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Explicit dynamic analysis of sheet metal forming pocesses
using linear prismatic and hexahedral solidshell elements

Abstract

Propose— The purpose of this paper is to propose two lirsgdid-shell finite elements, a six-
node prismatic element denoted SHB6-EXP and ant-eigthe hexahedral element denoted
SHB8PS-EXP, for the three-dimensional modeling hof tstructures in the context of explicit
dynamic analysis.

Design/methodology/approach- These two linear solighell elements are formulated based on
a purely three-dimensional approach, with displames as the only degrees of freedom. To
prevent various locking phenomena, a reduced-iategr scheme is used along with the assumed-
strain method. The resulting formulations are cotaponally efficient, since only a single layer
of elements with an arbitrary number of througlekhiess integration points is required to model
3D thin structures.

Findings — Via the VUEL user-element subroutines, the perforoe of these elements is
assessed through a set of selective and reprasentiinamic elasto-plastic benchmark tests,
impact-type problems and deep drawing processesivimg complex non-linear loading paths,
anisotropic plasticity and double-sided contacte Titained numerical results demonstrate the
good performance of the SHB-EXP elements in theeainog of 3D thin structures, with only a
single element layer and few integration pointthmthickness direction.

Originality/value — The extension of the SHB-EXP seighell formulations to large-strain
anisotropic plasticity enlarges their applicatiamge to a wide variety of dynamic elasto-plastic
problems and sheet metal forming simulations. Afiudation results reveal that the numerical
strategy adopted in this paper can efficiently prévthe various locking phenomena that
commonly occur in the 3D modeling of thin structyeoblems.

Keywords: Finite element, Soligshell concept, Explicit dynamic analysis, Anisoimglasto-

plasticity, Impact problems, Sheet metal forming



1. Introduction

The finite element (FE) simulation of sheet metathfing processes has become an indispensable
tool in the design and manufacturing of modern potel in many industries. Such a simulation
tool greatly assists designers and engineers inligiieg the final shape of products and
optimizing forming setups, by replacing a numbeexpensive and time-consuming experimental
tests. However, the accuracy and efficiency ofRResimulation should be guaranteed in order to
obtain reliable predictions. Traditionally, for tieenmulation of thin structures, conventional shell
elements are used or alternatively low-order selaments, when three-dimensional effects need
to be accounted for. However, conventional shelingnts show limitations in the simulation of a
number of sheet metal forming processes, while doder solid elements suffer from various
locking phenomena. In this regard, much effort hasn devoted in the literature to establish
accurate and efficient finite element formulations.

The membrane finite element (Sukhomlinov et al92tHuh et al., 1994; Huh and Choi, 1999)
has been widely used, due to its computationatieffcy in the simulation of bending as well as
stretching-dominated sheet metal forming problemsorder to obtain more accurate results,
particular attention has been paid in the litematior the development of shell elements for the
modeling of thin structures. For instance, Guole{2002) proposed an efficient shell element
based on the discrete Kirchhoff assumption for ¢hraulation of springback in sheet metal
forming processes, while Lu et al. (2006) develoftesir own degenerated shell element based on
Mindlin—Reissner’s theory. Compared to membranmelds, shell elements offer better accuracy
for modeling bending effects in thin structures.wéwer, the formulation of classical shell
elements is typically based on the assumption ahgsistress conditions, which limits their
application in sheet metal forming simulation. Rert they cannot account for thickness
variations, since only the mid-plane of the sheehodeled, which makes the double-sided contact
difficult to handle.

Concurrently, continuum solid elements allow mosalistic modeling for a number of
structural problems thanks to their three-dimeraidormulation, thus avoiding geometric (mid-
plane) or kinematics assumptions as well as conistit (plane-stress) restrictions. However, in
the simulation of thin structures, the use of saiédments involves meshes with too many

elements, which is partly attributable to elemespegt ratio limitations as well as locking effects



in low-order formulations. In addition, several éay of solid elements are required in the
thickness direction in order to accurately describe various non-linear phenomena, which
considerably increases the computational costeosiimulations.

More recently, the concept of sehshell elements has emerged, which represents ngywaaa
interesting alternative to conventional solid ahdlselements, in particular for the simulation of
sheet metal forming processes. In fact, salietll elements combine the advantages of both solid
and shell formulations. Their main key features,iolwhmake them very attractive, may be
summarized as follows: the use of fully three-disienal constitutive laws, without plane-stress
restrictions; easy connection with conventionaldselements, since displacements are the only
degrees of freedom; direct calculation of thicknessations, as this is based on physical nodes;
automatic consideration of double-sided contadijtyatto accurately model thin structures with
only a single element layer and few integratiompoin the thickness direction.

In the past few decades, various seditkll elements have been developed in the litexatur
the basis of different approaches (Cho et al., 1#88iptmann and Schweizerhof, 1998; Puso,
2000; Sze and Yao, 2000; Abed-Meraim and Combes20f¥2; Parente et al., 2006; Reese, 2007,
Cardoso et al., 2008; Abed-Meraim and Combescl@@9;2Schwarze and Reese, 2009; Li et al.,
2011; Trinh et al., 2011; Edem and Gosling, 2018rds, 2013; Pagani et al., 2014). Most of
these formulations have been established basedh@massumed strain method (ASM), the
enhanced assumed strain (EAS) approach, or thenasisnatural strain (ANS) concept. Recent
formulations also combine some of these technigunesrder to further eliminate all kinds of
spurious mechanisms (e.g., rank deficiencies) acking phenomena. The key idea on which
these approaches are based is to enrich the kimsnm#trough additional enhanced/assumed
strain fields), in the aim of eliminating variouscking effects (membrane, shear, volumetric,
thickness ...). The reduced-integration rule is samet additionally used to alleviate some
locking effects, but this may lead to rank defiagnwhich requires the element formulation to be
stabilized against hourglass (zero-energy) modes.

