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Abstrat

In this paper, a general methodology to approximate sets of data points through

Non-Uniform Rational Basis Spline urves is provided. The proposed approah aims at

integrating and optimizing the full set of design variables (both integer and ontinuous)

de�ning the shape of the Non-Uniform Rational Basis Spline urve. To this purpose,

a new formulation of the urve �tting problem is required: it is stated in the form of a

Constrained Non-Linear Programming Problem by introduing a suitable onstraint on

the urvature of the urve. In addition, the resulting optimization problem is de�ned

over a domain having variable dimension, wherein both the number and the value of

the design variables are optimized. To deal with this lass of Constrained Non-Linear

Programming Problems, a global optimization hybrid tool has been employed. The

optimization proedure is split in two steps: �rstly, an improved geneti algorithm

optimizes both the value and the number of design variables by means of a two-level

Darwinian strategy allowing the simultaneous evolution of individuals and speies;

seondly, the optimum solution provided by the geneti algorithm onstitutes the

initial guess for the subsequent gradient-based optimization, whih aims at improving

the auray of the �tting urve. The e�etiveness of the proposed methodology is

proven through some mathematial benhmarks as well as a real-world engineering

problem.

Keywords:

NURBS urves; Curve Fitting; Geneti Algorithms; Reverse Engineering; Modular Systems; Opti-

mization

1 Introdution

Curve �tting is a widely studied topi in informatis, geometri modelling and reverse engineering.

The goal is to �nd all the parameters whih uniquely identify a parametri urve approximating

a set of data points, i.e. the target points (TPs). The urve �tting problem an be stated as a

lassial least squares problem wherein the Eulidean distane between TPs and a set of suitable

points belonging to the urve is minimized. Standard gradient optimization methods have been

broadly employed in order to solve the urve �tting problem [1, 2, 3℄. In partiular, in [1℄ and

[3℄, the formulation of the objetive funtion was modi�ed by introduing the tangent distane

minimization method and the square distane minimization method. The most relevant ontribution

of these tehniques is on the improvement of the onvergene rate and the stability of the solution.

Ueng et al. [2℄ enhane the objetive funtion by inserting information about tangent and urvature

of the approximating urve as weighted quantities. However, weight parameters must be arefully

tuned a-priori by the designer in [2℄: aordingly, their de�nition is problem-dependent.

Several methodologies deal with the urve �tting problem in the framework of Non-Uniform

Rational Basis Spline (NURBS). A NURBS urve is de�ned by the degree of the blending fun-

tions, the number and the oordinates of ontrol points, the knot vetor omponents and the weight

values [4℄. This large amount of parameters makes NURBS urves and surfaes a very versatile

and interesting tool for many mathematial and engineering appliations, not only for the urve
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�tting problem. Performing a urve �tting by means of a NURBS urve is partiularly advan-

tageous beause this geometri entity is ompletely CAD-ompatible, i.e. its parameters an be

transferred through standard format �les to CAD software: in fat, NURBS onstitute one of the

milestones of CAD design and they are widely utilized for reverse engineering problems. However,

the onsiderable quantity of parameters de�ning a NURBS urve also onstitutes the main draw-

bak: it is very hard to properly tune all parameters de�ning the shape of a NURBS urve. In the

last three deades, the massive development of metaheuristi proedures has brought engineers to

apply suh strategies in the framework of the urve and/or surfae �tting problem. As well known,

the most signi�ant advantages of metaheuristis are the abilities of dealing with large set of data

and of exploiting the related information to e�etively explore the searh spae, in order to �nd

the global minimum. The main drawbak is the high omputational time. Conversely, in the ase

of gradient-based strategies, the major drawbaks are related, on the one hand, to the need of an

initial guess for the set of parameters desribing the urve shape and, on the other hand, to the

possibility of falling on a loal minimum. To overome the latter drawbak, Li et al. [5℄ present

a preproessing method, based on the disrete evaluation of the urvature, to provide a starting

Basis Spline (referred as Bspline in the following) knot vetor whih re�ets the shape of the urve

to be approximated. Conerning the utilization of metaheuristis for solving the urve/surfae

�tting problem, Limaiem et al. [6℄ make use of a geneti algorithm (GA) to �nd the optimum value

of the parameters de�ning the approximating urve. In [7℄, a partile swarm optimization (PSO)

algorithm has been employed to approximate the TPs by means of NURBS surfaes. Kang et

al. [8℄ use a sparse optimization to iteratively update the knot vetor length and omponents of the

approximating BSpline. Furthermore, even if oneived for the problem of surfae �tting through

NURBS surfaes, interesting suggestions are provided in [9℄, where some stability requirements

are imposed on the �nal position of ontrol points. Reently, Garia-Capulin et al. [10℄ employed

a Hierarhial GA to optimize both the number and the value of the knots of a Bspline urve.

However, the approah presented in [10℄ is based on the resolution of a bi-objetive unonstrained

optimization problem that needs the de�nition of a ��titious� objetive funtion to eonomize the

number of knots, whih is not related to any geometrial requirement. Moreover, the degree of the

basis funtions is kept onstant in [10℄ and the problem is not stated in the more general framework

of NURBS urves.

As it an be easily dedued from this (non-exhaustive) state of the art on urve �tting in the

mathematial framework of NURBS representation, the main limitations and drawbaks hara-

terising the vast majority of the studies on this topi are essentially two:

• the lak of a proper problem formulation (without onsidering arbitrary penalization oe�-

ients, whih must be de�ned by the user and that are problem-dependent);

• the lak of a very general numerial strategy, able to simultaneously optimize the number as

well as the value of the onstitutive parameters (i.e. the design variables) de�ning the shape
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of the NURBS urve.

To overome the previous restritions, in this work, an innovative approah to the urve �tting

problem is proposed. A new formulation of the mathematial problem has been developed: the

urve �tting problem is stated as a Constrained Non-Linear Programming Problem (CNLPP) by

introduing a onstraint on the maximum value of the urvature.

