together with the �material" elements), that is meaningless from an engineering view-

point. For eah analysed test ase, results are also ompared with those provided by the ommerial

software OptiStrut [17℄ by using the same mesh of the referene domain. As stated in Setion 3,

two set of design variables, namely the NURBS ontrol points and the weights, olleted in the

arrays ξ and η respetively (refer to Eqs. (22) and (23)), tune the topology of the 2D domain. For

eah ase, the lower and upper bounds are �xed as follows:

· onerning the �titious density at eah ontrol point, standard bounds are hosen, i.e.

lbξi,j = 10−3
and ubξi,j = 1, ∀i = 0, ..., nu and ∀j = 0, ..., nv;

· weights enjoy greater freedom and it has been hosen lbηi,j
= 1/2 and ubηi,j

= 10, ∀i =
0, ..., nu and ∀j = 0, ..., nv.

The �rst part of this setion is dediated to a omparison between the results obtained with

NURBS and BSpline basis funtions, respetively, on a standard benhmark. Then, more general

examples are provided by imposing a spei� material phase, namely �void" (ρ = 0) or �material"

(ρ = 1) in some presribed Non-Design Regions (NDRs) of the omputational domain. Moreover,

an appliation with a symmetry onstraint is shown. Finally, the e�ets of the geometri onstraints

disussed in Setion 4 are investigated.

6.1 Comparison between Bspline and NURBS surfaes for topology op-

timisation

The problem of the ompliane minimisation with an imposed volume fration is onsidered here

for a standard benhmark: an aluminium antilever plate. All geometri and material data are

provided in the aption of Fig. 3. The aim of this �rst example is to ompare the optimum topology
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Figure 3: Cantilever plate problem - W = 320 mm, H = 200 mm, Thikness t = 2 mm,

Young Modulus E = 72000MPa, Poisson Modulus ν = 0.33, Load P = 1000 N .

of the domain resulting from the utilisation of Bspline and NURBS surfaes, respetively. When

using the Bspline surfae the TO problem an be stated as

min
ξ

c(ρ(ξ)),

subjet to:







[K]{UFEM} = {F},
V (ρe)

Vtot
= 0.4,

lbξ ≤ ξ ≤ ubξ,

(63)

thus all the weights get the same value and an be exluded from the design spae. Conversely,

when using the more general NURBS formalism, the TO problem is

min
ξ,η

c(ρ(ξ,η)),

subjet to:







[K]{UFEM} = {F},
V (ρe)

Vtot
= 0.4,

lbξ ≤ ξ ≤ ubξ,
lbη ≤ η ≤ ubη.

(64)

Both problems (63) and (64) have been solved through the proedure desribed in Setion 5 for

three values of surfae degrees , i.e. p, q = 2, 3, 4, and three di�erent values of the overall number

of ontrol points, i.e. (nu + 1) × (nv + 1) = 16 × 10, 32 × 20, 48 × 30. The FE model of the

retangular domain is disretised by means of Ansys SHELL181 elements, i.e. shell elements with

4 nodes and 6 DOFs per node [33℄. After a preliminary hek on the onvergene of the results,

the size of the mapped mesh of the retangular domain has been hosen equal to 80× 50 elements.

The equality onstraint is split in two inequality onstraints by onsidering a tolerane of 0.005 on

the value of f . Then, the volume fration onstraint will be met if 0.395 <
V (ρe)

Vtot
< 0.405. Results

are provided in terms of ompliane c and volume fration V/Vtot of the �nal optimum topologies

in aptions of Figs. 4-9.
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 426.31 Nmm, V/Vtot =
0.4003.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 400.63 Nmm, V/Vtot =
0.4134.
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() (nu + 1) × (nv + 1) = 48 ×

30, c = 403.45 Nmm, V/Vtot =
0.4020.

Figure 4: BSpline results for p, q = 2
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 413.96 Nmm, V/Vtot =
0.4042.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 403.49 Nmm, V/Vtot =
0.4044.
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0.4036.

Figure 5: NURBS results for p, q = 2
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 432.29 Nmm, V/Vtot =
0.4011.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 408.37 Nmm, V/Vtot =
0.3994.

x [mm]

y 
[m

m
]

0 50 100 150 200 250 300
0

50

100

150

200

() (nu + 1) × (nv + 1) = 48 ×

30, c = 402.39 Nmm, V/Vtot =
0.4025.

Figure 6: BSpline results for p, q = 3

Furthermore, numerial results onerning the true ompliane as funtion of the number of

ontrol points are synthetially plotted in Fig. 10. It is interesting to ompare this ompliane

with the ompliane alulated on the referene domain at the end of the solution phase before the

utting operation, i.e. the ompliane of the whole retangular domain onstituted by all elements

with the respetive pseudo-density value (it is referred as �projeted ompliane", see Fig. 11).

