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Abstract: In the current contribution, prismatic and hexahedral quadratic solid–shell (SHB) finite 

elements are proposed for the geometrically nonlinear analysis of thin structures made of 

functionally graded material (FGM). The proposed SHB finite elements are developed within a 

purely 3D framework, with displacements as the only degrees of freedom. Also, the in-plane 

reduced-integration technique is combined with the assumed-strain method to alleviate various 

locking phenomena. Furthermore, an arbitrary number of integration points are placed along a 

special direction, which represents the thickness. The developed elements are coupled with 

functionally graded behavior for the modeling of thin FGM plates. To this end, the Young modulus 

of the FGM plate is assumed to vary gradually in the thickness direction, according to a volume 

fraction distribution. The resulting formulations are implemented into the quasi-static 

ABAQUS/Standard finite element software in the framework of large displacements and rotations. 

Popular nonlinear benchmark problems are considered to assess the performance and accuracy of 

the proposed SHB elements. Comparisons with reference solutions from the literature demonstrate 

the good capabilities of the developed SHB elements for the 3D simulation of thin FGM plates. 

Keywords: quadratic solid–shell elements; finite elements; functionally graded materials; thin 

structures; geometrically nonlinear analysis 

 

1. Introduction 

Over the last decades, the concept of functionally graded materials (FGMs) has emerged, and 

FGMs were introduced in the industrial environment due to their excellent performance compared 

to conventional materials. This new class of materials was first introduced in 1984 by a Japanese 

research group, who made a new class of composite materials (i.e., FGMs) for aerospace applications 

dealing with very high temperature gradients [1,2]. These heterogeneous materials are made from 

several isotropic material constituents, which are usually ceramic and metal. Among the many 

advantages of FGMs, their mechanical and thermal properties change gradually and continuously 

from one surface to the other, which allows for overcoming delamination between interfaces as 

compared to conventional composite materials. In addition, FGMs can resist severe environment 

conditions (e.g., very high temperatures), while maintaining structural integrity. 

Thin structures are widely used in the automotive industry, especially through sheet metal 

forming into automotive components. In this context, the finite element (FE) method is considered 

nowadays as a practical numerical tool for the simulation of thin structures. Traditionally, shell and 

solid elements are used in the simulation of linear and nonlinear problems. However, the simulation 

results require very fine meshes to obtain accurate solutions due to the various locking phenomena 



Materials 2018, 11, x FOR PEER REVIEW  2 of 17 

 

that are inherent to these elements, which lead to high computational costs. To overcome these 

issues, many researchers have devoted their works to the development of locking-free finite 

elements. More specifically, the technology of solid–shell elements has become an interesting 

alternative to traditional solid and shell elements for the efficient modeling of thin structures (see, 

e.g., [3–8]). Solid‒shell elements are based on a fully 3D formulation with only nodal displacements 

as degrees of freedom. They can be easily combined with various fully 3D constitutive models (e.g., 

orthotropic elastic behavior, plastic behavior), without any further assumptions, such as plane-stress 

assumptions. Based on the reduced-integration technique (see, e.g., [9]), they are often combined 

with advanced strategies to alleviate locking phenomena, such as the assumed-strain method (ASM) 

(see, e.g., [4]), the enhanced assumed strain (EAS) formulation (see, e.g., [10]), and the assumed 

natural strain (ANS) approach (see, e.g., [11]). Several FE formulations for the analysis of thin FGM 

structures have been developed in the literature. They can be classified into three main formulations: 

The shell-based FGM FE formulation, the solid-based FGM FE formulation, and the 

solid–shell-based FE formulation. The first formulation is considered as the most widely adopted 

approach for the modeling of 2D thin FGM structures. However, this approach requires specific 

kinematic assumptions in the FE formulation, such as the classical Kirchhoff plate theory, first and 

high-order shear theories, plane-stress assumption (see, e.g., [12–15]). The second approach is based 

on a 3D formulation of solid elements, in which a fully 3D elastic behavior for FGMs is adopted. In 

such an approach, some specific kinematic assumptions for thin plates, such as the classical 