In this study, the urve �tting problem is solved in the framework of NURBS urves. The

main idea is to keep all the parameters de�ning the NURBS urve as design variables in order

to state the urve �tting problem in the most general sense. Nevertheless, this fat implies some

onsequenes of paramount importane, onstituting just as many di�ulties in solving the related

CNLPP.

• When the urve �tting problem is formulated by inluding the number of ontrol points and

the degree of the basis funtions among the unknowns, the overall number of design variables

(i.e. the overall number of parameters de�ning the shape of the urve) for the problem at

hand is not �xed a-priori : hene, the resulting CNLPP is de�ned over a searh spae of

variable dimension.

• The optimization variables of the CNLPP are of di�erent nature (ontinuous and disrete).

• The numerial strategy hosen to fae suh a problem must be able to handle design variables

of di�erent nature and to optimize, at the same time, the dimension of the design domain

as well as the value of eah onstitutive parameter of the NURBS urve.

This kind of problems is referred as optimization of �modular systems" in bibliography, see [11℄.

Here, the numerial strategy onsidered for the solution searh of CNLPP of modular systems is

based on an improved GA [11, 12, 13℄, able of dealing with optimization problems with �variable

number of design variables".

The paper is organized as follows: the general theoretial framework of NURBS urves is

brie�y disussed in setion 2. In setion 3, the new formulation for the urve �tting problem is

introdued: the problem variables are highlighted and the objetive funtion is arefully explained,

together with the optimization onstraint. Setion 4 fouses on the main features of the onsidered

numerial strategy, whilst the numerial results are presented and disussed in setion 5. Finally,

setion 6 ends the paper with some onlusive remarks and perspetives.

2 Theoretial Framework

In this setion, the fundamentals of the NURBS urves theory are brie�y realled. Aording to

the notation introdued in [4℄, the parametri impliit form of a NURBS urve is:

C(u) =

n∑

i=0

Ri,p(u)Pi, (1)

4



where C(u) = {x(u), y(u), z(u)} are the Cartesian oordinates of the urve, whilst Ri,p(u) is

the generi rational basis funtion having the form

Ri,p(u) =
Ni,p(u)wi

∑n
j=0 Nj,p(u)wj

. (2)

In Eqs. (1) and (2), u is a dimensionless parameter de�ned in the range [0, 1], Ni,p(u) are the basis

funtions, reursively de�ned aording to Bernstein polynomials, p is the maximum degree, wi

are the weights and Pi = {xi, yi, zi} the Cartesian oordinates of the ontrol points. The set of

the (n + 1) ontrol points form the so-alled ontrol polygon. The blending funtions Ni,p(u) are

de�ned as

Ni,0(u) =

{

1, if Ui ≤ u < Ui+1,

0, otherwise,
(3)

Ni,q(u) =
u− Ui

Ui+q − Ui
Ni,q−1(u) +

Ui+q+1 − u

Ui+q+1 − Ui+1
Ni+1,q−1(u), q = 1, ..., p, (4)

where Ui is the i-th omponent of the following non-periodi non-uniform knot vetor :

U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, Up+1, . . . , Um−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}. (5)

It is noteworthy that the size of the knot vetor is m+ 1,

m = n+ p+ 1. (6)

The knot vetor is a non-dereasing sequene of real numbers that an be interpreted as a disrete

olletion of values of the dimensionless parameter u splitting the urve in ars. The omponents

of U are alled knots and eah knot an have a multipliity λ. One basi property of a NURBS

urve is related to the ontinuity and di�erentiability of the basis funtion Ni,p(u) at a knot: it is

p−λ times ontinuously di�erentiable. Thus, inreasing the degree inreases the ontinuity, whilst

inreasing the knot multipliity dereases the ontinuity. It is evident that the knot vetor strongly

a�ets the basis funtions and, aordingly, the shape of a NURBS urve. For a deeper insight in

the matter, the reader is addressed to [4℄.

3 Mathematial Formulation of the Curve Fitting Problem

In this setion, the urve �tting problem is stated as a CNLPP and it is formulated in the most gen-

eral ase, i.e. by onsidering the full-set of design variables desribing the shape of the parametri

urve.

Let us onsider the lassial form of the urve �tting problem, namely

min
x

f(x), f =

µ
∑

k=0

‖C(uk)−Qk‖2. (7)
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In Eq. (7), (µ + 1) is the number of TPs, Qk the generi k-th point, Qk = {xk, yk, zk} are the

Cartesian oordinates of the TPs, while C(uk) = {Cx(uk),

Cy(uk), Cz(uk)} are their ounterpart belonging to the parametri urve when the dimensionless

parameter u gets the value uk. In the same equation, vetor x ollets all the optimization variables,

i.e. the full set of parameters (of di�erent nature) de�ning the shape of the urve. In the most

general ase, when the parametri urve of Eq. (7) is represented in the mathematial framework

of NURBS basis funtions, its shape depends upon the following parameters:

• integer parameters, i.e. the number of ontrol points n+ 1, the number of knots m+ 1 and

the degree of the blending funtions p;

• ontinuous parameters, namely the non-dereasing sequene of omponents of the knot vetor

Uj , j ∈ [p+ 1,m− p− 1], the oordinates of the ontrol points Pi = {xi, yi, zi}, i ∈ [0, n],

the weights values wi, i ∈ [0, n] and the set of suitable values of the dimensionless parameter

of the urve uk, k ∈ [0, µ].

Firstly, let us onsider the integer parameters: Eq. (6) gives the relationship amongm, p and n.

In standard approahes [1, 2, 3, 5℄, the maximum ontrol point index n is �xed a-priori, while the

value of p is hosen as ompromise between auray and noise introdution. Then, the maximum

index of the knot vetor omponents is dedued aordingly. Unlike standard approahes, no

assumptions are made on the integer parameters of a NURBS urve in this work. In partiular, m

and p are inluded into the vetor of design variables, whilst n will be alulated aording to Eq.

(6).