The following remarks arise from the analysis of the numerial results:

a) Topologies obtained through a NURBS-based representation of the �titious density funtion

are smoother than those obtained by means of BSpline-based desription, see Figs. 4-9.

Moreover, as learly shown in Fig. 11, the optimum topology obtained using NURBS surfaes
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 416.96 Nmm, V/Vtot =
0.4048.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 404.07 Nmm, V/Vtot =
0.4050.
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0.4047.

Figure 7: NURBS results for p, q = 3
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 446.71 Nmm, V/Vtot =
0.4020.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 407.31 Nmm, V/Vtot =
0.4032.
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Figure 8: BSpline results for p, q = 4
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(a) (nu + 1) × (nv + 1) = 16 ×

10, c = 433.01 Nmm, V/Vtot =
0.4039.
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(b) (nu + 1) × (nv + 1) = 32 ×

20, c = 409.09 Nmm, V/Vtot =
0.4044.
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Figure 9: NURBS results for p, q = 4

takes lower values of the projeted ompliane when ompared to those resulting from a

BSpline-based representation. This fat justi�es the utilisation of the more general NURBS

surfaes formalism. However, when looking at the true ompliane (Fig. 10), NURBS have

still signi�antly better performanes than the respetive BSplines only when the number

of ontrol points is kept small. If the number of ontrol points inreases, even if NURBS

topologies are still smoother than BSpline topologies, the derease of the objetive funtion

disappears and, sometimes, a BSpline solution ould be better than a NURBS solution (refer

to the ases of Fig. 8b and Fig. 9b). Thus, the utilisation of NURBS instead of BSpline

surfaes in TO must be arefully assessed.
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Figure 10: Cantilever plate problem - True ompliane trends.
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Figure 11: Cantilever plate problem - Projeted ompliane trends.

b) Taking inspiration from [16℄, the behaviour of the solutions has been investigated by varying

both the number of ontrol points (nu + 1)× (nv + 1) and the degrees of the surfae (p, q).

These parameters a�et the dimension of the loal support of the blending funtions. The

loal support, in the ontext of TO, behaves as a �lter zone, i.e. a region of the referene

domain wherein the densities of �neighbour elements" are interdependent. Suh a �lter
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zone is sought in standard density-based algorithms to prevent the heker-board e�et [2℄.

Therefore, the NURBS-based SIMP method naturally ensures an impliitly-de�ned �lter zone

without the need of introduing arti�ial distane-based �lters as in [2℄. This aspet is stritly

related to the loal support property of NURBS blending funtions [25℄: the �lter dimensions

inrease if the degrees inrease or if the number of ontrol points dereases. Conversely,

as the degrees derease and the number of ontrol points inreases, the �lter get smaller.

Taking into aount these onsiderations, it seems natural that thinner topology elements

(branhes) are allowed when the dimensions of the �lter zone derease. This trend is evident

in BSpline and NURBS benhmarks, see Figs. 4-9: BSpline and NURBS surfaes sharing the

same degrees, knot-vetors omponents and same ontrol point oordinates have the same

�lter zone. Furthermore, the smaller is the �lter size, the lower is the true ompliane value.

) Several remarks arise from a deeper investigation of results shown in Fig. 10 and Fig. 11.

Firstly, the projeted ompliane trend is smoother than the respetive true ompliane

trend. This fat is a onsequene of the ut operation in the postproessing phase, whih

onstitutes a a sort of �disontinuity" from a mathematial viewpoint. Indeed, this ut-

ting operation an lead to a pseudo-optimum solution: the objetive funtion dereases but

onstraints are not met (see for example the solution of Fig. 4b). Seondly, the projeted

ompliane exhibits an early phase of a plateau (Fig. 11), that disappears in the graph of

the true ompliane of Fig. 10. Atually, onsidering the derease of the objetive funtion

as the number of ontrol points inreases, it an be stated that the true ompliane does

not depend any more on the number of ontrol points beyond a ertain threshold value. In

other words, inreasing the number of design variables beyond a ertain threshold value does

not imply better performanes, even if the topology ould appear di�erent (see sub-�gures b

and  of Figs. 4-9). This result allows for introduing a sort of �design rule": the number of

ontrol points (design variables) an be hosen and tuned as a ompromise between auray

in the topology desription and time saving in running the algorithm.

d) It is noteworthy that the projeted ompliane is always greater than the respetive true

ompliane: this point is of paramount importane beause it means that the NURBS-based

SIMP approah is onservative.