Kirchhoff plate theory and the von Karman theory, are also adopted in the FE formulation (see, e.g., 

[16–18]). The third approach is based on the concept of solid–shell elements, which are combined 

with FGM behavior. Few works in the literature have investigated the behavior of thin FGM plates 

with this approach. Among them, the work of Zhang et al. [19], who investigated the 

piezo-thermo-elastic behavior of FGM shells with EAS-ANS solid–shell elements. Recently, Hajlaoui 

et al. [20,21] studied the buckling and nonlinear dynamic analysis of FGM shells using an EAS 

solid–shell element based on the first-order shear deformation concept. 

In this work, quadratic prismatic and hexahedral shell-based (SHB) continuum elements, 

namely SHB15 and SHB20, respectively, are proposed for the modeling of thin FGM plates. SHB15 is 

a fifteen-node prismatic solid‒shell element with a user-defined number of through-thickness 

integration points, while SHB20 is a twenty-node hexahedral solid‒shell element with a user-defined 

number of through-thickness integration points. These solid‒shell elements have been first 

developed in the framework of isotropic elastic materials and small strains (see [22]), and recently 

coupled with anisotropic elastic–plastic behavior models within the framework of large strains for 

the modeling of sheet metal forming processes [23]. In this paper, the formulations of the quadratic 

SHB15 and SHB20 elements are combined with functionally graded behavior for the modeling of 

thin FGM plates. To achieve this, the elastic properties of the proposed elements are assumed to vary 

gradually in the thickness direction according to a power-law volume fraction. The resulting 

formulations are implemented into the quasi-static ABAQUS/Standard software. The performance 

of the proposed elements is assessed through the simulation of various nonlinear benchmark 

problems taken from the literature. 

2. SHB15 and SHB20 Solid‒Shell Elements 

2.1. Element Reference Geometries 

The proposed SHB elements are based on a 3D formulation, with displacements as the only 

degrees of freedom. Figure 1 shows the reference geometry of the quadratic prismatic SHB15 and 

quadratic hexahedral SHB20 elements and the position of the associated integration points. Within 

the reference frame of each element, direction ζ  represents the thickness, along which several 

integration points can be arranged. 
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(a) SHB15 (b) SHB20 

Figure 1. Reference geometry of (a) quadratic prismatic SHB15 element and (b) quadratic hexahedral 

SHB20 element, and position of the associated integration points. 

2.2. Quadratic Approximation for the SHB Elements 

Conventional quadratic interpolation functions for traditional continuum prismatic and 

hexahedral elements are used in the formulation of the SHB elements. According to this formulation, 

the spatial coordinates ix  and the displacement field iu  are approximated using the following 

interpolation functions: 
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where iId  are the nodal displacements, 1, 2,3i =  correspond to the spatial coordinate directions, 

and I varies from 1 to K, with K being the number of nodes per element, which is equal to 15 for the 

SHB15 element and 20 for the SHB20 element. 

2.3. Strain Field and Gradient Operator 

Using the above approximation for the displacement within the element, the linearized strain 

tensor ε  can be derived as: 

( ) ( ), , , ,
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By combining Equations (1) and (2) with the help of the interpolation functions, the nodal 

displacement vectors id  write: 
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where ( )1 2 3, , , ,T
i i i i iKx x x x=x ⋯  are the nodal coordinate vectors. In Equation (4), index α goes from 

1 to 11 for the SHB15 element, and from 1 to 16 for the SHB20 element. In addition, vector 

( )1,1, , 1T =s ⋯  has fifteen constant components in the case of the SHB15 element, and twenty 

constant components vector for the SHB20 element. Vectors αh  are composed of hα  functions, which 

are evaluated at the element nodes, and the full details of their expressions can be found in [23]. 