In this paper, two linear solidhell element formulations are proposed for thdieixjgynamic
analysis of structural problems and sheet metaifoy processes. These explicit dynamic
solid-shell versions are derived by extending their gstic counterparts, and consist of a six-

node prismatic element, denoted SHB6-EXP, and ght®iode hexahedral element, denoted



SHB8PS-EXP. Their formulation is based on a fullyee-dimensional approach, in which the
nodal displacements are the only degrees of free@ooonjunction with the reduced-integration
technigue and the assumed-strain method to aléevied locking problems. The SHB8PS-EXP
element is an extension, to the explicit dynamamfework, of the previously developed quasi-
static version (Abed-Meraim and Combescure, 208@}e that an explicit dynamic version of
this element has been formulated earlier to dedh wnpact problems (Abed-Meraim and
Combescure, 2002); however, it was restricted atrapic elasto-plastic constitutive models. In
addition, selective benchmark tests revealed thauffers from several locking phenomena. The
motivation of the improved subsequent formulatigkbéd-Meraim and Combescure, 2009),
although within a quasi-static framework, was ion@late the above-mentioned locking problems
through enhanced assumed-strain fields and a nehilization scheme for the control of
hourglass modes. It is this latter version thaex¢ended in the current work to the explicit
dynamic analysis of thin structural problems, tlylouts coupling with advanced anisotropic
behavior models. As to the SHB6-EXP element, itsadtyic explicit formulation is obtained here,
for the first time, by extending the quasi-statersion developed in Trinh et al. (2011). In the
latter contribution, various popular benchmarkddstve been used to assess the performance of
this solid-shell element in the framework of quasi-static $rshin analysis and linear elastic
problems. In the current work, the explicit dynareiktensions SHB8PS-EXP and SHB6-EXP,
which are provided with a simple lumped mass matine formulated within the framework of
large-strain anisotropic plasticity and implementetd the explicit dynamic code ABAQUS for
the simulation of impact problems and complex ahdllenging sheet metal forming processes
that are difficult to perform using quasi-statidvens.

The remainder of the paper is organized as folloMm explicit dynamic formulation of the
SHB-EXP solidshell elements is first presented in Section 2nTliee performance of the SHB-
EXP elements is evaluated in Section 3 throughouarbenchmark tests, including selective and
representative dynamic/impact problems. To assespdrformance of the SHB-EXP elements in
complex highly non-linear test problems, the pragbsolid-shell elements are applied in Section
4 to the simulation of three deep drawing process@golving geometric non-linearities,
anisotropic elasto-plastic behavior, and doubledidontact. All of the numerical results obtained

with the SHB-EXP elements are compared, on thehamel, to those provided by state-of-the-art
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elements available in ABAQUS, using equivalent mesimement, and, on the other hand, to
reference solutions and experimental results takem the literature. Finally, the main

discussions and concluding remarks are summane8&eédtion 5.

2. Formulation of linear solid—shell elements

This section provides the formulation of the SHBERS and SHB6-EXP solighell elements
and the associated new enhancements in the carftexplicit dynamic analysis. The interested
reader may refer to Abed-Meraim and Combescure9286ad Trinh et al. (2011), respectively,

for their detailed implicit quasi-static formulatis.

2.1 General formulation of the SHB6-EXP and SHB8PS-EXP el ements

The reference geometry for the six-node prismaticdsshell element SHB6-EXP and for the
eight-node hexahedral sohshell element SHB8PS-EXP is shown in Figures 1{@& &),
respectively, where a special directignis chosen to represent the thickness directioongtkhis
direction, a user-defined arbitrary number of inéign points are arranged. This choice aims at
providing the proposed elements, although geonadyichree-dimensional, with some shell
features. It also allows alleviating some lockingepomena and improving the computational

efficiency of the elements, by using only a singlement layer in the simulation of thin structures.
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Figure 1. Geometry of the SHB-EXP elements and locatiorheirtintegration points in the
reference coordinate frame: (a) SHB6-EXP elemedt(bhSHB8PS-EXP element

2.1.1 Linear interpolation of the elements. The current SHB-EXP solighell elements are
isoparametric elements, and use the classicalrlishape functions for continuum standard

hexahedral and prismatic elements. Based on theg-timensional formulation, the coordinates
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X and velocitiesy, inside an element are interpolated using the tisgape functiond\, , the

nodal coordinates;, and the nodal velocitieg, as

X=X NG = 2N EnE @
V=N Em0), @

where the lowercase subscriptaries from 1 to 3 and represents the spatialdioate directions,
while the uppercase subscriptaries from 1 ton, wheren denotes the number of element nodes
(i.e., n=6 for the SHB6-EXP element, armd= 8 for the SHB8PS-EXP element). In what follows,
the convention of implied summation on repeatedceslwill be adopted, as in Eq. (2) above.

2.1.2 Derivation of discrete gradient operator. Combining Egs. (1) and (2) allows us to derive
the complete expression of the velocity fie{das follows:

V. =a, +a; X +a,X,+azX,;+ch+---+c,h, withi=127, (3)
where the functions), are specific to each of the SHB-EXP elements.iffstance, subscript
varies from 1 to 4 for the SHB8PS-EXP element, eftilvaries from 1 to 2 for the SHB6-EXP
element. Functions, have the following expressions:

h=ng, h=05, h=cn h=cnd. (4)
Applying, in particular, the velocity field expansi (3) to the element nodes, the nodal velocity
vectorsd, , associated with the hexahedral and prismatic &XB-elements, can be expressed in
the following compact form:

d, = a,S+a,X, +a,X, +azX,+c;h, +---+c,h, withi=12,2, (5)
wherex,, i=1,2,{, represent the nodal coordinate vectors, while dbtiled expressions of
vectorss andh, can be found in Trinh et al. (2011) for the six-agatismatic element, and in
Abed-Meraim and Combescure (2009) for the eighterntoekahedral element.

By introducing the derivatives of the shape funusib, =N (0,0,0), i=1,2,:, also known as
Hallquist’s vectors (Hallquist, 1983), and usingm&o orthogonality relations that are easy to

demonstrate, the expression of the unknown corsstarigs. (3) and (5) can be obtained (see, e.qg.,
Abed-Meraim and Combescure, 2009; Trinh et al. 1201



a; =b]-d, Coi =Yl'di

n J [

Where:ya=%{ha—i(hl-xj)bj] ©)

=1
with k =2 for the SHB6-EXP element, arid=8 for the SHB8PS-EXP element. Substituting the
expressions of these constants into Eq. (3), thecie field can be rewritten in the following
more convenient form:
Vi =ay + (xp] + b1 +xp} +hyl +-+hyl)-d . (7)
The velocity gradient is then obtained by differatimg the above expression with respect to

X; as follows:

(bT +Z Jyaj =(bT+h, y7)-d,. )

Finally, the vector form of the velocity gradierngeyator can be expressed as follows:

Vy’y d
\V; . X
V.(v)= “e =B.d=B-|d, |, 9)
s Viy TV, dy
V,,+V,, g
_Vx,z +Vz,x_

where the discrete gradient operaBitakes the following matrix form:

bl +h, 7, 0 0
0 b +h,,ve 0
0 0 bl +h,
B=| . - e | (10)
by + th,yYut b + ha xya 0
0 b; +h, v, bj+h, yya
_bZ +h,,Y, 0 bT +h xya_

2.1.3 Hu-Washizu principle and internal forces. The assumed-strain method used in the
formulation of the SHB-EXP solid—shell elements based on the simplified form of the
Hu-Washizu mixed variational principle, as proposedbyo and Hughes (1986)

&r(z):jg 5t 6 dQ-od" - =0, (11)



where § represents a variatio, the assumed-strain rate, the stress state obtained by the
constitutive law,d the nodal velocities, antP* the external nodal forces. Such a simplified
principle is very convenient, because it only inas the interpolation of the velocity and of the
assumed-strain field. The latter may be expressedthe element using an appropriate projection,
which will be denoted , of the original discrete gradient operar
£(x,t)=B(x)-d(t). (12)