Finally, results are ompared to those obtained from Hyperworks OptiStrut, where the TO

problem of Fig. 3 is solved on the same referene domain meshed through 80 × 50 PSHELL

Elements [17℄. Of ourse, being the software founded on a lassi density-based method, the design

variables are the element densities. Moreover, the �nal rebuilt optimum topology is obtained by

means of a smoothing phase (OSSmooth module of Altair Hyperworks pakage). It is pointed out

that OptiStrut needs a minimum member size onstraint to properly work: in fat, the minimum

member size ats as a �lter for TO. In this ase, a minimum member size dmin = 12 mm has been

hosen (i.e. 3 times the mesh size, as suggested by OptiStrut's referene guide).
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Figure 12: Hyperworks-OptiStrut solution of the antilever plate problem: c =
398.66 Nmm, V/Vtot = 0.3992.

Let us onsider the BSpline-based solution of Fig. 6 and the NURBS-based solution of Fig.

7 with p = q = 3 and (nu+1)× (nv +1) = 48× 30. Both the topologies, as well as the OptiStrut

solution, meet the volume onstraint. As far as the true ompliane is onerned, for the OptiStrut

solution it is obtained c = 398.66 Nmm (4000 design variables), for the BSpline-based solution

c = 402.39 Nmm (1440 design variables) and for the NURBS-based solution c = 394.45 Nmm

(2880 design variables). Consequently, it an be stated that the NURBS-based algorithm and the

software OptiStrut provide onsistent results. Finally, it an be asserted that in the framework of

the NURBS-based SIMP approah the optimum topology (showing equal or superior performanes

when ompared to those provided by the lassial SIMP approah) is obtained with a onsiderable

redution in the number of design variables.

6.2 In�uene of Non-Design Regions

In order to show the versatility of the proposed method, the e�ets of two presribed NDRs are

investigated in this Setion. The problem of Fig. 3 has been slightly hanged, as it is shown in Fig.

13: a irular setor (red zone in whih ρ = 1, entred at x = W/2, y = H/2 with Rint = 40mm,

Rext = 50mm) surrounding a �void� irle (yellow zone wherein ρ = 0) has been de�ned over the

retangular plate.

Figure 13: Cantilever plate problem with NDRs: design domain in white, presribed ma-

terial NDR in red, presribed void NDR in yellow.

In this ase, a BSpline surfae is utilised to get the solution, its parameters are p = q = 3 and

(nu + 1)× (nv + 1) = 48× 30.

The optimum solutions provided by both the NURBS-based SIMP approah and the lassi
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(a) NURBS-based SIMP solution, c =
425.95 Nmm, V/Vtot = 0.3997.

(b) Hyperworks-OptiStrut solution, c =
406.37 Nmm, V/Vtot = 0.4085.

Figure 14: Cantilever plate problem with NDRs.

SIMP method are illustrated in Fig. 14 (the values of the true ompliane and of the onstraint

on the volume fration are reported in the �gure aptions). As it an be easily notied, the

perentage di�erene in terms of the objetive funtion is lower than 5%, while the overall volume

fration provided by the NURBS-based SIMP approah is lower than that resulting from the lassi

SIMP approah: in the latter ase, the onstraint on the volume fration is not met. Therefore,

these solutions (whih are slightly di�erent in terms of topologial branhes) are �equivalent� and

onsistent from an engineering viewpoint with a onsiderable di�erene: in this ase the �titious

density �eld represented through a NURBS surfae is haraterised �only� by 1440 design variables

while the OptiStrut model is haraterised by 2392 design variables.

6.3 In�uene of a symmetry onstraint

In this Setion, the problem shown in Fig. 3 and desribed by Eqs. (63) and (64) is enhaned with

a further geometri onstraint: the topology is fored to be symmetri with respet to the plane

y = H/2. In this ase the BSpline and NURBS main parameters are set as follows: p = q = 3

and (nu + 1) × (nv + 1) = 48 × 30. The numerial values of ompliane and volume fration are

olleted in aptions of Fig. 15a and Fig. 15b.
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(a) BSpline solution:

c = 454.80 Nmm, V/Vtot = 0.4010.
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(b) NURBS solution: c =
456.47 Nmm, V/Vtot = 0.4044.

() Hyperworks-OptiStrut

solution, c = 443.87 Nmm,

V/Vtot = 0.4036.

Figure 15: Cantilever plate problem with symmetry onstraint

The same problem has been solved in OptiStrut environment and results are depited in Fig.
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15. The symmetry onstraint allows for halving the number of variables, so the BSpline solution

is haraterised by a ompliane c = 454.80 Nmm with 720 design variables, the NURBS one by

a ompliane c = 456.47 Nmm with 1440 design variables, whilst for the OptiStrut solution it is

obtained c = 443.87 Nmm with 2000 design variables.

6.4 Minimum member size

In this example, problem (63) is solved for the benhmark illustrated in Fig. 3 by onsidering the

minimum member size onstraint of Eq. (31). Partiularly, the TO problem is solved by means of

a BSpline surfae with (nu+1)×(nv+1) = 48×30 ontrol points and p = q = 3. The onstraint on

the minimum member size is imposed by onsidering three values of dmin, i.e. 16, 20, and 25 mm.