With the help of some well-known orthogonality conditions and of the Hallquist [24] vectors 
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b , where vector N  contains the expressions of the interpolation functions IN , the 

unknown constants jia  and icα  in Equation (4) can be derived as: 
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ji j i i ia cα α= ⋅ = ⋅b d dγ, , (5)

where the complete details on the expressions of vectors αγ  can be found in [22]. 

By introducing the discrete gradient operator B , the strain field in Equation (3) writes: 

( )

,

,

,

, ,

, ,

, ,

x x

y y

x
z z

s y
x y y x

z
y z z y

x z z x

u

u

u

u u

u u

u u

 
 
 

  
  ∇ = ⋅ ⋅   +
    + 

 + 

d

= B d = B d

d

u , (6)

where the expression of the discrete gradient operator B  is: 
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2.4. Hu–Washizu Variational Principle 

The SHB solid‒shell elements are based on the assumed-strain method, which is derived from 

the simplified form of the Hu–Washizu variational principle [25]. In terms of assumed-strain rate ɺε , 

interpolated stress σ , nodal velocities dɺ , and external nodal forces extf , this principle writes 

( ) 0
e

T T extdπ δ δ
Ω

= ⋅ Ω − ⋅ =∫ σ d fɺɺ ɺε ε . 
(8)

The assumed-strain rate is expressed in terms of the discrete gradient operator B  as: 

( ),x t = ⋅B dɺɺε . (9)

Substituting the expression of the assumed-strain rate given by Equation (9) into the variational 

principle (Equation (8)), the expressions of the stiffness matrix eK  and the internal forces intf  for 

the SHB elements are 

( )
e

T e
e GEOMdζ

Ω

= ⋅ ⋅ Ω +∫K B C B K , 
(10)

int

e

T d
Ω

= ⋅ Ω∫f B σ , 
(11)

where GEOMK  is the geometric stiffness matrix. As to the fourth-order tensor ( )e ζC , it describes the 

functionally graded elastic behavior of the FGM material. Its expression is given hereafter. 

2.5. Description of Functionally Graded Elastic Behavior 

In the framework of large displacements and rotations, the formulation of the SHB elements 

requires the definition of a local frame with respect to the global coordinate system, as illustrated in 

Figure 2. The local frame, which is designated as the “element frame” in Figure 2, is defined for each 

element using the associated nodal coordinates. In such an element frame, where the ζ -coordinate 

represents the thickness direction, the fourth-order elasticity tensor ( )e ζC  for the FGM is specified. 
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Figure 2. Element frame and global frame for the proposed SHB elements. 

In this work, a two-phase FGM is considered, which consists of two constituent mixtures of 

ceramic and metal. The ceramic phase of the FGM can sustain very high temperature gradients, 

while the ductility of the metal phase prevents the onset of fracture due to the cyclic thermal loading. 

In such FGMs, the material at the bottom surface of the plate is fully metal and at the top surface of 

the plate is fully ceramic, as illustrated in Figure 3. Between these bottom and top surfaces, the 

elastic properties vary continuously through the thickness from metal to ceramic properties, 

respectively, according to a power-law volume fraction. The corresponding volume fractions for the 

ceramic phase cf  and the metal phase mf  are expressed as (see, e.g., [26,27]): 
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where n is the power-law exponent, which is greater than or equal to zero, and [ ]t 2 , t 2z ∈ − , with t 

the thickness of the plate. For 0n = , the material is fully ceramic, while when n → ∞  the material is 

fully metal (see Figure 4). 

 

Figure 3. Schematic representation of the functionally graded thin plate. 
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Figure 4. Volume fraction distribution of the ceramic phase as function of the power-law exponent n. 

please add the units of X-axis. 

For an isotropic elastic behavior, the constitutive equations are governed by the Hooke 

elasticity law, which is expressed by the following relationship: 

( ) 2trλ µ= +σ 1ε ε , (13)

where 1  denotes the second-order unit tensor, λ  and µ  are the Lamé constants given by: 

( )( ) ( )1 2 1 2 1

E Eνλ µ
ν ν ν

= =
− + +

and , (14)

with E  and ν  the Young modulus and the Poisson ratio, respectively. 