By substituting Eq. (12) into the simplified expses (11) of the HuWashizu mixed

variational principle, the following equation istatmed:

5dT-(jQ ET-on—f“)=c. (13)

Becausedsd can be chosen arbitrarily, the above equatiorwallthe expression of the internal

force vector to be derived as follows:
int __ RT. =
f=[ B -o(E)dQ. (14)

In addition, due to the particular location alohg same line of the integration points, it has
been shown in Abed-Meraim and Combescure (2009hkaabove formulation of the eight-node
hexahedral solishell element generates six hourglass modes. Hpes®us zero-energy modes
are controlled by applying an efficient stabilipati technique, following the assumed-strain
approach proposed in Belytschko and Bindeman (19B3¢ resulting internal force vector is

obtained by adding to the usual internal forcee {g. (14)) a stabilization term, as follows:

fi =jg B™-6(%)dQ+f™. (15)

More details on the derivation of the expressiomhef stabilization force$®>™® in the case of
the eight-node hexahedral selsghell element can be found in Abed-Meraim and Catine
(2002). It is worth noting that the formulation thie six-node prismatic soldhell element does
not induce hourglass modes and, therefore, noiadditstabilization terms are needed for the
calculation of the associated internal forces. Hewean appropriate projection of the strains for
the SHB6-EXP element is required to eliminate stooking phenomena (Trinh et al., 2011).

2.1.4 Constitutive equations. The formulation of the SHB-EXP solidhell elements requires
resorting to several local frames in order to penfdhe entire calculations (see Figure 2 for
illustration). These local physical or material otinate systems are motivated by the computation
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of the elasticity law, the material plastic anisply, or the stabilization terms. For instance,dbe
called “element frame” is introduced for the defom of the material elastic properties.
Accordingly, the elasticity law is specified in $ua local physical coordinate system, which

corresponds to the element mid-plane associatddthét{ -coordinate of each integration point.

In these local coordinate systems, which are atth¢b the integration points of the element, the
classical three-dimensional elasticity matrix is dified so that plane-stress conditions are
approached. This modification in the elasticity mxatwhich has been validated in the earlier
guasi-static formulations of the SHB elements (seg,, Abed-Meraim and Combescure, 2009;

Trinh et al., 2011), allows enhancing the perforoganf the proposed elements with regard to

thickness locking. Such a specific improved plainess type elasticity matri€®* is defined as

follows:
Z+2u 2 0 0 0 O
A  A+2u 0 0 0 O
cee=| O 0 E 0 0 O ith yu=—FE and 1=-2_, (16)
0 0O O0u 0O 2(1+v) 1-v
0 0 0 0u O
0 O 0 0 0 yuj

where E andv are Young’'s modulus and Poisson’s ratio, respelstiv

The so-called “material frame” is another local @iogl coordinate system, which is introduced
to account for the initial plastic anisotropy ofetimaterial and its evolution in the course of
deformation. The time integration of the largedstranisotropic elasto-plastic constitutive
equations, which is achieved at each integratiantpalso uses this local material frame in order
to satisfy the objectivity (material invariancejugrements.

Finally, a third local coordinate system, desigdads “co-rotational frame”, is defined at the
element level in order to simplify the calculatiof the stabilization terms involved in the
expression of the internal forces, in the particakse of SHB8PS-EXP element.

For a given rotation matriR , corresponding to one of the three local coordirstgtems
described above, the tensor variables can be tnangll from the global coordinate system into
the local coordinate frame by using the followirgssical formulas:

a*c =RT.a%. R

AIOC:RT'RT'Aglo'R R ’
9

(17)



where @ and A" represent second-order, respectively, fourth-otdasors expressed in the

local coordinate system, whila#® and A% are their expressions in the global coordinatenéra

Using the indicial notation, the above equation loamewritten in the following equivalent form:

loc lo
a7 =R, R, ag,
AleokIC = Rpi Ru Rk & Agcl;;s

where the lowercase subscript$,k,l,p,q,r ands vary from 1 to 3.

w ¢ thickness direction
e integration points

(18)

A

global frame

Figure 2. lllustration of the local coordinate systems, #melassociated rotation matrices, used in
the formulation of SHB-EXP solighell elements

As stated before, in the formulation of the SHB-Estifid-shell elements, the rate constitutive
equations are integrated in the local material &amorder to ensure material objectivity within
the large-strain framework. All constitutive eqoat are implemented into the finite element
software package ABAQUS/Explicit, within the framank of large plastic deformations, using an
independent VUMAT-like user-material subroutine.eTlatter is called by the user-element
subroutines associated with the SHB-EXP elementgpttate the stress state and other internal
variables, which allows easy and modular couplinghwany new constitutive model,

independently of the element formulation. In whatldws, the constitutive equations are
10



presented in the local material frame described/@bim this material frame, the rate form of the
Cauchy stresstrain relationship is expressed using the hyptelksv defined by

6=C:(D-D"), (19)
where C is the fourth-order elasticity tensor, which istaobed by rotating the elasticity tensor
C® (see Eq. (16)) from the element frame to the rwtérame. The strain rate tensbr is

additively decomposed into an elastic paftand a plastic pafb®. The latter is defined by an

associative plastic flow rule

_of
(g

DP AV, (20)

where f represents the plastic yield surface, ands the flow direction normal to the vyield

surface. The plastic multipligt in Eq. (20) is determined by the consistency ctiorli
In this work, the anisotropic plastic behavior dfetmaterial is taken into account by
considering Hill's quadratic anisotropic yield ewiion (Hill, 1948). The corresponding plastic

yield function f is written in the following form:

f=6,-Y<0, (21)

whereS,, =./(c'~a):H:(¢'~a) is the equivalent stress, awflis the deviatoric part of the

Cauchy stress tensor. The fourth-order tertdozontains the six anisotropy coefficients of Hi@'4
guadratic yield criterion. The isotropic hardenofghe material is described by the scalar variable
Y, which characterizes the size of the yield surfaddle kinematic hardening is represented by
the back-stress tensor.

For the above-described constitutive equatioreantbe shown that the set of internal variables
is governed by a generic differential equationhaf form

x=U,(x), (22)

where vectorx contains all variables of the model that needecaipdated. The functiob, ()

depends on the specific equations that govern ¥bkitgon of internal variables, which can be
either scalar or tensorial according to the typevafiables. This general form (22) allows
encompassing various hardening descriptions asasathore advanced yield surface models. For

instance, theJ, functions corresponding to the evolution of isptcohardening, for the three
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different hardening models considered in this wanle summarized in Table 1. In this tabig,
ande are the initial yield stress and equivalent ptastrain, respectively, whil&, ¢,, and N

represent hardening parameters.