Results are olleted in Figs. 16-18 for eah analysis. In eah �gure, the �rst image is the rebuilt

geometry provided by the NURBS-based SIMP method after the postproessing phase, whilst the

seond image is the �nal rebuilt geometry provided by the ommerial tool OptiStrut. The FE

model of the referene domain is the same as that illustrated in Sub-Setion 6.1.

Two remarks of paramount importane an be inferred from the analysis of the results depited

in Figs. 16-18:

• All the advantages related to the NURBS geometrial properties are fully exploited in this

ase. Thanks to the ombined ation of the loal support property and of the minimum

member size onstraint, all the meaningless �grey� zones are �ltered and the �nal topol-

ogy exatly meets the minimum member size onstraint. Conversely, even if the optimum

topologies resulting from OptiStrut are haraterised by better performanes in terms of

the ompliane value, they systematially do not meet the minimum member size onstraint

due to the presene of thin topologial branhes. Quantitatively, the minimum size provided

by OptiStrut is 8 mm instead of 16 mm for the �rst ase, 8 mm instead of 20 mm for the

seond one and 7 mm instead of 25 mm for the last one.

• The optimum solutions provided by the NURBS-based SIMP approah show non smooth

boundaries. Indeed this aspet is related to the formulation of the minimum member size

onstraint aording to the Poulsen's formula, see Eq. (31). As disussed in [19℄ the minimum

member size is evaluated, for eah element, only along four diretions (see Setion 4.1) in

order to redue the omputational e�ort. Therefore, smoother boundaries an be got by

inreasing the number of heking diretion in the Poulsen's equation.

6.5 Maximum member size

In order to show the e�etiveness of the maximum member size in the framework of the NURBS-

based SIMP approah, a suitable benhmark is proposed herein. As illustrated in Fig. 19, in this

ase a retangular domain subjet to a tration load is onsidered. All the material and geometrial
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(a) BSpline solution: c = 441.98 Nmm,

V/Vtot = 0.3996.
(b) Hyperworks-OptiStrut solution: c =
401.02 Nmm, V/Vtot = 0.3994.

Figure 16: Results of the antilever plate problem for dmin = 16 mm

(a) BSpline solution: c = 438.78 Nmm,

V/Vtot = 0.4027.
(b) Hyperworks-OptiStrut solution: c =
400.22 Nmm, V/Vtot = 0.0.4006.

Figure 17: Results for dmin = 20 mm

(a) BSpline solution: c = 488.57 Nmm,

V/Vtot = 0.4036.
(b) Hyperworks-OptiStrut solution: c =
400.73 Nmm, V/Vtot = 0.4000.

Figure 18: Results for dmin = 25 mm

data are provided in the aption of Fig. 19. After a preliminary hek on the onvergene of the

results, the retangular domain is disretised by means of 100× 50 shell elements.

A BSpline surfae (p = q = 3, (nu + 1) × (nv + 1) = 40 × 20) is hosen to perform the TO

analysis. Firstly, a standard problem similar to Eq. (63) is solved (the only modi�ation is the
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Figure 19: Tration plate problem - W = 400 mm, H = 200 mm, Thikness t = 2 mm,

Young Modulus E = 72000MPa, Poisson Modulus ν = 0.33, Load P = 1000 N .

volume fration equality onstraint that beomes an inequality onstraint):

min
ξ

c(ρ(ξ)),

subjet to:







[K]{UFEM} = {F},
V (ρe)

Vtot
− 0.4 ≤ 0,

lbξ ≤ ξ ≤ ubξ.

(65)

Then, the introdution of a maximum member size onstraint is investigated: in partiular, the

maximum allowable dimension of topologial elements is �xed to dmax = 25 mm. The maximum

member onstraint has been formulated aording to Eq. (45) and the new problem to be solved

is:

min
ξ

c(ρ(ξ)),

subjet to:







[K]{UFEM} = {F},
V (ρe)

Vtot
− 0.4 ≤ 0,

gdmax
≤ 0,

lbξ ≤ ξ ≤ ubξ.

(66)

Solutions of problems (65) and (66), provided by both the proposed approah and OptiStrut are

shown in Figs. 20a and 20b, respetively.

Conerning the optimum topology solution of problem (65), it an be stated that the NURBS-

based SIMP method provides onsistent results with those obtained by means of the ommerial

software OptiStrut from a numerial point of view: the perentage di�erene is 3.7%, but the

number of design variables for the NURBS-based SIMP approah is signi�antly smaller (800)

than that haraterising the OptiStrut solution (5000). When onsidering problem (66), the

perentage di�erene among the NURBS-based solution and the OptiStrut solution redues to

2.1%. However, in the seond ase, signi�ant topology hanges an be observed, see Fig. 20b and

Fig. 21b. Moreover, it should be pointed out that the maximum member size onstraint, as well as

the minimum member size onstraint, has been formulated in global sense and not in loal sense:

this means that, even if the onstraint of Eq. (45) is globally met during the iterations (on the
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(a) c = 55.85 Nmm, V/Vtot = 0.4000.
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(b) dmax = 25 mm, c = 74.47 Nmm, V/Vtot =
0.3984.