Seondly, let us onsider the set of ontinuous parameters. The uk values of the urve dimen-

sionless parameters are alulated through the hord length method [4℄, so they are no longer design

variables. In partiular, the hord length LTP of the urve an be de�ned in terms of Eulidean

distane among onseutive TPs,

LTP =

µ−1
∑

k=0

‖Qk+1 −Qk‖. (8)

Assumed that u0 = 0 and uµ = 1, the general parameter uk an be omputed through

uk+1 = uk +
‖Qk+1 −Qk‖

LTP
, k = 0, ..., µ− 2. (9)

For more details on the hord length method, the interested reader is addressed to [4℄.

Moreover, the optimum value of the ontrol points oordinates an be obtained through the

analytial approah of Ueng et al. [2℄. Let XP ,YP ,ZP ∈ R
n+1

be olumn vetors olleting the

x, y and z oordinates of the ontrol points and XQ,YQ,ZQ ∈ R
µ+1

the ounterparts for TPs.

Furthermore, matrix [A] ∈ R
(µ+1)×(n+1)

an be de�ned as

Ak,i = Ri,p(uk), k = 0, ..., µ+ 1, i = 0, ..., n+ 1, (10)

and matrix [B] ∈ R
(n+1)×(n+1)

as

[B] =
(
[A]T [A]

)−1
. (11)
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Therefore, the following proposition applies.

Theorem 1 For a NURBS urve of assigned degree p, number of ontrol points (n + 1), knot

vetor U and weights wi (i = 0, ..., n), the ontrol point oordinates minimising the ost funtion

f of problem (7) are

XP = [B][A]TXQ, YP = [B][A]TYQ, ZP = [B][A]TZQ. (12)

Proof. The proof is provided here for the oordinate x and an be easily extended to other

oordinates. Sine the objetive funtion f is onvex (in terms of ontrol points oordinates), a

neessary and su�ient ondition for getting the minimum is

∂f

∂xl
= 0, ∀l = 0, ..., n. (13)

After few simple passages, the previous relationship an be written as

∑µ
k=0

[

2 (Cx(uk)− xk)
∂Cx(uk)

∂xl

]

= 0,

∑µ
k=0 [(

∑n
i=0 Ri,p(uk)xi − xk)Rl,p(uk)] = 0,

∑µ
k=0

∑n
i=0 Rl,p(uk)Ri,p(uk)xi =

∑µ
k=0 Rl,p(uk)xk, ∀l = 0, ..., n

(14)

The last relation of Eq. (14) must be satis�ed for eah ontrol point and an be stated in a more

ompat form:

[A]T [A]XP = [A]TXQ. (15)

Finally, the inversion of matrix

(
[A]T [A]

)
allows for obtaining the vetor XP .

It is noteworthy that matrix

(
[A]T [A]

)
ould have some almost null eigenvalue, so its inversion

ould be ill-onditioned. In this paper, the inversion has been performed by means of Moore-

Penroseâ��s pseudo-inverse matrix [2℄, in order to overome this issue.

A quik glane to Eqs. (10)-(12) su�es to dedue that the Cartesian oordinates of the

ontrol points are a�eted by the other parameters of the NURBS urve, so they are no longer

design variables but they an be interpreted as derived quantities. More preisely, matrix [A]

depends upon the NURBS blending funtions, hene its terms depend on the value of both integer

and ontinuous variables, i.e. m, p, Uj and wi, as well as on the uk values. As a onsequene of

the previous onsiderations, design variables an be ranged in two vetors ξ1 and ξ2:

• ξ1 ollets the integer variables, i.e. the knot vetor maximum index m and the urve degree

p;

• ξ2 ollets ontinuous variables, i.e. the knot vetor non-trivial omponents Uj and the

weights wi.

Mathematially speaking, vetors ξ1 and ξ2 are represented as

ξ1 = {m, p} ∈ N
2, (16)
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ξ2 = {Up+1, . . . , Um−p−1, w0, . . . , wm−p−1} ∈ R
Nv , (17)

where

Nv = 2m− 3p− 1. (18)

(Nv + 2) is the overall number of design variables.

As previously stated, in this work, the urve approximation problem is still framed as an opti-

mization problem, but a more general formulation is introdued. On the one hand, the objetive

funtion has been modi�ed with respet to Eq. (7), namely:

min
ξ1,ξ2

Φ(ξ1, ξ2) = min
ξ1,ξ2

[∑µ
k=0 ‖C(uk)−Qk‖2

L2
TP

]1/m

. (19)

In Eq. (19), the parameter 1/m appears as power of the sum of squares of Eulidean distanes

divided by the square of hord length of the urve LTP , refer to Eq. (8). On the other hand, an

optimization onstraint on the maximum radius of urvature of the NURBS urve is introdued: in

real-world engineering problems, suh a requirement is often imposed to improve the smoothness

of the approximating urve. This onstraint an be stated as:

g(ξ1, ξ2) =
χmax − χadm

χadm
, (20)

with

χmax = max
u

χ(u), (21)

χ(u) =
‖C′(u) ∧C′′(u)‖

‖C′(u)‖3 . (22)

In Eq. (20), χadm is the admissible value for the urvature whih must be established aording

to the problem at hand. It should be notied that the purpose of the onstraint on the maximum

urvature of the NURBS urve is twofold: on the one hand, it onstitutes a preise tehnologial

requirement that a�ets the �nal shape of the urve; on the other hand, it allows for de�ning a

well-posed mathematial problem, beause it limits the growth of the degree p of the blending

funtions during optimization.

Remark In order to understand the latter assertion, let us onsider a very simple parametri

urve γ in the x− y plane, namely,

x(t) = t, y(t) = tp, (23)

For this ase, the urvature χγ(t) writes

χγ(t) =
|p(p− 1)tp−2|

(
1 + p2t2(p−1)

)3/2
. (24)
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Figure 1: Trend χγmax vs p for the urve γ

Of ourse, χγ(t) depends upon the loal absissa t as well as on the urve degree p. The maximum

value of χγ(t) an be alulated for di�erent values of p. The result of suh a omputation is

synthetially illustrated in Fig. 1. As it an be dedued from Fig. 1, inreasing the degree implies

a higher value of the maximum urvature value for a simple polynomial urve as γ. Being the

NURBS urves de�ned through speial polynomial-based blending funtions, intuitively it an

be stated that imposing a onstraint on the maximum urvature value means also limiting the

maximum urve degree.