Table 1.Definition of the isotropic hardening models comrse&tl and their evolution laws.

Using the above constitutive equations and theistamgy conditionf =0, the expression of

the plastic multiplier. is derived as follows:
_ V:C:.D
V:C:V+V:U,+U,

(23)

2.1.5 The basic expression of the mass matrix. In this work, the SHB-EXP elements are
implemented into the finite element software paekABAQUS/Explicit, within the framework of
explicit dynamic analysis. For this purpose, thessnaatrix needs to be defined at the very
beginning of the calculations using the SHB-EXPnwats, while the stiffness matrix is not
required in the element formulation. Several meshaxé available in the literature to compute the
mass matrix (see, e.g., Zienkiewicz, 2006). Herdiagonal lumped element mass matiX is
adopted for all SHB-EXP elements. This element nmaasgix has a size d@nx zn, with n being

the number of nodes in the element, and it is cookd from the following bloc of components:

m N, N,dQ 1=J n
sz{ojﬁep o Ly with m=L2 pdﬂ/ ZL PN N,dQ (24)
¢ e |:1 ‘e

where N, and N, are the shape functions, apdis the material mass density.

3. Numerical benchmark tests

In this section, a representative set of dynamibmark tests involving geometric and material

non-linearities is selected to assess the perfacman the SHB-EXP solid—shell elements. It is

worth noting that the converged solutions for theeachmark tests are achieved using only a

single element layer with two integration pointsotigh the thickness.
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For comparison purposes, all numerical results iobth with the SHB-EXP elements are
compared with those given by ABAQUS elements (usinglar meshes with the same number of
elements in each spatial direction) as well as weflierence solutions taken from the literature.
The list of SHB-EXP elements with their counterpdrom ABAQUS (prismatic and hexahedral

elements as well as shell elements) are summainzZeable 2.

Table 2.Prismatic, hexahedral as well as shell finite eletmeised in the simulations.

In all simulations that follow, the meshes mad&etahedral elements adopt the nomenclature
N1xN2xN3z, where N indicates the number of elements in the lengthation, N the number of
elements in the width direction, ang the number of elements in the thickness directkor.
meshes made of prismatic elements, the total nuwibelements is twice that obtained by using
hexahedral elements, due to the in-plane sub-divisf a quadrangle into two triangles, resulting
in the following nomenclature @¥N>x2)xNs. For ABAQUS shell elements, the nomenclature
used for triangular shell elements igxN,x2, while the nomenclature for quadrilateral shell
elements is simply NN,. It is worth noting that the solid elements C3D&Ia&3D8R in the
explicit dynamic code ABAQUS are provided with agle integration point. Therefore, in what
follows, several element layers are required fer @8D6 and C3D8R elements in order to have
the same number of integration points in the thedendirection as the other elements used for

comparison.

3.1 Cantilever beam bending with a concentrated force

The elastic cantilever beam bending problem stutliie@lovsson et al. (2004) is considered
here. The geometric dimensions, material elastmpgnties, applied loading, and boundary
conditions are all specified in Figure 3. For tgatar shell or prismatic elements, the meshes
include 40 elements uniformly distributed along lgregth and one element in the width, while for
guadrilateral shell or hexahedral elements, therbeadiscretized with 10 elements along the
length and one element in the width. Figure 4 caegpéhe deflection history at one corner of the
free end of the beam obtained with the SHB-EXP el@s and ABAQUS elements with the

13



reference solution taken from Olovsson et al. (200%he numerical results show that the mesh
used for the C3D6 and C3D8R ABAQUS elements issodficient to obtain accurate solutions,
due to the poor behavior of these solid elementis kggard to locking and hourglassing, while the
SHB-EXP elements, as well as the S3R, SC6R, S4RS&8R ABAQUS elements are in good
agreement with the reference solution. Althoughunmgag twice more elements (i.e., two element
layers in the thickness direction), the resulteegiby conventional ABAQUS solid elements are
still clearly affected by locking phenomena that @arvolved in this typical bending-dominated
problem, which is not the case of the SHB-EXP eleiethanks to the implementation of the

assumed-strain method in their formulation.

3
BYRNN E=100 GPa
v=0

p=1000 kg/rd

Figure 3. Elastic cantilever beam subjected to a concemtrfatee
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Figure 4. Tip deflection history for the cantilever beam jgabed to a concentrated load: using (a)
triangular shell / prismatic elements, and (b) ggjnadrilateral shell / hexahedral elements
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3.2 Cantilever beam bending with a uniform pressure

In this subsection, an elastic cantilever beamesaibgl to a uniform pressure, as proposed by
Belytschko et al. (1984), is investigated to asslesdending behavior of the proposed SHB-EXP
elements. The geometric dimensions, material elgstperties, applied loading, and boundary
conditions are all defined in Figure 5. Finite egrhsimulations have been performed using both
the SHB-EXP elements and ABAQUS elements, and treesponding solutions, in terms of
deflection history at one corner of the beam freg @see point A in Figure 5), are compared with
the reference solution given in Belytschko et 884). The cantilever beam is discretized with 20
elements uniformly distributed along the length ané element in the width for triangular shell
or prismatic elements, and 5 elements along thegtletand one element in the width for
qguadrilateral shell or hexahedral elements. Figudepicts all of the numerical results obtained
with the SHB-EXP elements and ABAQUS elements. Binb the previous test, the C3D6 and
C3D8R ABAQUS elements require finer meshes to ctiyenodel this cantilever beam bending
benchmark problem. Indeed, although necessitatincetmore elements (two element layers in
the thickness direction), the results displayedh®y C3D6 and C3D8R ABAQUS elements still
show clear differences with the reference solutdue to their sensitivity to locking effects. By
contrast, the results obtained with the propose®-EXP elements show excellent agreement
with the reference solution as well as with the SSR6R, S4R, and SC8R ABAQUS elements. It
is also revealed, through this bending benchmask that the SHB-EXP elements are more

suitable to model relatively thick structures thilaeir ABAQUS solid counterparts.