Figure 20: NURBS-based SIMP solutions for the tration plate problem (a) without and

(b) with maximum member size onstraint.

(a) c = 58.02 Nmm, V/Vtot = 0.3938. (b) c = 72.95 Nmm, V/Vtot = 0.3832,
dmax = 25 mm .

Figure 21: Hyperworks-OptiStrut solution of the tration plate problem (a) without and

(b) with maximum member size onstraint.

meshed referene domain), it will not be neessarily satis�ed loally after the postproessing phase

(i.e. when the geometry is rebuilt in order to be CAD-ompatible). In other words, if the size of

topologial elements is measured on the rebuilt geometry, the maximum member size of 25 mm

is not neessarily met in the proximity of the region where the load is applied, see Figs. 20b

and 21b. Nevertheless, this irumstane is more ritial as far as onerns the solution provided

by OptiStrut. In partiular, the OptiStrut solution shows a entral branh of approximately

30 mm > 25 mm (see Fig. 21b), thus the onstraint is violated on a larger portion of the de�nition

domain when ompared to the NURBS-based SIMP algorithm solution.

6.6 Loal Curvature Radius

The onstraint on the loal urvature radius is tested here. Problem (63) is taken as referene and

the onstraint of Eq. (52) is onsidered. In partiular, a minimum urvature radius r = 7.5 mm is

imposed. In this Setion, the solution of Fig. 6b is taken as a referene solution, i.e. the onstraint

on the loal radius of urvature is not imposed. For sake of ompleteness, it is realled that the

onsidered topology has been obtained through a BSpline surfae (p = q = 3, (nu+1)× (nv +1) =
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(a) c = 408.37 Nmm, V/Vtot = 0.3994. (b) c = 412.00 Nmm, V/Vtot = 0.3997, rmin =
10 mm .

Figure 22: Solution of the antilever plate problem (a) without and (b) with the minimum

loal urvature radius onstraint

32 × 20). Critial urvature points are highlighted in Fig. 22a and the respetive urvature radii

are: rA′ = 4.4mm rB′ = 2.7 mm, rD′ = 4.4mm, rE′ = 4.7mm. The solution of the same problem

enhaned with the minimum urvature radius onstraint is illustrated in Fig. 22b. The ritial

urvature radii are: rA = 9.3 mm, rB = 8.9 mm, rC = 8.7 mm, rD = 8.9 mm, rE = 7.8 mm.

This last example allows for understanding the true potential hidden behind the NURSB-based

SIMP approah. The NURBS formulation permits to have a preise and well-de�ned geometri

desription of the boundary of the topology at eah iteration during the solution proess, thus loal

quantities (like the urvature radius) an be easily omputed by means of the NURBS formalism.

Furthermore, in this last ase a omparison with the results provided by OptiStrut is no longer

possible simply beause this feature annot be realised in the framework of the lassial SIMP

approah.

7 Conlusions and Perspetives

This paper introdues and disusses a new formulation of the popular SIMP TO method in the

NURBS mathematial framework. The e�etiveness of the proposed approah is proven through

some meaningful benhmarks whih take into aount for equality and/or inequality onstraints.

The well-knownminimum and maximummember size onstraints have been reformulated aording

to the NURBS formalism and a new onstraint on the loal urvature radius has been implemented.

A suitable sensitivity analysis has been arried out for the objetive funtion and for eah onstraint.

The proposed NURBS-based SIMP approah onstitutes a generalisation of Qian's work [16℄: in

the proposed algorithm, the �titious density funtion is represented by means of NURBS surfaes

instead of simple BSpline funtions. Qian's onsiderations on the e�ets of standard NURBS

parameters on the obtained topologies are on�rmed in this paper: the NURBS degrees and the

number of ontrol points have a diret impat on the dimensions of the loal support of the NURBS

blending funtions, whih ats as a �lter in TO. In partiular, the smaller is the �lter, the thinner
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are the members dimensions and better performanes (a lower value of objetive funtion) an be

obtained.

The present work goes beyond the results of Qian's work beause of the following reasons:

• the NURBS-based SIMP method allows for obtaining equivalent (or superior) performanes

with a redued number of design variables (i.e. the density at eah ontrol point and the

related weight) when ompared to the lassial SIMP approah wherein the optimisation

variables are the element densities;

• the advantages of NURBS are fully exploited in terms of their CAD ompatibility: a suitable

postproessing phase an be implemented and utilised in order to straightforwardly obtain

the �nal optimised geometry for the problem at hand;

• when looking at the resulting topologies and the trend of the true ompliane, it an be

inferred that inreasing the number of design variable beyond a ertain threshold value does

not imply an improvement of the objetive funtion, thus the number of ontrol points should

be hosen as ompromise between geometri auray and omputational burden;

• a further �ne point of the NURBS-based algorithm onerns the objetive funtion hek

after the postproessing phase. It has been veri�ed that the true ompliane, evaluated

on the rebuilt struture after the postproessing phase, is always lower than the projeted

ompliane (i.e. the one of the referene domain with all mesh elements). In this sense, the

proposed method is onservative;

• the insertion of the NURBS weights among the design variables deserves a speial attention.