Finally, the urve �tting problem an be stated in the standard form of a CNLPP of modular

systems [11℄ as follows:

min
ξ1,ξ2

Φ (ξ1, ξ2) ,

subjet to:







g(ξ1, ξ2) ≤ 0,
ξ1−lb ≤ ξ1 ≤ ξ1−ub, ξ1 ∈ N

2,
ξ2−lb ≤ ξ2 ≤ ξ2−ub, ξ2 ∈ R

Nv .

(25)

In Eq. (25), ξi−lb and ξi−ub (i = 1, 2) represent the lower and upper bounds, respetively, of

the vetor ξi.

Remark To the best of the authors' knowledge, no analytial solutions are available in literature

for problem (25). This is essentially due to the following di�ulties.

• The problem aims at optimizing both disrete and ontinuous variables: pure gradient-based

methods are automatially disarded and hybrid strategy must be onsidered.

• Sine the dimension of the ontinuous design variables vetor ξ2 depends on the disrete

design variables olleted in ξ1, problem (25) is stated on a domain having variable dimension,

see Eqs. (16), (17) and (18). To the best of the authors' knowledge, pure gradient-based

methods are not able to provide the solution in suh ases.

• When onsidering the full set of design variables, both the objetive and the urvature

onstraint funtions beome non-linear and non-onvex.
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Sine the solution annot be provided in a losed form, an approximate, i.e. pseudo-optimal, solu-

tion of problem (25) an be found by making use of a suitable meta-heuristi (a geneti algorithm)

ombined with a lassi gradient-based method. The problem formulation (25) together with the

speial features of the proposed algorithm (see setion 4) allows for determining a pseudo-optimal

feasible solution.

Furthermore, the unusual form of objetive funtion (19) allows the algorithm to automatially

determine the best ompromise between the number of knot vetor omponents (and impliitly

the number of design variables) and the preision of the solution. Let onsider Eq. (19): assume

ϕ =

∑µ
k=0 ‖C(uk)−Qk‖2

L2
TP

. During the �rst iterations, it ould happen either ϕ > 1 or ϕ < 1 if

the least square distane is greater or smaller than LTP , respetively. If ϕ > 1, the number of

knot vetor omponents is enouraged to quikly grow in order to minimize the overall objetive

funtion. Consequently, in the next iterations, the algorithm will tend towards a solution with

ϕ < 1. So, after a ertain number of iterations, the ase ϕ < 1 will beome predominant and,

from that moment, inreasing the number of knot vetor omponents will not neessarily imply

better performanes: in fat, inreasing the parameter m means getting a lower value of ϕ < 1

but, meanwhile, a dereasing exponent 1/m. Therefore, the best value of m will be determined as

a result of the ompromise between these two ontrasting e�ets.

4 Numerial Strategy

Considering the mathematial features of problem (25), a hybrid optimization tool omposed of

the new version of the GA BIANCA [13℄, interfaed with the MATLAB fminon algorithm [14℄,

has been developed, see Fig. 2.

Figure 2: Overview of the global numerial strategy for the urve �tting problem
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The GA BIANCA was already suessfully applied to solve di�erent kinds of real-world engi-

neering problems, e.g. [15, 16, 17, 18, 19, 20℄. As shown in Fig. 2, the optimization proedure for

problem (25) is split in two phases. During the �rst phase, solely the GA BIANCA is utilized to

perform the solution searh and the full set of design variables is taken into aount.

BIANCA is a speial GA able to deal with CNLPPs haraterized by a variable number of

design variables, i.e. optimization problems of modular systems. This goal an be ahieved thanks

to the original features of suh a GA. Indeed, unlike the vast majority of GAs reported in literature

(whih are often haraterized by a mono-hromosome algebrai struture), in BIANCA the infor-

mation is organized in a genome (or genotype) omposed of hromosomes whih are in turn made

of genes (eah gene odes a spei� design variable). When the objet of the optimization problem

is a modular system, eah onstitutive module is represented by a hromosome, while eah gene

omposing a hromosome odes a design variable related to the module.

In agreement with the paradigms of natural sienes, individuals haraterized by a di�erent num-

ber of hromosomes (i.e. modular strutures omposed of a di�erent number of modules) belong

to di�erent speies. BIANCA has been oneived for rossing also di�erent speies, thus mak-

ing possible (and without distintion) the simultaneous optimization of speies and of individuals.

This task an be attained thanks to some speial geneti operators that have been implemented

to perform the reprodution phase between individuals belonging to di�erent speies, see Fig. 3.

Moreover, in BIANCA the information restrained in the population is exploited in order to allow

for a deep mixing of the individual genotype: in fat, all the geneti operators at on every single

gene of the individual, so allowing for a true independent evolution of eah design variable. For

more details on the GA BIANCA the reader is addressed to [13℄.

In this study, the improved version of the GA BIANCA has been reoded into the MATLAB

Figure 3: The geneti algorithm BIANCA: interations of main operators
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environment. Even though this hoie penalizes the omputational time, the utilization of the

MATLAB version of the GA is easier when ompared to the anient FORTRAN version. In ad-

dition, thanks to the MATLAB strutured variables, the arhiteture of the individual's genotype

has been enrihed and generalized as illustrated in Fig. 4. Without loss of generality, let Nm

Figure 4: The general individual's struture for the MATLAB version of BIANCA

be the number of di�erent types of modules for the problem at hand. Eah individual (i.e. a

point in the design spae) is haraterized by a genome omposed of Nm + 1 setions having a

preise hierarhy. The �rst setion (i.e. the standard setion) is linked to the non-modular part

of the problem and its genotype is split in two parts: the �rst one is omposed of a �xed number

(nc−stand) of hromosomes and eah hromosome is made of ng−stand genes. The seond part is

omposed of only one hromosome having Nm genes whih an be related (or not) to the values of

some genes of the �rst part. This �rst setion undergoes the ation of the standard GA operators,

see Fig. 3. As shown in Fig. 4, eah gene belonging to the mono-hromosome struture of the

standard setion is related to the number of modules nc−mod(k) of the generi k-th modular setion,

(k = 1, , Nm). Aordingly, eah one of the remaining Nm modular setions is haraterized by a

genotype omposed of nc−mod(k) hromosomes and ng−mod(k) genes. Of ourse, the reprodution

between speies by means of the new geneti operators [13℄ is allowed only on the modular setions.