L
E=12000 psi  0iy
v=0.2
p=1.024<10° Ib-sec/in*

Figure 5. Elastic cantilever beam subjected to a unifornsgues
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Figure 6. Tip deflection history for the cantilever beam jgabed to a uniform pressure: using (a)

triangular shell / prismatic elements, and (b) ggjnadrilateral shell / hexahedral elements

3.3 In-plane bending of a twisted beam

The in-plane bending of a twisted beam, as propageBelytschko et al. (1992), is a more
severe benchmark test than the two previous omese & involves both in-plane bending and
torsion of the beam. As illustrated in Figure & tivisted beam is bent at its free end along the in
plane direction. The geometry, material elasticpprtes and boundary conditions are all
specified in Figure 7. Figure 8 compares the dafiachistory in the load direction at one corner
of the free end of the beam, as obtained with tHB-EXP elements and ABAQUS elements,
with the reference solution taken from Belytschkale (1992). It can be seen that the SHB-EXP
elements perform very well with respect to the nefiee solution, for this in-plane bending
problem, which is also the case for the ABAQUS mpasic solid-shell element SC6R and
ABAQUS shell elements. However, as pointed outh@ two previous benchmark tests, a finer
mesh is required for the ABAQUS solid elements C3@l C3D8R, in order to obtain an
accurate solution, which is also the case heraierABAQUS hexahedral solghell element
SC8R.
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Figure 7. Elastic twisted cantilever beam subjected to emplbending load
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Figure 8. Tip deflection history for the twisted cantiledsam subjected to in-plane bending load:
using (a) triangular shell / prismatic elements] @) using quadrilateral shell / hexahedral
elements

3.4 Impulsively loaded clamped plate

A long aluminum plate clamped at both ends is irspely loaded with a high velocity applied
over a central region of the plate surface, astilited in Figure 9. The experiment relating ts thi
test has been originally carried out by Balmer &uddmer (1964), and numerically studied
subsequently in several literature works (see,, églytschko et al., 1984; Wu, 2013). The

material of the plate is considered as elaptcfectly-plastic. All details about the geometric
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dimensions, prescribed loading, and elasto-plaséterial parameters are summarized in Figure 9.
Owing to the symmetry of the problem, one halfted plate is modeled using the proposed SHB-

EXP elements as well as ABAQUS elements, for cormpampurposes.

E=1.04x1(" ps|

v=0.3
6,=4.14<10* psi z y
=2.61x10% Ib-sec/in*
bp | Iﬁnitial velocity=5200 in/s l0.125 in
(%4) ! ]
& 7
© v/
21n
10ir

Figure 9. Description of the elastiplastic clamped plate explosively loaded with atiah

velocity.

Figure 10 shows the predictions in terms of theic@rdisplacement history at the central point
of the plate, along with the experimental resuketafrom Balmer and Witmer (1964) and the
numerical reference solution obtained by Wu (20€)mpared with the simulation results given
by ABAQUS elements, the results obtained with ti#BSEXP elements are the closest to the
experimental results. This demonstrates the gopdhikties of the proposed solishell elements
in handling elastieplastic problems with large displacements undehligigion-linear dynamic

loading conditions.
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Figure 10. Displacement history at the central point of tlestc-plastic clamped plate: using (a)

triangular shell / prismatic elements, and (b) ggjnadrilateral shell / hexahedral elements

3.5 Low velocity impact of a circular plate

The dynamic response of a clamped circular platgested to impact by a projectile is
investigated here to assess the capabilities optbposed SHB-EXP elements in dealing with
elastie-plastic impactcontact problems. Note that this dynamic benchmesk has previously
been studied by Chen et al. (2007) and Mars €R@l5). The geometric dimensions for the plate
and the projectile as well as the prescribed lgadind boundary conditions are all defined in
Figure 11. The material of the circular plate isdmaof 6061-T6 aluminum alloy with the

following elastie-plastic properties: Young's modulis= 69 GP:, Poisson’s ratior = 0.3, initial
yield stresso, =290 MP:¢, and mass density = 2600 kg/n®. The projectile is modeled as a

rigid body with an assigned mass at its referemgetpThe contact between the circular plate and
the projectile is assumed to be frictionless, udgimg hard contact approach available in the
ABAQUS/Explicit code. Two typical cases, with diféat initial weight and velocity for the
projectile, are considered:

Case 1: M =23.5g,)~= 49.1 m/s.

Case 2: M =54.4 g,)= 29.9 m/s.
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Initial Yvelocity

LA
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Figure 11. Schematic representation of a circular plate smégeto impact by a projectile

Considering the symmetry of the problem, only onarter of the plate is modeled using an in-
plane discretization of 2708 elements in the cdggismatic elements, 2722 elements in the case
of triangular shell elements, 934 elements in twemf hexahedral elements, and 951 elements in
the case of quadrilateral shell elements (see Eig@rfor illustration). Similar to the previousties
all simulations are carried out using two integrmatpoints in the thickness direction, which means
two element layers in the case of the ABAQUS C3E8R C3D6 solid elements, and only a
single element layer for all other elements useadonparison. The history of velocity and impact
force for the projectile as well as the displacetmesponse at the center of the plate are analyzed
using the proposed SHB-EXP elements, which are toempared both with ABAQUS elements
and with reference solutions given in Chen et abO0{7). In addition to these numerical
comparisons, all of the simulation results are itptalely compared with the experiments
performed by Chen et al. (2007).

@ (b) [T

Figure 12. Initial in-plane mesh for the clamped circulartplander impact by a projectile: using

(a) triangular shell / prismatic elements, andu&hg quadrilateral shell / hexahedral elements
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Figure 13 shows the experimental results in terfsisiory of velocity and impact force for
the projectile for both studied cases, as reparie@hen et al. (2007). These experimental data
help understand the main stages that characterzé smpact processes. The first stage
corresponds to the elastplastic indentation of the circular plate, and dashtil a peak in the
impact force response appears. Then, the recovtage dor the circular plate starts, which is
characterized by a gradual reduction in the corttativeen the projectile and the circular plate,
until the impact force vanishes. The final stageesponds to the complete separation between
the projectile and the circular plate, which isigaded by a zero impact force and a constant

velocity for the projectile.

(a) (b)
L LI B L L 7 —7r - r - r T T T T T " T 7
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40 S N Case 1: M=23.5g, #49.1m/s| 6 RN Case 2: M=54.4g, %29.9m/s| 6
- 4 ~N 4
15 20} 15
30+ 1
2 14 £ 14 =
E 2ol ] é £ 10} \5,
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20 1 " 1 " 1 n 1 n 1 n 1 n 1 n _20 " 1 " 1 " 1 " 1 " 1 " 1 n 1 n 1 n 1 n
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Time (ms) Time (ms)

Figure 13. Experimental results in terms of history of vetg@nd impact force for the projectile

for both studied cases: (a) case 1, and (2) case 2

The velocity and the impact force obtained with 8t¢B-EXP solidshell elements, for both
cases 1 and 2, are compared in Figured94vith the results given by ABAQUS elements ad wel
as with the numerical reference solutions giverCiren et al. (2007). For more clarity in these
cross comparisons, the results given by the SHB-E¥ments are compared in Figures 14 and 15
with those yielded by ABAQUS shell elements, indfgs 16 and 17 with ABAQUS solidhell
elements, and in Figures 18 and 19 with ABAQUSdselements. It can be seen that the double
impact force peak, which is typically observed kperiments (see Figures 13(a)—(b)), is well
reproduced by the SHB-EXP elements for both studesks. More specifically, the maximum
impact force peak, corresponding to the end ofridentation stage, is reached for the SHB-EXP
elements when the velocity of the projectile desesato zero, which is consistent with the
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numerical reference solutions given by Chen e{28107) and the experimental observations in

both studied cases.