When the �titious density distribution is expressed by means of a NURBS surfae, the

boundaries of the optimum topology (after the postproessing phase) are smoother than

those observed when using a BSpline surfae. This is due to the presene of weights whih

allow for reduing (or avoiding) the undesired �wave e�et�. However, it has been veri�ed

that a NURBS solution is not neessarily better than the respetive BSpline solution in

terms of true ompliane. Sine using a NURBS instead of a BSpline implies doubling the

number of design variables, it is suggested, when dealing with a new TO problem, to launh

a �rst TO analysis by using a Bspline representation of the pseudo-density funtion and to

onsider a NURBS surfae only if the optimum topology has not a smooth boundary;

• the robustness of the NURBS-based SIMP method has been tested through the integration

of Non-Design Regions and symmetry onstraints;

• lassial geometri onstraints like minimum and maximum member size are reformulated

using NURBS formalism and the derivatives with respet to ontrol points densities and

weights have been omputed in a losed form. The robustness as well as the e�etiveness

of the proposed NURBS-based SIMP approah is also proven by dealing with benhmarks

involving this kind of loal features. Thanks to a speial geometrial property of the NURBS
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blending funtions, i.e. the well-known loal support property, an impliit �lter zone (whose

size depends upon the NURBS parameters) is always de�ned during the iterations (without

the need of introduing numerial artefats). Aordingly, on the one hand the undesired

heker-board e�et is always prevented, while on the other hand minimum and maximum

admissible size are always globally met (before postproessing phase) and almost always

loally satis�ed after rebuilding the optimum geometry. These onsiderations do not apply

for the optimum topologies resulting from the lassial SIMP algorithm;

• a new geometri onstraint on the loal urvature radius has been implemented. In the

framework of the NURBS formalism this is a relatively straightforward task beause a well-

de�ned geometri desription of the boundary of the urrent topology is always available

during the iterations. To the best of the authors' knowledge this kind of features is not

available for the lassial SIMP algorithm.

Future perspetives are manifold and deal with several aspets of Topology Optimisation.

a) The development of a suitable tool to manage the solutions provided by the NURBS-based

algorithm is foreast. Currently, the postproessing phase relies on the utilisation of CAD

ommerial software (e.g. CATIA), so a more spei� and dediated tool is neessary in

order to failitate the ontrol points displaement or weights arrangement by an external

user whih ould not be familiar with TO onepts. Being the density funtion available in

the form of NURBS/BSpline surfaes, some smoothing tool an be integrated in the method

in order to smooth the BSpline �wave e�et" or the indented boundary ourring when

Poulsen's formulation of the minimum member size onstraint is utilised.

b) The enouraging results obtained for 2D strutures advise to extend the NURBS-based

SIMP approah to the more general ase of 3D problems. In this ase, the �titious density

funtion would be related to a four-dimension hyper-surfae and its intersetion with a

suitable hyperplane (threshold value) would provide the boundary of the solid. Researh is

ongoing on this aspet.

) The library of possible optimisation responses (objetive/onstraint funtions) should be

extended: in order to e�etively design/optimise real-world engineering strutures under

operative servie onditions, suitable onstraints should be implemented. These onstraints

ould inlude purely mehanial features (e.g. plastiity and failure riteria, bukling, eigen-

frequenies, et.) or spei� requirements (e.g. imposed displaements/rotations in some

presribed regions). Nevertheless, multiphysis studies are possible in the ontext of the

NURBS-based TO algorithm, so other kind of physial quantities, like temperature or heat

�ow, an be taken into aount.

d) Reent progresses in metal Additive Manufaturing (AM) make this tehnology extremely

interesting for manufaturing the topologies provided by the optimisation proess. Integrat-

ing AM onstraints in the NURBS-based SIMP approah (through a dediated formulation),
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as support material limitation or other kinds of ustomisable ost funtions, onstitutes an

important hallenge for the following of this study.

e) The numerial results are extremely enouraging and, among the future perspetives, it

ould be possible to inlude, within the NURBS-based TO approah, the most relevant

features related to the problem of the multisale TO of strutures. In this bakground, an

interesting real-world engineering appliation ould deal with the problem of designing lattie

strutures. This lass of strutures has gained an inreasing attention sine latties an be

easily manufatured by means of AM proesses. Currently, they are utilised in several �elds:

sa�olds for prosthesis (biomedial �eld), rashworthiness parts (automotive and aerospae

�elds), et. Of ourse, in this ontext, a suitable homogenisation tehnique should be oupled

to the present NURBS-based TO algorithm.
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Appendix A : Sensitivity Analysis of Compliane and Vol-

ume Fration

Let G be a generi salar quantity whose gradient with respet to the mesh elements is known (i.e.