For FGMs that are made of ceramic and metal constituents, it is commonly assumed that only 

the Young modulus E  varies in the thickness direction, while the Poisson ratio ν  is kept constant. 

Therefore, the constant Young modulus in Equation (14) is replaced by ( )E z , whose value evolves 

according to the following power-law distribution: 

( ) ( )c m c mE z E E f E= − + , (15)

where cE  and mE  are the Young modulus of the ceramic and metal, respectively. 

3. Nonlinear Benchmark Problems 

In this section, the performance of the proposed elements is assessed through the simulation of 

several popular nonlinear benchmark problems. The static ABAQUS/Standard solver has been used 

to solve the following static benchmark problems. More specifically, the classical Newton method is 

considered for most benchmark problems, aside from limit-point buckling problems for which the 

Riks arc-length method is used. 

To accurately describe the variation of the Young modulus through the thickness of the FGM 

plates, only five integration points within a single element layer is used in the simulations. For each 

benchmark problem, the simulation results given by the proposed elements are compared to the 

reference solutions taken from the literature. In the subsequent simulations, it is worth noting that 

the elastic properties of the metal and ceramic constituents of the FGM plates do not reflect a real 

metallic or ceramic material. Indeed, the terms metal and ceramic are commonly used in the 

literature to emphasize the difference between the properties of the FGM constituents (see, e.g., 

[15,26,27]). 
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Regarding the meshes used in the simulations, the following mesh strategy is adopted: (N1 × N2) 

× N3 for the hexahedral SHB20 element, where N1 is the number of elements along the length, N2 is 

the number of elements along the width, and N3 is the number of elements along the thickness 

direction. As to the prismatic SHB15 element, the mesh strategy consists of (N1 × N2 × 2) × N3, due to 

the in-plane subdivision of a rectangular element into two triangles. 

3.1. Cantilever Beam Sujected to End Shear Force 

Figure 5a shows a simple cantilever FGM beam with a bending load at its free end. This is a 

classical popular benchmark problem, which has been widely considered in many works for the 

analysis of cantilever beams with isotropic material (see, e.g., [28,29]). The Poisson ratio of the FGM 

beam is assumed to be 0.3ν = , while the Young modulus of the metal and ceramic constituents are 
52.1 10 MPamE = ×  and 53.8 10 MPacE = × , respectively. Figure 5b illustrates the final deformed 

shape of the cantilever beam with respect to its undeformed shape, as discretized with SHB20 

elements, in the case of fully metallic material. Figure 6 shows the load–deflection curves obtained 

with the quadratic SHB elements, along with the reference solutions taken from [15], for various 

values of the power-law exponent n. One recalls that fully metallic material is obtained when 

n → ∞ , and fully ceramic material for 0n = . Overall, the SHB elements show excellent agreement 

with the reference solutions corresponding to the various values of exponent n. More specifically, it 

can be observed that the bending behavior of the FGM beam lies between that of the fully ceramic 

and fully metal beam, which is consistent with the power-law distribution of the Young modulus in 

the thickness direction. Another advantage of the proposed SHB elements is that, using the same 

in-plane mesh discretization as in reference [15], only five integration points through the thickness 

are sufficient for the SHB elements, while ten integration points have been considered in [15] to 

simulate this benchmark problem. 

 

 
(a) (b) 

Figure 5. Cantilever beam: (a) geometry and (b) undeformed and deformed configurations. Please 

add a white space before/after = in images 

t=0.1 mm
q
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Figure 6. Load–deflection curves for the cantilever beam. (a) Prismatic SHB15 element; (b) 

hexahedral SHB20 element. Please add a white space before/after = and × in images. 

3.2. Slit Annular Plate 

In this section, the well-known slit annular plate problem is considered (see, e.g., [29–31]). The 

annular plate is clamped at one end and loaded by a line shear force P, as illustrated in Figure 7a. 