In terms of comparison with ABAQUS, the resultsadbéed with the SHB-EXP elements show

good agreement with both solid and sedidell ABAQUS elements (see Figures-18), while

ABAQUS shell elements provide the farthest resulith respect to the reference solution. It

should be recalled once again that a finer meséqsired for the ABAQUS solid elements, with

two element layers in the thickness direction, Wwhicvolves twice more elements than their

solid-shell counterparts.
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Figure 14. History of velocity (left) and impact force (righfor the projectile, obtained with the

SHB-EXP and ABAQUS shell elements along with tHenmence solutions for case 1
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Figure 15. History of velocity (left) and impact force (righfor the projectile, obtained with the
SHB-EXP and ABAQUS shell elements along with tHenmence solutions for case 2
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Figure 17. History of velocity (left) and impact force (righfor the projectile, obtained with the
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Figure 18. History of velocity (left) and impact force (righfor the projectile, obtained with the
SHB-EXP and ABAQUS solid elements along with thiemence solutions for case 1
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Figure 19. History of velocity (left) and impact force (righfor the projectile, obtained with the
SHB-EXP and ABAQUS solid elements along with thiemence solutions for case 2

Furthermore, the displacement history at the platger is also investigated. For this purpose,
Figure 20 compares the displacements obtained théhSHB-EXP elements, for both studied
cases, with those yielded by ABAQUS elements a$ ageWith the numerical reference solutions
given by Chen et al. (2007). Note that no experta@emeasurements for the center plate
displacement have been reported in the literatOxeerall, it can be observed that the SHB-EXP
elements provide the closest results, with resfiethe reference solutions, in comparison with
ABAQUS solid and solid—shell elements, while theules yielded by ABAQUS shell elements

appear to be the farthest.
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Figure 20. Displacement history at the plate center, obtawwgd the SHB-EXP and ABAQUS

elements along with the reference solutions (Cheh. €2007), for case 1 (top) and case 2 (bottom)

3.6 Elastic—plastic ball impacting a circular plate

In this subsection, another impact benchmark proplereviously studied by Olovsson et al.
(2004), is investigated using the proposed SHB-EKents. This test consists in a ball, with a
high initial velocity of 400 m/s, impacting a clasg circular plate (see Figure 21). The initial
radius of the ball is = 60 mm, while the radius and the thickness ofdlaenped circular plate
are R = 200 mm andq= 2 mm, respectively. The ball is modeled as a mieddrle body with
elastic—perfectly-plastic behavior, whereas theutar plate is described by an elaspiastic
model with linear isotropic hardening (see Table The material parameters used in the
simulations, for both the ball and the circulartplaare summarized in Table 3. Owing to the

symmetry, only one quarter of the ball and theutac plate is modeled. The ball is discretized
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with 1728 C3D8lI ABAQUS elements, which consist eh&le solid elements based on the
incompatible mode approach (see, e.g., Taylor.el@v6; Wilson and Ibrahimbegovic, 1990). In
order to obtain a regular mesh for the circulateptpuarter, the latter is divided into three region
each having four edges (see illustration in Figgeéa)). The mesh nomenclature adopted in the
simulations is 8(N;xN31xN3) for hexahedral elements, where iNdicates the number of elements
along each edge and; the number of elements in the thickness directsme Figure 22(b)). For
prismatic elements, the total number of elementswise that corresponding to hexahedral
elements, which leads tox@N;xN;x2)xN3) elements (see Figure 22(c)). For quadrilaterall sh
elements, the nomenclature for discretizing the rtguamodel is 8(NixNj), while this
nomenclature is *8N;xN;x2) when triangular shell elements are used. Fosialulations, the

contact between the ball and the circular platsgimed to be frictionless.

Figure 21. Schematic representation of a ball impacting enpked circular plate

Table 3.Material parameters for the ball and the circulatep

Figure 22 shows the initial meshes and final deéatrehapes of the circular plate, as obtained
with the SHB8PS-EXP and SHB6-EXP elements. In {8, the deflection history at the central
pointof the plateobtainedwith the SHB-EXPelementss comparedvith that yieldecby ABAQUS
elements as well as with the numerical referentgisa given by Olovsson et al. (2004). One can
observe that the results obtained with the SHB-EMMents are comparable in terms of accuracy

to those given by ABAQUS elements, and are alsgod agreement with the reference solution.
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Note however that the ABAQUS solid elements reqiwe element layers in the thickness

direction to provide comparable accuracy, which mseavice more elements than their solid—shell

counterparts, while the S4R ABAQUS shell elemequies a slightly finer mesh.
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Figure 23. Deflection history at the central point of therofged circular plate under impact: using

(a) triangular shell / prismatic elements, andu&hg quadrilateral shell / hexahedral elements



4. Application to the simulation of sheet metal faming processes

In this section, three deep drawing tests with owgsi punch shapes, involving different
materials and associated anisotropy propertiessiamelated with the present SHB-EXP elements
in order to evaluate their performance in the cdntd sheet metal forming simulation. The
obtained results are compared with those given BA@QUS elements, on the one hand, and with

experimental data taken from the literature, onatfrer hand.

4.1 Deep drawing of a square cup
The deep drawing of a square cup, initially proploiseNumisheet’'93 conference (Makinouchi

et al., 1993), is considered here to further asbesperformance of the SHB-EXP elements in the
context of sheet metal forming processes, whiclolireslarge plastic deformations, material non-
linearity and anisotropy, and double-sided contilcte that this benchmark test is very popular
within the sheet metal forming community and, adeuagly, it has been investigated by a number
of authors in the literature (see, e.g., Choi anth,H 999; Schwarze et al., 2011; Pagani et al.,
2014). The schematic view of the setup and thecassol geometric dimensions are shown in

Figure 24.
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Figure 24. Schematic view for the square cup drawing setup
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The initial dimensions of the sheet are 150 mdb0 mmx 0.81 mm. The sheet metal is made
of an aluminum material whose behavior is describgdhe Swift isotropic hardening law (see

Table 1) along with a von Mises-type yield criteriolThe associated material parameters are

summarized in Table 4.

Table 4.Elastic-plastic parameters for the studied aluminum alloy.

All along the forming process, a constant blankdkolforce of 16.6 kN is applied, and the
friction coefficient between the forming tools athé sheet is taken equal to 0.162 (Makinouchi et
al., 1993). Only one quarter of the problem is @iszed, considering the symmetry of the tools
and the sheet.