The struture of the individual's genotype for problem (25) is illustrated in Fig. 5. The �rst part

of the standard setion is haraterized by one hromosome omposed of two genes oding the

design variables m and p, respetively. The seond part of the standard setion is onstituted of a

single hromosome with two genes oding the number of non-trivial omponents of the knot vetor

(the number of modules of the �rst type, i.e. nc−mod(1) = m− 2p− 1) and the number of weights

(the number of modules of the seond type, i.e. nc−mod(2) = m− p). Aordingly, the individual's

genome possesses two modular setions: the �rst one is omposed of m− 2p− 1 hromosomes with

12



Figure 5: The individual's struture for the urve �tting problem

only one gene oding the value of the knot vetor omponent Uj , while the seond one is made of

m− p hromosomes with a single gene oding the value of the weight wk in eah ontrol point.

Due to the strong non-linearity of problem (25), the aim of the geneti alulation is to provide

a potential sub-optimal point in the design spae, whih onstitutes the initial guess for the sub-

sequent phase, i.e. the loal optimization, where the MATLAB fminon gradient-based algorithm

is employed to �nalize the solution searh. During this seond phase only the omponents of the

knot vetor and the weights are onsidered as design variables, see Fig. 2.

5 Studied Cases and Results

In this setion, some meaningful numerial examples are onsidered in order to prove the e�e-

tiveness of the proposed approah when dealing with the problem of the urve �tting. The set of

geneti parameters tuning the behavior of the GA (for eah ase) is listed in Table 1.

Parameter Value

Number of populations (Npop) 1

Number of individuals (Nind) 250

Number of generations (Ngen) 320

Cross-over probability (pcross) 0.85

Gene mutation probability (pmut) 1/Nind

Chromosome shift probability (pshift) 0.5

Chromosome number mutation probability (pmut−chrom) (nchub
− nchlb

)/Nind

Seletion Operator Roulette wheel

Elitism Operator Ative

Table 1: Setting of geneti parameters

In addition, the handling of optimization onstraints is arried out through the automati dy-

nami penalization (ADP) tehnique, see [21℄. It is noteworthy that the number of both individuals

and generations are hosen to get Nind ×Ngen = 80000 funtion evaluations (as it is usual in lit-
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erature [13℄) for eah onsidered problem. Furthermore, Table 2 summarizes the design variables

together with their bounds for problem (25).

Problem plb pub mlb mub Ujlb Ujub wilb wiub

The Desartes' folium 1 6 9 38 0 1 1 3

The four-leaf lover 1 8 8 67 0 1 1 3

The �ame 1 8 100 130 0 1 1 3

The tennis ball stithing 1 8 8 67 0 1 1 3

The paddle urves 1 8 9 37 0 1 1 3

Table 2: Setting of variables boundaries.

As far as onerns the fminon optimization tool employed for the loal solution searh at

the end of the �rst step, the numerial algorithm hosen to arry out the alulations is the

ative-set method with non-linear onstraints. For more details on the gradient-based approahes

implemented into MATLAB, the reader is addressed to [14℄. The numerial results, for eah ase,

are olleted in Table 3 and Table 4.

Curve p n m LTP Φ (ξ1, ξ2) g(ξ1, ξ2)

Desartes'folium 4 15 20 3.01 0.4684 −7.00× 10−2

Four-leaf lover 5 33 39 7.75 0.7572 −6.00× 10−4

Flame 4 109 114 284.66 0.9232 −1.42× 10−1

Tennis ball stithing 6 39 46 33.78 0.6235 −1.76× 10−2

Paddle - 1 2 10 13 44.68 0.4522 −8.20× 10−3

Paddle - 2 3 7 11 58.85 0.3979 −1.00× 10−3

Paddle - 3 2 6 9 83.92 0.2981 −7.00× 10−4

Paddle - 4 4 9 14 99.63 0.4455 −8.91× 10−2

Paddle - 5 2 10 13 119.26 0.4059 −2.28× 10−2

Paddle - 6 5 8 14 130.33 0.4775 −4.70× 10−3

Paddle - 7 3 10 14 141.28 0.4229 −4.70× 10−2

Paddle - 8 3 10 14 129.94 0.4697 −5.95× 10−2

Paddle - 9 3 10 14 105.72 0.4285 −9.23× 10−2

Paddle - 10 2 11 14 40.37 0.6360 −4.68× 10−2

Paddle - t1 2 16 19 475.36 0.5552 −1.00× 10−4

Paddle - t2 2 14 17 548.43 0.5051 −1.00× 10−4

Table 3: Geneti Algorithm: Numerial Results.

Here, it is remarked that the objetive funtion of the gradient based algorithm is provided by

Φgrad (ξ2) = L2
TPΦ (ξ1, ξ2)

m , (26)

that is the lassi objetive funtion for the urve �tting problem. It should be highlighted that

the urrent objetive funtion does not depend any more upon the disrete NURBS parameters:

they have been optimized through the geneti step and they are kept onstant in the gradient step.
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Curve µ+ 1 Φgrad (ξ2) daverage
Desartes'folium 50 1.60 × 10−6 2.53× 10−5

Four-leaf lover 211 6.67 × 10−4 1.23× 10−4

Flame 315 7.16 × 10−1 2.69× 10−3

Tennis ball stithing 201 3.98 × 10−7 3.14× 10−6

Paddle - 1 86 5.94 × 10−2 2.83× 10−3

Paddle - 2 97 1.19 × 10−1 3.56× 10−3

Paddle - 3 93 1.26 × 10−1 3.82× 10−3

Paddle - 4 89 1.10 × 10−1 3.72× 10−3

Paddle - 5 86 1.12 × 10−1 3.89× 10−3

Paddle - 6 93 5.21 × 10−1 7.76× 10−3

Paddle - 7 90 1.13 × 10−1 3.73× 10−3

Paddle - 8 89 3.94 × 10−1 7.05× 10−3

Paddle - 9 83 7.43 × 10−2 3.28× 10−3

Paddle - 10 78 4.21× 100 2.63× 10−2

Paddle - t1 89 5.40× 100 2.61× 10−2

Paddle - t2 88 5.00× 100 2.54× 10−2

Table 4: Gradient Algorithm: Numerial Results.