The inner and outer radius of the annular plate are iR 6 m=  and oR 10 m= , respectively, while 

the thickness is t 0.03 m= . The Poisson ratio of the annular plate is 0.3ν = , while the Young 

modulus of the metal and ceramic constituents are 21 GPamE =  and 38 GPacE = , respectively. 

Figure 7b illustrates the undeformed and deformed shapes of the annular plate, as discretized with 

SHB20 elements, in the case of fully metallic material. Figure 8 reports the load–out-of-plane vertical 

deflection curves at the outer point A of the annular plate as obtained with the SHB elements, along 

with the reference solutions taken from [15]. One can observe that the SHB elements perform very 

well with respect to the reference solutions for all considered values of exponent n. Similar to the 

previous benchmark problem, the same in-plane mesh discretization as in [15] with only five 

integration points through the thickness has been adopted by the proposed SHB elements for this 

nonlinear test, while ten integration points have been considered in [15]. 

 

 
(a) (b) 

Figure 7. Slit annular plate: (a) geometry and (b) undeformed and deformed configurations. 
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(a) (b) 

Figure 8. Load–deflection curves at the outer point A for the slit annular plate. (a) Prismatic SHB15 

element; (b) hexahedral SHB20 element.  Please add a white space before/after = and × in images. 

3.3. Clamped Square Plate under Pressure 

Figure 9a illustrates a fully clamped square plate, which is loaded by a uniformly distributed 

pressure. The length and thickness of the square plate are L 1000 mm=  and t 2 mm= , respectively. 

The Poisson ratio is 0.3ν = , while the Young modulus of the metal and ceramic constituents are 
52 10 MPamE = ×  and 53.8 10 MPacE = × , respectively. Considering the problem symmetry, a quarter 

of the plate is discretized. Figure 9b illustrates the undeformed and deformed shapes of the square 

plate, as discretized with SHB20 elements, in the case of fully metallic material. The 

pressure–displacement curves for the SHB elements (where the displacement is computed at the 

center of the plate), along with the reference solutions taken from [15], are all depicted in Figure 10. 

The results obtained with the SHB elements, by adopting only five integration points in the thickness 

direction and the same in-plane mesh discretization as in [15], are in excellent agreement with the 

reference solutions that required ten through-thickness integration points. 
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Figure 9. Clamped square plate: (a) geometry and (b) undeformed and deformed configurations. 
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(a) (b) 

Figure 10. Load–deflection curves at the center point for the square plate. (a) Prismatic SHB15 

element; (b) hexahedral SHB20 element. Please add a white space before/after = and × in images. 

3.4. Hinged Cylindrical Roof 

Figure 11a shows a hinged cylindrical roof subjected to a concentrated force at its center. Two 

types of roofs are considered, thick and thin, with thicknesses t = 12.7 mm and t = 6.35 mm, 

respectively. Because this nonlinear benchmark test involves geometric-type instabilities (limit-point 

buckling), the Riks path-following method is used to follow the load–displacement curves beyond 

the limit points. The Poisson ratio of the cylindrical roof is 0.3ν = , while the Young modulus of the 

metal and ceramic constituents are 370 10 MPamE = ×  and 3151 10 MPacE = × , respectively. Owing 

to the symmetry, only one quarter of the cylindrical roof is modeled. Figure 11b illustrates the 

undeformed and deformed shapes of the hinged cylindrical roof, as discretized with SHB20 

elements, in the case of fully metallic material. The load–vertical displacement curves at the central 

point A of the thick and thin hinged cylindrical roofs are shown in Figures 12 and 13, and compared 

with the reference solutions taken from [30]. From these figures, it can be seen that the results 

obtained with the proposed quadratic SHB elements are in good agreement with the reference 

solutions for the different values of exponent n, corresponding to different volume fractions (from 

fully metal to fully ceramic). More specifically, the snap-through and snap-back phenomena, which 

are typically exhibited in such limit-point buckling problems, are very well reproduced by the 

proposed SHB elements. Note that, for the thick roof (i.e., t = 12.7 mm), the converged solutions in 