Figure 25 shows the final deformed drawn of theasglcup at the punch displacement of 15

mm, as obtained with the prismatic and hexahedfd@l-EXP elements.
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Figure 25. Final deformed drawn of the square cup at a pulghlacement of 15 mm: using (a)

SHB6-EXP elements, and (b) using SHB8PS-EXP elesnent

Three final draw-in distances, as illustrated igufe 26, are analyzed and compared with the
experimental measurements (Makinouchi et al., 19@Bere ) denotes the draw-in distance
along the x-axis, [Palong the y-axis, and {the draw-in distance along the diagonal direction.
The in-plane discretization of the square shees 6ge64 elements, in the case of quadrilateral
shell or hexahedral elements, andk64x2 elements, in the case of triangular shell ornpaisc

elements. The sensitivity of the simulation reswtisthe number of through-thickness Gauss
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integration points (GIP) is also analyzed. For 8B-EXP elements (SHB6-EXP and SHB8PS-
EXP), ABAQUS shell elements (S3R and S4R), and AR XFolid-shell elements (SC6R), the
simulations are carried out using 2, 3, and 5 Gilitp, successively, with only a single element
layer. However, for ABAQUS solid elements (C3D6 &#R8D8R), several element layers are used
to mesh the sheet thickness (i.e., 2, 3 and 53ayerorder to have a comparable number of. GIP
Note that the SC8R ABAQUS solighell element failed to simulate the present berachrtest

and, therefore, no predictions are presented ferelement.

Figure 26. lllustration of the draw-in distances of the squeup after forming

Figure 27 compares the draw-in distances predicyetthe SHB-EXP elements and ABAQUS
elements, for different through-thickness GIP, wille experimental measurements from
Makinouchi et al. (1993). A first observation isathmost of the simulation results lie in the range
delimited by the minimum and the maximum draw-ipexmental measurements.

For the SHB6-EXP prismatic solighell element, the simulation results reported iguies
27(a), (c) and (e) suggest that at least 3 thrabmtkness GIP should be used to obtain accurate
predictions for this forming process. When thisditon is met, the SHB6-EXP element provides
results that fall in the range delimited by the imum and the maximum draw-in experimental
measurements, and which are the closest to thageeraw-in experimental distances. It is worth
noting that the Pand O, draw-in distances predicted with the S3R ABAQUS8llsklement are
overestimated, showing limitations of shell elerseint modeling sheet metal forming processes

involving double-sided contact.
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For the SHBBPS-EXP hexahedral sesitlell element (see Figures 27(b), (d) and (f)), the
associated simulation results are comparable tsettgiven by the C3D8R ABAQUS solid
element; however, the latter requires resortinggtceral element layers in contrast to the proposed
solid-shell elements. On the other hand, the predictisingg the S4R ABAQUS shell element are
overestimated in most cases, revealing once adaidirhitations of shell elements in handling
double-sided contact. Finally, the sensitivity sttiol the number of through-thickness GIP reveals
that only two GIP are sufficient for the SHB8PS-EXlEment to accurately describe the various

non-linear through-thickness phenomena.
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Figure 27.Comparison of the draw-in distances at 15 mm pulsplacement, as obtained by the

SHB-EXP elements, ABAQUS elements and experimen&dsurements
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4.2 Deep drawing of a rectangular cup

The second sheet metal forming test investigatedisnwork consists in the deep drawing of a
rectangular sheet with tools of rectangular shaBecause of its particular geometric
characteristics, this benchmark problem is knowmtmlve strong non-linearities (due to large
deformations, plasticity, and contact), which arerensevere than those encountered in the deep
drawing of a square cup (see subsection 4.1). fEsishas been previously studied by Choi and
Huh (1999) and Huh and Choi (1999), by considetiregHill’48 quadratic yield criterion for the
plastic anisotropy of the sheet and the Swift lawi$otropic hardening. The initial dimensions of
the rectangular sheet are 120 mim70 mmx 0.625 mm. The material parameters of the sheet
metal, corresponding to a cold rolled steel, ararsarized in Table 5 (see Choi and Huh, 1999),
while the details on the geometry of the forminpeand its dimensions are all reported in Figure
28.

Table 5.Material parameters associated with the anisotrelaistic-plastic model for the cold

rolled steel.

The constant blank holder force is set equal td1L4N during the forming process, and the
Coulomb friction coefficient between the formingot® and the sheet is taken equal to 0.11.
Owing to the symmetry, only one quarter of the sieenodeled, with an in-plane discretization
of 1960 elements for triangular shell or prismalements, and 980 elements for quadrilateral
shell or hexahedral elements (see Figure 29 fastifation). In order to determine the appropriate
number of through-thickness GIP, three simulatianth 2, 3, and 5 through-thickness GIP,

successively, are first conducted with the SHB-EXdments.
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Figure 29. Final deformed mesh for the rectangular cup atiacp stroke of 30 mm: using (a)
SHBG6-EXP elements, and (b) using SHB8PS-EXP elesnent
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Figure 30 shows the predictions of flange contduhe sheet at different punch stroke (10, 20,
and 30 mm), as obtained with the SHB-EXP elemesiagudifferent numbers of through-
thickness GIP. These numerical predictions are atsmpared with the experimental flange
contours given by Choi and Huh (1999). Overall, tla@ge contours predicted by both of the
SHB6-EXP and SHB8PS-EXP elements are in good agmeenwith those measured
experimentally for the three forming stages (i), 20, and 30 mm punch stroke). More
specifically, for a small punch stroke correspogdim a moderate forming stage (i.e., 10 mm), the
flange contours obtained with different numberghobugh-thickness GIP are indistinguishable
and, therefore, 2 GIP appear to be sufficient t@inbaccurate results. However, for higher punch
stroke corresponding to a deeper forming stage, @0gmm), at least 5 through-thickness GIP are
needed to better describe the various non-lineeng@mena involved in deep forming processes.
This issue has already been discussed in Abed-Meaad Combescure (2009), where the quasi-
static version of the SHB8PS element has beenatalidin the framework of non-linear quasi-

static analysis including elastjglastic applications.
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Figure 30. Comparison between the SHB-EXP simulation reautthe experiments in terms of
flange contour predictions at different punch seakinfluence of the number of through-thickness
GIP: using (a) SHB6-EXP elements, and (b) using SPIB-EXP elements

Taking the above preliminary analysis into consatien, the simulation results given by the
SHB-EXP elements with 5 through-thickness GIP amamared in Figure 31 with those yielded
by ABAQUS elements, using the same in-plane medhamber of through-thickness GIP. Note
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that for the C3D6 and C3D8R ABAQUS solid elemeltslement layers are required, which
leads to 9800 elements and 4900 elements, reselgctivigure 31 shows the flange contour
predictions at different punch stroke, as obtaimgtth the SHB-EXP and ABAQUS elements,
along with the experimental measurements. It casdam that, in the case of small punch stroke
(i.e., punch stroke of 10 mm), the flange contopmsdicted with the SHB-EXP elements and
ABAQUS elements are quite equivalent, whereas tH8-EXP elements provide the closest
results to the experiments in the case of deepifgrifi.e., punch stroke of 30 mm). These results
clearly demonstrate the capability of the propdSE@-EXP elements of accurately describing the

various through-thickness phenomena using oninglesielement layer with few GIP.
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Figure 31.Prediction of flange contours at different puntiolees: comparison between the SHB-
EXP simulation results using 5 through-thicknessP,GIABAQUS element results, and
experimental measurements; (a) triangular shdlishyatic elements, and (b) quadrilateral shell /
hexahedral elements