Finally, in Table 4, the quantity daverage is de�ned as:

daverage =
Φ(ξ2)

1/2
grad

µ+ 1
, (27)

whih is an average distane between the TPs and the �tting urve, so daverage gives an idea of

the fairness of the method.

5.1 The Desartes' Folium

The Desartes' Folium is an open plane urve, whose parametri representation is

x(t) = at(t− 1), y(t) = at(t− 1)(2t− 1). (28)

The set of µ+ 1 = 50 TPs is extrated from Eq. (28) by setting a = 2 and it is shown in Fig.

6a. As it an be seen from the graphi results (Fig. 6b), the presene of the loop does not a�et

the �nal quality of the approximating urve. From Table 3, it an be notied that, due to the new

form of the objetive funtion and to the presene of the onstraint on the maximum urvature,

the optimum values of p and m are automatially determined by the GA beause Eqs. (19) and

(20) onstitute impliit restritions on both the degree of the basis funtions and on the number

of omponents of the knot vetor.

5.2 The Four-Leaf Clover

The Four-Leaf Clover is a plane losed urve desribed by the parametri equation

x(θ) = cos(θ)sin(2θ), y(θ) = sin(θ)sin(2θ). (29)

15



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 

(a) Target points.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

 

 

target points
approx. curve
control points

(b) Approximating urve.

Figure 6: The Desartes' Folium

In this ase, µ+1 = 211 TPs have been extrated from the previous equation. The optimum �tting

urve is illustrated in Fig. 7b, while the related numerial results are listed in Table 3 and Table

4. Regarding the optimum value of p and m, the same onsiderations as those of example 5.1 an

be repeated here.
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(b) Approximating urve.

Figure 7: The four-leaf lover

5.3 The Flame

The third test ase is a non-parametrized plane losed urve. 315 TPs have been sampled by the

image of a �ame, see Fig. 8a. This is a very hallenging test ase beause of the ompliated shape

and the derivatives disontinuity. Indeed, the boundaries of the two �rst design variables have been

broadened, in order to allow the urve to orretly evolve (see Table 2).

It must be pointed out that the onstraint on the urvature is weaker than the previous ases,

see Table 3: this is due, of ourse, to the presene of the uspids. Only for this example, the

resulting knot vetor and weights are provided in Appendix to highlight the e�ieny of the

adopted strategy: some omponents are marked in bold font beause they are very lose, even

the same. This fat re�ets a well known NURBS property: if a knot has a multipliity equal to

λ, then the urve is p − λ times ontinuously di�erentiable at the knot. As listed in Appendix,
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Figure 8: The �ame

the NURBS �tting urve is haraterized by weights of di�erent value: in partiular, suh weights

get higher values for the ontrol points loated in the neighborhood of the usps of the �ame, see

Fig. 9. However, all the weights values are lose to the unity, whih means that the usps an be
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Figure 9: Detail on the NURBS approximating the �ame

properly desribed through a smart hoie of the knot vetor omponents.

5.4 The Tennis Ball Stithing

The tennis ball stithing is a three-dimensional parametri urve. It has been hosen in order to

provide a 3D test ase for the urve �tting problem. The parametri form is:

x(t) = acos(t) + bcos(3t), y(t) = asin(t)− bsin(3t), z(t) = csin(2t). (30)
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The µ+ 1 = 201 TPs are extrated from Eq. (30) by setting a = 2, b = 1 and c = 2
√
2. The TPs

as well as the optimum �tting urve are illustrated respetively in Fig. 10a and Fig. 10b.
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(b) Approximating urve.

Figure 10: The tennis ball stithing

5.5 The Paddle

In this subsetion, a real-world engineering problem is faed. A paddle has been sanned and all

points representing its external surfae are shown in Fig. 11. Hene, twelve subsets of TPs have

been extrated (see Fig. 12a): eah set is supposed to onstitute a primitive three-dimensional

urve that will be employed during the CAD reonstrution of the paddle. For eah urve, a

Figure 11: Starting data set for the paddle problem

tehnologial onstraint on the urvature has been onsidered, as shown in Table 5.

Here, the e�etiveness of the presented method is remarked through this real-world engineering

appliation, sine a ompliated set of sanned points an be easily treated and the resulting

NURBS urves restrain all the neessary information in order to rebuild the paddle, by adding a

tehnologial onstraint. Fig. 12b gives a global overview of the shape of the paddle primitive

urves provided by the proposed optimization proedure.
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Curve χadm

Desartes'folium 7.0000

Four-leaf lover 6.0000

Flame 70.0000

Tennis ball stithing 0.5500

Paddle - 1 0.2000

Paddle - 2 0.2000

Paddle - 3 0.1700

Paddle - 4 0.9000

Paddle - 5 0.9000

Paddle - 6 1.0000

Paddle - 7 0.2500

Paddle - 8 0.9000

Paddle - 9 0.8000

Paddle - 10 0.5500

Paddle - t1 0.0150

Paddle - t2 0.0120

Table 5: Maximum allowed urvature values

5.6 Disussion on the Presented Methodology

In this setion, some remarks inherent to the parameters tuning the behavior of the GA (to be

set by the user) are disussed. A partiular attention is dediated to the de�nition of the bounds

for the design variables, whih have been established aording to the following onsiderations.

Continuous parameters bounds are simple to set.

• The knot vetor omponents are de�ned between 0 and 1, so Ujlb = 0 and Ujub = 1.