Figure 12 are obtained by using a mesh of (8 × 8 × 2) × 1 in the case of prismatic SHB15 elements, and 

a mesh of 8 × 8 × 1 with hexahedral SHB20 elements. As to the thin roof (i.e., t = 6.35 mm), finer 

meshes of (16 × 16 × 2) × 1 for the prismatic SHB15 elements, and 16 × 16 × 1 for the hexahedral SHB20 

elements are required to obtain converged results (see Figure 13). These mesh refinements are 

similar to those used by Sze et al. [29] for the thick and thin roof in the case of an isotropic material as 

well as for multilayered composite materials. 
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Figure 11. Hinged cylindrical roof: (a) geometry and (b) undeformed and deformed configurations. 

 
(a) (b) 

Figure 12. Deflection at the central point A under concentrated force for the thick hinged roof. (a) 
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× in images. 
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Figure 13. Deflection at the central point A under concentrated force for the thin hinged roof. (a) 

prismatic SHB15 element; (b) hexahedral SHB20 element. Please add a white space before/after = and 
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3.5. Pull-Out of an Open-Ended Cylinder 

The well-known pull-out test for an open-ended cylinder is considered in this section. As 

illustrated in Figure 14a, the cylinder is pulled by two opposite radial forces, which results in the 

deformed shape shown in Figure 14b. The isotropic material case as well as the laminated composite 

material case have been considered by many authors in the literature (see, e.g., [29,30,32]). The 

Poisson ratio of the cylinder is 0.3ν = , while the Young modulus of the metal and ceramic 

constituents are 90.7  10  PamE = ×  and 91.51  10  PacE = × , respectively. Owing to the symmetry of 

the problem, only one eighth of the cylinder is modeled. The force–radial displacement curves at 

points A, B and C (as depicted in Figure 14a), obtained with the SHB elements, are shown in Figures 

15–17, respectively, along with the reference solutions taken from [13]. It can be observed that the 

developed SHB elements successfully pass this benchmark test as compared to the reference 

solutions. More specifically, the transition zone in the load–radial displacement curves, which is 

marked by the snap-through point, is well reproduced by both prismatic and hexahedral SHB 

elements for the various values of the power-law exponent n. Note that the converged solutions in 

Figures 15–17 are obtained with the proposed elements by using only five integration points in the 

thickness direction, and meshes of (24 × 36 × 2) × 1 and 12 × 18 × 1 in the case of the prismatic SHB15 

element and hexahedral SHB20 element, respectively. Hence, the required meshes for convergence 

are coarser than those used by Sze et al. [29] in the case of an isotropic material. 
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Figure 14. Pull-out of an open-ended cylinder: (a) geometry and (b) undeformed and deformed 

configurations. 
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Figure 15. Radial displacement at point A under concentrated force for the open-ended cylinder. (a) 

Prismatic SHB15 element; (b) hexahedral SHB20 element. Please add a white space before/after = and 

× in images. 
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Figure 16. Radial displacement at point B under concentrated force for the open-ended cylinder. (a) 

prismatic SHB15 element; (b) hexahedral SHB20 element. Please add a white space before/after = and 

× in images. 

 
(a) (b) 

Figure 17. Radial displacement at point C under concentrated force for the open-ended cylinder. (a) 

prismatic SHB15 element; (b) hexahedral SHB20 element. Please add a white space before/after = and 

× in images. 

3.6. Pinched Hemispherical Shell 

It is worth noting that although the performance of the prismatic SHB15 element is similar to 

that of the hexahedral SHB20 element, as demonstrated in the above nonlinear benchmark problems, 

the main motivation in developing the prismatic solid–shell element is to use it for the mesh 

discretization of complex geometries. Indeed, it is well-known that complex geometries cannot be 

discretized with only hexahedral elements, and require either an irregular mesh with prismatic 

elements, or a mixture based on a combination of prismatic and hexahedral elements. In this section, 

a hemispherical shell is loaded by alternating radial forces as shown in Figure 18a. Note that this 

benchmark problem has been considered in the literature for an isotropic material as well as a 

laminated composite material (see, e.g., [30]), while the case of FGMs has not been considered yet. 