∂G
∂ρe

). Now, the derivatives

∂G
∂ρs,t

and

∂G
∂ws,t

need to be omputed, where ρs,t is the generi ontrol

point of the NURBS salar funtion and ws,t the respetive weight. Let Is,t be the loal support

of the blending funtion assoiated to the ontrol point ρs,t: it is evident that only those elements

lying in the support will ontribute to the sensitivity analysis. Therefore, the following general

expressions an be inferred by the haining rule for derivatives:

∂G

∂ρs,t
=
∑

e∈Is,t

∂G

∂ρe

∂ρe
∂ρs,t

, (A.1)

∂G

∂ws,t
=
∑

e∈Is,t

∂G

∂ρe

∂ρe
∂ws,t

. (A.2)

The derivative

∂ρe

∂ρs,t
an be easily omputed from Eq. (20):

∂ρe
∂ρs,t

= Rs,t(ue, ve). (A.3)

The derivative

∂ρe

∂ws,t
is evaluated by expliitly inserting Eq. (2) in Eq. (20). The �nal expression

an be retrieved after few omputations:

∂ρe
∂ws,t

=
Rs,t(ue, ve)

ws,t
(ρs,t − ρe). (A.4)

Consequently, the sensitivity analysis for the ompliane and the volume fration an be dedued

ombining Eqs. (A.3) and (A.4) with Eqs. (18) and (19).
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Appendix B : Sensitivity Analysis of Constraints

Sensitivity analysis of the minimum member size onstraint

Sensitivity of the monotoniity integral Mγi
(ρ) with respet to the ontrol points:

∂Mγi
(ρ)

∂ρs,t
=

Nγi
−1

∑

j=1

∂

∂ρs,t

(√

(ρj+1 − ρj)2 + ǫ2
)

−
(

∂

∂ρs,t

√

(ρNγi
− ρ1)2 + ǫ2

)

=

=

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
− ∂ρj
∂ρs,t

)

√
(ρj+1 − ρj)2 + ǫ2

−
(ρNγi

− ρ1)

(
∂ρNγi

∂ρs,t
− ∂ρ1
∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

=

Nγi
−1

∑

j=1

(ρj+1 − ρj) (Rs,t(uj+1, vj+1)−Rs,t(uj, vj))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
Rs,t(uNγi

, vNγi
)−Rs,t(u1, v1)

)

√

(ρNγi
− ρ1)2 + ǫ2

.

(B.1)

Sensitivity of the monotoniity integral Mγi
(ρ) with respet to the NURBS weights:

∂Mγi
(ρ)

∂ws,t
=

Nγi
−1

∑

j=1

∂

∂ws,t

(√

(ρj+1 − ρj)2 + ǫ2
)

−
(

∂

∂ws,t

√

(ρNγi
− ρ1)2 + ǫ2

)

=

=

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ws,t
− ∂ρj
∂ws,t

)

√
(ρj+1 − ρj)2 + ǫ2

−
(ρNγi

− ρ1)

(
∂ρNγi

∂ws,t
− ∂ρ1
∂ws,t

)

√

(ρNγi
− ρ1)2 + ǫ2

=
1

ws,t

Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
(ρs,t − ρj+1)−

∂ρj
∂ρs,t

(ρs,t − ρj)

)

√

(ρj+1 − ρj)2 + ǫ2
+

− 1

ws,t

(ρNγi
− ρ1)

(
∂ρNγi

∂ρs,t
(ρs,t − ρNγi

)− ∂ρ1
∂ρs,t

(ρs,t − ρ1)

)

√

(ρNγi
− ρ1)2 + ǫ2

=

ρs,t
ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj)

(
∂ρj+1

∂ρs,t
− ∂ρj
∂ρs,t

)

√

(ρj+1 − ρj)2 + ǫ2
−

(ρNγi
− ρ1)

(
∂ρNγi

∂ρs,t
− ∂ρ1
∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

]

+

+
1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj)

(

ρj
∂ρj
∂ρs,t

− ρj+1

∂ρj+1

∂ρs,t

)

√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)

(

ρ1
∂ρ1
∂ρs,t

− ρNγi

∂ρNγi

∂ρs,t

)

√

(ρNγi
− ρ1)2 + ǫ2

]

=

=
ρs,t
ws,t

∂Mγi
(ρ)

∂ρs,t
+

1

ws,t

[Nγi
−1

∑

j=1

(ρj+1 − ρj) (ρjRs,t(uj , vj)− ρj+1Rs,t(uj+1, vj+1))
√

(ρj+1 − ρj)2 + ǫ2
+

−
(ρNγi

− ρ1)
(
ρ1Rs,t(u1, v1)− ρNγi

Rs,t(uNγi
, vNγi

)
)

√

(ρNγi
− ρ1)2 + ǫ2

]

.