• The weights of the NURBS urve an get, a priori, any real value in the range ]0,∞[. After

a preliminary hek on the �rst three proposed benhmarks (the Desartesâ��s folium, the

Four-Leaf Clover and the Flame problems), it was observed that the urve shape is a�eted

by the ratio wub/wlb rather than by the single value of the weight related to eah ontrol

point. Moreover, as learly shown in the Appendix of the paper, the weights are responsible

of minor adjustments, whih beome signi�ant only in presene of singularities (as in the

ase of the Flame problem). Taking into aount these onsiderations, it has been set wlb = 1

and wub = 3.

Unlike weights, the disrete parameters have a major in�uene on the shape of the NURBS urve

and their bounds must be arefully set.

• The minimum degree is, of ourse, plb = 1. The maximum degree has been �xed in order

to avoid the introdution of noise that an beome important when the upper bound is not

properly set. Aordingly, the maximum degree has been set to pub = 8 for all the examples

with the exeption of the �rst test ase (the simplest one), where pub = 6.
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Figure 12: The paddle

• In order to establish lower and upper bounds for the number of the knot vetor omponents

(m + 1), the user should think about an ideal number of ontrol points tuning the shape

of the approximating NURBS urve. Indeed, this problem applies also in ase of standard

urve �tting methods (whih are not apable of automatially optimize disrete parameters),

where the user does not dispose of any riterion to hoose a suitable number of ontrol points.
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In the framework of the proposed method, the speial GA utilized to perform the solution

searh for the urve �tting problem (refer to Eq. (25)) is able to automatially determine the

optimum number of both knot vetor omponents and degree of the basis funtions, thus the

related optimum number of ontrol points, i.e. nopt = mopt−1−popt. Of ourse, the bounds

on the variable m an be inferred aording to empirial rules (taken from pratie), utilized

to de�ne a riterion for setting the minimum and maximum number of ontrol points. In

partiular, the bounds on n an be set aording to the following rules:

1) usually, the number of target points (µ+1) should be, at least, three times the number

of ontrol points (in order to ensure redundany). Therefore, the average number of

ontrol points an be assumed equal to (µ+ 1)/3;

2) a suitable interval an be de�ned around this average value. In partiular, the maximum

number of ontrol points must be lower than the number of target points, whilst the

minimum one should be always greater or equal to 2. Anyway, regardless the de�nition

of the interval for the variable m, an internal hek (in the GA environment) is always

performed to satisfy the ondition n ≥ 1, thus meaningless situations, e.g. m = 8 and

p = 7, are always disarded.

Sine the proposed hybrid algorithm is very e�ient, it an be asserted that it is not important

to hoose the �right" narrow interval. When the shape of the urve is partiularly omplex and

does not let the user guess the size of the interval, a wider range an be set, being the GA able to

determine automatially the optimum value of the disrete parameters. Finally, it an be stated

that the external user has a lower impat in the ontext of the proposed approah when ompared

to lassial ones.

The previous disussion on the hoie of the bounds for the number of knot vetor omponents

suggests to investigate the sensitivity of the solution to the quantity of TPs. This is an interesting

task that allows for disputing about the robustness and the e�ieny of the methodology. Sine

the amount of parameters to be optimized is high, it is natural to wonder what happens when the

number of data points (TPs) is redued, i.e. when the algorithm bene�ts from less information.

However, some remarks need a speial attention.

Dereasing the number of TPs has a signi�ant impat on the mathematial nature of the urve

�tting problem in the form of the CNLPP (25). If the number of TPs (i.e. data points) is less than

the number of design variables, the related system of equations beomes underdetermined and the

solution is not unique. Conversely, solving the urve �tting problem an be interpreted as �nd-

ing an approximate solution for an overdetermined system of equations. Therefore, talking about

urve �tting when the number of TPs is lower than the number of design variables is meaningless.

Indeed, in this ase, there is not enough information to get a unique solution for the urve �tting

problem.
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Usually, in reverse engineering appliations, the number of data points (retrieved, for instane,

by means of a 3D sanner) is very high. In pratie, the size of points louds an be properly

redued (in order to save memory in data exhange) but a ertain redundany must be guaranteed

in order to approximate the data points with a single (or multiple) CAD entity like a NURBS

urve, tuned by a suitable number of parameters.

Taking into aounts these aspets, a sensitivity analysis to the number of TPs is provided in

the following for the Four-Leaf Clover example (Fig. 13). Solutions depited in Figs. 13b-13d have

been obtained with a dereased number of TPs with respet to the referene solution of Fig. 13a

(see setion 5.2) and by using the same value of maximum allowable urvature (χadm = 6.0000).

Two ases have been onsidered:

a) the bounds of design variables have been hosen aording to the aforementioned empiri

riteria (refer to Fig. 13b and Fig. 13);

b) the bounds of design variables do not hange with respet to the referene ase (Fig. 13d).
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(a) (µ+ 1) = 211, mub = 67.
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(b) (µ+ 1) = 107, mub = 42.
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() (µ+ 1) = 54, mub = 34.
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(d) (µ+ 1) = 54, mub = 67.

Figure 13: Sensitivity to the number of TPs: approximating urves

As it an be inferred from both Fig. 13 and numerial results of Table 6, if the upper bound
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of m is set aording the proposed riterion, the lower is (µ + 1), the lower is the quality of the

solution: the quantity daverage inreases and the approximating NURBS urve is not satisfatory,

in partiular when the number of TPs is redued to 54 (Fig. 13d).

Four-Leaf Clover µ+ 1 mub m Φ (ξ1, ξ2) LTP Φgrad (ξ2) daverage
1 211 67 39 0.7572 7.7516 6.67 × 10−4 1.23× 10−4

2 107 42 28 0.7064 7.7408 1.74 × 10−3 3.91× 10−4

3 54 34 16 0.6875 7.7105 1.07 × 10−1 6.07× 10−3

4 54 67 63 0.3286 7.7105 2.45 × 10−31 9.18 × 10−18

Table 6: Sensitivity to the number of TPs - Numerial results

This fat ours beause the riterion for hoosing the bounds aims at balaning the number

of design variables with the number of TPs, whih makes sense in the ontext of the urve �tting

problem. Nevertheless, when (µ+ 1) = 54, the system beomes undetermined. Atually, sine the

solution is not unique, when the upper bound of m is inreased (Fig. 13d) without onsidering

the proposed empirial rule, the algorithm provides an exellent solution, whih an be seen as the

solution of the related interpolation problem.