Consequently, only the simulation results obtained with the proposed SHB elements corresponding 

to the fully metallic shell can be compared to the reference solution taken from [30]. 
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Figure 18. Pinched hemisphere: (a) geometry and (b) undeformed and deformed configurations. 

The radius and thickness of the hemispherical shell are R 10 m=  and t 0.04 m= , respectively. 

The Poisson ratio of the hemispherical shell is 0.3ν = , while the Young modulus of the metal and 

ceramic constituents are 76.825 10 PamE = ×  and 81.46 10 PacE = × , respectively. Due to the 

symmetry, a quarter of the structure is discretized. The hemispherical shell is discretized with a 

mixture of prismatic and hexahedral elements, which consists of 90 SHB15 elements located at the 

top of the hemisphere (far from the load points, see Figure 18b) and 110 SHB20 elements for the 

remaining area. 

The simulation results in terms of force–radial deflection at point A, for various values of the 

power-law exponent n, are plotted in Figure 19. This figure shows that the results corresponding to a 

fully metallic shell (i.e., n → ∞ ), obtained by the combination of prismatic and hexahedral SHB 

elements, are in excellent agreement with those provided in [30] for an isotropic shell. Note that an 

equivalent in-plane mesh discretization has been used in [30], where a fully integrated shell element 

with several integration points has been considered. Moreover, Figure 19 reveals that for all values 

of the exponent n, the simulated load–radial deflection curves lie between that of the fully ceramic 

shell and that of the fully metal shell, which is consistent with the numerical results found in the 

previous benchmark problems. 

 

Figure 19. Load–displacement curves at point A for the pinched hemispherical shell, obtained with a 

mixture of prismatic SHB15 and hexahedral SHB20 elements. Please add a white space before/after = 

in images. 
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4. Conclusions 

In this work, quadratic prismatic and hexahedral solid–shell SHB elements have been proposed 

for the 3D modeling of thin FGM structures. The formulation of the SHB elements adopts the 

in-plane reduced-integration technique along with the assumed-strain method to alleviate various 

locking phenomena. A local (element) frame has been defined for each element, in which the 

thickness direction is specified. In this local frame, elastic properties of the thin structure are 

assumed to vary gradually through the thickness according to a power-law volume fraction 

distribution. The resulting formulations are implemented into the finite element software 

ABAQUS/Standard in the framework of large displacements and rotations. A series of selective and 

representative benchmark problems, involving FGM thin structures, has been performed to evaluate 

the performance of the SHB elements in geometrically nonlinear analysis. The results obtained with 

the SHB elements have been compared with reference solutions. Note that the state-of-the-art 

ABAQUS solid and shell elements have not been considered in the simulations, because these 

elements do not allow modeling of FGM behavior with only a single layer of elements. Overall, the 

numerical results obtained with the SHB elements showed excellent agreement with the available 

reference solutions. More specifically, the load–displacement curves for each benchmark test lie 

between that of the fully ceramic and fully metal behavior, which is consistent with the power-law 

distribution of the Young modulus in the thickness direction of the FGM plates. This good 

performance of the proposed SHB elements only requires a few integration points in the thickness 

direction (i.e., only five integration points), as compared to the number of integration points used in 

the literature to model thin FGM structures. Furthermore, it has been shown that the prismatic 

SHB15 element can be naturally combined with the hexahedral SHB20 element, within the same 

simulation, to help discretize complex geometries. Overall, the proposed SHB elements showed 

good capabilities in 3D modeling of thin FGM structures with only a single layer of elements and 

few integration points, which is not the case of traditional solid and shell elements. 
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