(B.2)

Sensitivity analysis of the maximum member size onstraint
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The gradient of the maximum member size onstraint is omputed here with respet to the NURBS

ontrol points and weights:

∂gdmax

∂ρs,t
=

1

πd2max

4
(1− ψ)

∂

∂ρs,t

(
Ne∑

e=1

(
∑

i∈Ωe

ρ̂iAi

)χ)
1

χ
=

(
∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ
)
1

χ
−1

χ
πd2max

4
(1 − ψ)

(
Ne∑

e=1

∂

∂ρs,t

(
∑

i∈Ωe

ραi Ai

)χ)

=

(
∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ
)
1

χ

πd2max

4
(1− ψ)

(
∑Ne

e=1

(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
αρα−1

i

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

α(gdmax
+ 1)

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ρα−1
i Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ .

(B.3)

∂gdmax

∂ws,t
= α(gdmax

+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ws,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

= α(gdmax
+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ρs,t

ρs,t − ρi
ws,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

=
ρs,t
ws,t

α(gdmax
+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ρα−1
i

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ +

− 1

ws,t
α(gdmax

+ 1)

∑Ne

e=1

(
(∑

i∈Ωe
ραi Ai

)χ−1

(
∑

i∈Ωe
ραi

∂ρi
∂ρs,t

Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ =

ρs,t
ws,t

∂gdmax

∂ρs,t
− α(gdmax

+ 1)

ws,t

∑Ne

e=1

((∑

i∈Ωe
ραi Ai

)χ−1 (∑

i∈Ωe
ραi Rs,t(ui, vi)Ai

))

∑Ne

e=1

(∑

i∈Ωe
ρiAi

)χ .

(B.4)

Sensitivity analysis of the loal urvature radius onstraint

The gradient of the loal urvature radius is omputed with respet to the ontrol points and to

the weights. Let us write again Eq. (50) in a more onvenient form:

r = − 1

WH

rN
rD

. (B.5)

Thus, the derivatives write

∂r

∂ρs,t
= r

(
1

rN

∂rN
∂ρs,t

− 1

rD

∂rD
∂ρs,t

)

, (B.6)

∂r

∂ws,t
= r

(
1

rN

∂rN
∂ws,t

− 1

rD

∂rD
∂ws,t

)

. (B.7)
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The omplete expression of Eqs. (B.6) and (B.7) are not provided here for sake of brevity; anyway

the reader an easily dedue them by using the following formulae to ompute the derivatives of

eah term. They are dedued from the results of Appendix A:

∂

∂ρs,t

(
∂ρ

∂u

)

=
∂Rs,t

∂u
, (B.8)

∂

∂ρs,t

(
∂ρ

∂v

)

=
∂Rs,t

∂v
, (B.9)

∂

∂ρs,t

(
∂2ρ

∂u2

)

=
∂2Rs,t

∂u2
, (B.10)

∂

∂ρs,t

(
∂2ρ

∂u∂v

)

=
∂2Rs,t

∂u∂v
, (B.11)

∂

∂ρs,t

(
∂2ρ

∂v2

)

=
∂2Rs,t

∂v2
, (B.12)

∂

∂ws,t

(
∂ρ

∂u

)

=
ρs,t − ρ

ws,t

∂Rs,t

∂u
− Rs,t

ws,t

∂ρ

∂u
, (B.13)

∂

∂ws,t

(
∂ρ

∂v

)

=
ρs,t − ρ

ws,t

∂Rs,t

∂v
− Rs,t

ws,t

∂ρ

∂v
, (B.14)

∂

∂ws,t

(
∂2ρ

∂u2

)

=
1

ws,t

(

(ρs,t − ρ)
∂2Rs,t

∂u2
− 2

∂Rs,t

∂u

∂ρ

∂u
−Rs,t

∂2ρ

∂u2

)

, (B.15)

∂

∂ws,t

(
∂2ρ

∂u∂v

)

=
1

ws,t

(

(ρs,t − ρ)
∂2Rs,t

∂u∂v
− ∂Rs,t

∂u

∂ρ

∂v
− ∂Rs,t

∂v

∂ρ

∂u
−Rs,t

∂2ρ

∂u∂v

)

, (B.16)

∂

∂ws,t

(
∂2ρ

∂v2

)

=
1

ws,t

(

(ρs,t − ρ)
∂2Rs,t

∂v2
− 2

∂Rs,t

∂v

∂ρ

∂v
−Rs,t

∂2ρ

∂v2

)

. (B.17)
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