Finally, handling data points is an operation that should be arefully assessed: some ruial infor-

mation ould be removed and this operation ould have a high impat on the problem de�nition

(e.g. removing the peaks of singularity in the Flame example an lead to misleading results).

6 Conlusions

In this paper, a general mathematial formalization of the urve �tting problem together with an

original optimization proedure to perform the solution searh in the framework of NURBS urves

has been presented.

The proposed approah relies on the following features.

1. A new expression of the objetive funtion, together with a suitable onstraint on the max-

imum value of the urvature, has been introdued. These modi�ations imply a restrition

on the integer design variables de�ning the shape of the NURBS urve. Moreover, the prob-

lem is stated as a CNLPP in whih the number of unknowns is inluded among the design

variables. Therefore, the problem of urve �tting is formulated in the most general ase

by onsidering as design variables both integer (the number of knots and the degree of the

blending funtions) and ontinuous (the omponents of the knot vetor and the weights)

parameters tuning the NURBS urve. These aspets are of paramount importane, sine, in

this bakground, the related CNLPP is de�ned over a domain of variable dimension, thus

requiring a speial optimization proedure to �nd a feasible solution.
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2. The non-onvexity of the problem, together with a de�nition domain of variable dimension,

justi�es the use of non-analytial methods. To this purpose, the solution searh for the

urve �tting problem is performed by means of a hybrid optimization tool (a GA oupled to

a gradient-based method), of whih the kernel is represented by a speial GA able to deal

with CNLPPs haraterized by a �variable number of design variables".

3. The onstraint on the urvature is e�etively handled by the GA through the ADP method

iteratively and automatially, i.e. by exploiting the geneti information restrained within

the population (both feasible and infeasible individuals) at the urrent generation, without

the need of de�ning arbitrary penalty oe�ients at the beginning of the alulation.

The e�etiveness of the proposed approah is proven through some numerial examples fousing on

2D and 3D parametri as well as real-world engineering problems. The presented method an adapt

the approximating urve to imposed level of smoothness, set through the urvature onstraint: in

fat, the algorithm is apable of suessfully approximate both smooth urves and urves with a

drastially disontinuous derivatives. The robustness of the method has been disussed with respet

to the sensitivity to both the boundaries of the design variables and the number of initial target

points. The number of knot vetor omponents, i.e. the parameter that mainly a�ets the �nal

quality of the approximating urve, needs suitable bounds whih an properly set by onsidering

some pratial guidelines provided in this study.
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Appendix : Details of the NURBS Curve of the Flame Prob-

lem

The optimized Knot Vetor for �ame problem:

U = [0, 0, 0, 0, 0, 0.0225, 0.0259, 0.0601, 0.0644, 0.0657, 0.0727,0.0727, 0.0881,
0.0894,0.0894,0.1145, 0.1145, 0.1220, 0.1410, 0.1527,0.1527,0.1527, 0.1638,
0.1753, 0.1778, 0.1833, 0.1904, 0.1934, 0.1934,0.1934, 0.2013, 0.2137, 0.2287,
0.2354, 0.2422, 0.2627, 0.2642, 0.2850, 0.2855,0.2939,0.2944, 0.3054, 0.3327,
0.3457, 0.3535, 0.3633, 0.3692, 0.3743, 0.3750,0.3750, 0.3777, 0.3880, 0.3888,
0.3927,0.3927,0.4161, 0.4161, 0.4327, 0.4405, 0.4547, 0.4595, 0.4736, 0.5001,
0.5075, 0.5148, 0.5362,0.5364,0.5364, 0.5452, 0.5470, 0.5613, 0.5665, 0.5712,
0.5948, 0.5995, 0.6029,0.6032, 0.6054, 0.6153, 0.6191, 0.6206, 0.6310, 0.6451,
0.6505, 0.6516, 0.6829, 0.6872, 0.7094, 0.7106, 0.7309, 0.7503, 0.7614, 0.7722,
0.7859,0.7859, 0.7964, 0.8005, 0.8087, 0.8237, 0.8414, 0.8482, 0.8482, 0.8655,
0.8687, 0.8821, 0.8837, 0.9231,0.9231, 0.9446, 0.9563, 1, 1, 1, 1, 1, ].

The optimized weights vetor for the �ame problem:

w = [1.0029, 0.9997, 0.9992, 0.9857, 1.0179, 0.9971, 1.0009, 0.9978, 1.0109,
0.9895, 1.0040, 1.0111, 0.9769, 0.9893, 1.0297, 1.0127, 0.9786, 0.9974, 0.9847,
1.0164, 1.0162, 0.9817, 1.0005, 1.0005, 0.9965, 1.0023, 1.0000, 1.0071, 0.9898,
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1.0014, 0.9967, 0.9961, 1.0357, 0.9640, 1.0114, 1.0065, 0.9907, 0.9893, 1.0323,
0.9857, 0.9919, 0.9969, 1.0058, 0.9998, 0.9996, 0.9982, 1.0008, 1.0020, 1.0000,
1.0003, 0.9961, 0.9912, 1.0246, 0.9788, 0.9959, 1.0669, 0.9176, 1.0248, 1.0124,
0.9721, 1.0761, 0.8686, 1.0859, 0.9872, 0.9891, 1.0072, 1.0080, 1.0115, 0.9620,
1.0305, 0.9737, 1.0232, 0.9907, 1.0006, 1.0001, 1.0017, 1.0014, 0.9866, 1.0179,
0.9985, 0.9819, 1.0079, 1.0018, 1.0276, 0.9920, 0.8576, 1.1315, 1.1224, 0.8604,
0.9518, 1.0663, 1.0000, 0.9807, 1.0491, 0.9341, 0.9720, 1.0871, 0.9647, 1.0268,
0.9844, 0.9642, 1.0530, 0.9769, 0.9789, 1.0117, 1.0152, 0.9919, 0.9820, 1.0146,
1.0015, ].
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