4.3 Deep drawing of a cylindrical cup

The deep drawing of cylindrical cup is another gapbenchmark test commonly used to study
the earing evolution after forming, when the amigoic plastic behavior of sheet metals is
considered. In the present test, deep drawingootcalar plate made of an AA2090-T3 aluminum
alloy is investigated. The initial diameter ancckmess of the sheet metal are equal to 158.76 mm
and 1.6 mm, respectively. All additional detailsgasling the process simulation and the

experimental results are taken from Yoon et al0§)0The Swift law (see Table 1) is considered
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here to describe the isotropic hardening behawibile the Hill'48 yield criterion is adopted to
model the anisotropic plasticity of the sheet metdle corresponding material parameters are
summarized in Table 6. The geometry of the dravgeiip and the associated dimensions are all

illustrated in Figure 32.

Table 6.Material parameters for the AA2090-T3 aluminum allo
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Figure 32. Schematic view for the cylindrical cup drawinguget

Due to symmetry considerations, only one quartehefcircular sheet is modeled, with an in-
plane discretization of 1350 elements, in the cdgeangular shell or prismatic elements, and 800
elements, in the case of quadrilateral shell oahegral elements. A constant holder force of 22.2
kN is applied during the forming process, and theibn coefficient between the sheet and the
forming tools is taken to be equal to 0.1. The degxd cup, corresponding to the end of the
forming operation, is illustrated in Figure 33 fboth of the SHB6-EXP and SHB8PS-EXP
elements. Similar to the previous deep drawing berwacks, the influence of the number of
through-thickness GIP is also investigated in test by adopting a single SHB-EXP element
layer with 2, 3, and 5 through-thickness GIP, sasiely. The cup height profile predictions
obtained with the SHB-EXP elements and ABAQUS elatmare reported in Figure 34, for the
guarter model, and compared with the experimentdsurements taken from Yoon et al. (2006).

On the whole, it can be observed that both theeshap the height of the earing profiles predicted
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with the SHB-EXP elements are in good agreemenh ilie experiments. However, these
predictions are slightly underestimated at 0° afd ffom the rolling direction, while they are
closer to the experiments in the range around tperenental peak value at 50° from the rolling
direction. From the sensitivity study to the numbéthrough-thickness GIP, the SHB8PS-EXP
element shows good convergence of the resultsngfdrom 2 GIP, while the SHB6-EXP element
requires at least 3 through-thickness GIP to pmwdnverged results. Furthermore, Figure 34
shows comparisons between the earing profiles gestliwith the SHB-EXP elements and
ABAQUS elements, using the same in-plane mesh ammhgarable number of through-thickness
GIP. It can be clearly observed that the SHB-EXd¢Ments provide the closest predictions to the
experiments, for almost the entire range of anfytas the rolling direction. However, the current
predictions may be improved in future work by adugptmore appropriate anisotropic yield
criteria for aluminum alloys (see, e.g., Barlabet1991; Barlat et al., 2003; Yoon et al., 2006),
which are able to predict more than four earingfilg® for the complete circular sheet, as
observed experimentally for such materials.
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Figure 33. Final deformed mesh for the cylindrical cup: usjagSHB6-EXP elements, and (b)
using SHBBPS-EXP elements
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Figure 34. Prediction of cup height profiles: comparison betw the SHB-EXP simulation
results, ABAQUS element results, and experimentdsarements; (a) triangular shell / prismatic

elements, and (b) quadrilateral shell / hexahesleshents

5. Conclusion

In this paper, two linear solighell elements, namely a six-node prismatic elendenioted
SHB6-EXP and an eight-node hexahedral element ddn8HB8PS-EXP, have been proposed
and implemented into the dynamic finite elementecddAQUS/explicit. The main objective of
this work is to establish accurate and efficientidsghell element formulations for the
explicit/dynamic analysis of 3D thin structures.e§h explicit solidshell versions, denoted SHB-
EXP, can be applied to structural dynamic analygish as impact/crash problems, as well as to
complex sheet metal forming processes, for whiehue of implicit/quasi-static approaches may
exhibit convergence issues.

Several numerical treatments, such as the reduntedration technique, the assumed-strain
method, hourglass mode stabilization, are adopid¢kde formulation of the SHB-EXP elements to
eliminate the main locking phenomena that are mmerin low-order formulations. A
characteristic feature is that these elements asecon a fully three-dimensional approach, with
only translational degrees of freedom. In additibvey are designed to be used with only a single
element layer, while attributing an arbitrary udefined number of integration points in the
thickness direction. This makes them very attractidue to their computational efficiency in

explicit/dynamic analyses.
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The performance of the SHB-EXP elements has besh dhown through popular dynamic
benchmark tests, involving geometric and mater@i-inearities. In particular, the SHB-EXP
elements demonstrate good capabilities for the fimgef impact-type problems, in both cases of
low and high initial velocity of projectiles. Thenwlation results obtained with the proposed
SHB-EXP elements have been validated by comparnstnstate-of-the-art elements available in
ABAQUS, and were also found in good agreement vgfarence solutions taken from the related
literature.

Then, these explicit versions of selghell elements have been validated in the contestheet
metal forming applications. Three popular and dslecdeep drawing processes have been
considered in this work, using square, rectangalad, circular anisotropic sheet metals associated
with square, rectangular, and cylindrical punchpglsarespectively. These challenging benchmark
problems allow evaluating the SHB-EXP elementsawese forming conditions, involving non-
linear loading paths, anisotropic material behgviamd double-sided contact. Using similar
meshes and comparable numbers of integration ptimtsigh the thickness, the comparison
between conventional ABAQUS solid elements andpitesent SHB-EXP elements reveals that
the latter provide predictions that are the closeshe experimental results. It is worth notingtth
the good performance of the SHB-EXP elements isesed using only a single element layer
with few integration points, in contrast to ABAQUSlid elements, which has important
consequences on the computational cost. Note &lsibsome convergence issues have been
encountered with the SC8R ABAQUS selithell element for the modeling of the deep drawing
of a square cup, which makes the present SHB8PSdoX& shell element very competitive in
such benchmark problems.

On the whole, the performance of the SHB8PS-EXRahedral element is better than that of
the SHB6-EXP prismatic element. However, thesedula-shell element complement each other,
as combination of these may prove necessary fosithalation of complex shaped geometries,
which cannot be discretized using only hexahediaments. Similar situations may also be
encountered when using free mesh-generation tedigh results in meshes comprising both

hexahedral and prismatic elements.
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