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Abstract 

In this paper, the conditions for the occurrence of diffuse and localized necking in thin 

sheet metals are investigated. The prediction of these necking phenomena is undertaken 

using an elastic‒plastic model coupled with ductile damage, which is then combined 

with various plastic instability criteria based on bifurcation theory. The bifurcation 

criteria are first formulated within a general three-dimensional modeling framework, 

and then specialized to the particular case of plane-stress conditions. Some theoretical 

relationships or links between the different investigated bifurcation criteria are 

established, which allows a hierarchical classification in terms of their conservative 

character in predicting critical necking strains. The resulting numerical tool is 

implemented into the finite element code ABAQUS/Standard to predict forming limit 

diagrams (FLDs), in both situations of a fully three-dimensional formulation and a 

plane-stress framework. The proposed approach is then applied to the prediction of 



2 

 

diffuse and localized necking for a DC06 mild steel material. The predicted FLDs 

confirm the above-established theoretical classification, revealing that the general 

bifurcation criterion provides a lower bound for diffuse necking prediction, while the 

loss of ellipticity criterion represents an upper bound for localized necking prediction. 

Some numerical aspects related to the prestrain effect on the development of necking 

are also investigated, which demonstrates the capability of the present approach in 

capturing the strain-path changes commonly encountered in complex sheet metal 

forming operations. 
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Introduction 

During sheet metal forming processes, various types of defects related to operating 

conditions and/or material characteristics may occur. Among them, plastic instabilities 

associated with the occurrence of diffuse and localized necking are particularly 

detrimental, since they limit sheet metal formability. In this context, Keeler and 

Backofen (1963) and Goodwin (1968) proposed the nowadays well-known concept of 

Forming Limit Diagram (FLD), to characterize the formability of thin sheet metals 

subjected to in-plane stretching. The determination of FLDs was originally based on 

experimental measurements, which turned out to be very time consuming and entailing 

non-negligible costs, not to mention their potential lack of reproducibility. To overcome 

these drawbacks, significant efforts have been devoted over the last decades to the 

development of theoretical indicators that are able to predict the formability limits of 

thin sheet metals. To this end, a complete approach to the prediction of critical limit 

strains requires essentially two developments. The first consists of an advanced 

constitutive model capable of reproducing the essential physical phenomena that occur 

during forming operations, while the second pertains to relevant criteria for the reliable 

prediction of plastic instabilities. 

Along with the evolution of necking in sheet metal forming processes, ductile 

damage plays an important role with regard to the formability limits of thin sheet 

metals. This requires accurate modeling of the initiation of ductile damage and its 

evolution during loading, in order to reproduce the softening mechanisms observed 

experimentally at large deformations. In this field, two well-established theories of 

ductile damage have been developed over the past few decades. The first theory, which 

has been initiated by the work of Gurson (1977), and further modified by Tvergaard and 

Needleman (see, e.g., Tvergaard, 1981; Tvergaard and Needleman 1984), is based on a 

micromechanical analysis of void growth that describes the complex ductile damage 
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mechanisms in porous materials. In this approach, the void volume fraction is 

introduced as damage variable, thus accounting for the dependence of the material 

response on hydrostatic pressure. Several improvements have been made in the 

literature to this type of ductile damage theory, but at the expense of a large number of 

material parameters (see, e.g., Rousselier, 1987; Gologanu et al., 1997; Pardoen et al., 

1998; Benzerga and Besson, 2001; Monchiet et al., 2008). The second theory, known as 

continuum damage mechanics (CDM), is based on the thermodynamics of irreversible 

processes and is widely used for modeling ductile damage in metallic materials (see, 

e.g., Lemaitre, 1992; Voyiadjis and Kattan, 1992; Chaboche, 1999). In this approach, 

the damage variable represents the surface density of microcracks across a given plane, 

and can be modeled as isotropic scalar variable (see, e.g., Lemaitre, 1985, 1992; 

Chaboche et al., 2006), or a tensor variable for anisotropic damage (Chow and Wang, 

1987; Chow and Lu, 1989; Chaboche, 1993; Zhu and Cescotto, 1995; Abu Al-Rub and 

Voyiadjis, 2003, Brünig, 2003). Three main variants for the CDM theory have been 

essentially developed in the literature, which are based on the following three 

fundamental assumptions: the strain equivalence principle, the stress equivalence 

principle and the energy equivalence principle. The strain equivalence principle 

employs the concept of effective stress, as proposed by Lemaitre (1971), and 

subsequently used by Simo and Ju (1987a, 1987b) and Ju (1989). In contrast to the 

strain equivalence principle, the stress equivalence principle is based on the concept of 

effective strain, as summarized by the works of Simo and Ju (1987a, 1987b). As to the 

third variant for the CDM theory, which is the elastic energy equivalence principle, it 

was first introduced by Cordebois and Sidoroff (1979) as an alternative to the available 

strain or stress equivalence principles, and extended by Saanouni and co-workers during 

the last decades to the total energy equivalence assumption (see, e.g., Saanouni et al., 

1994, 2011; Saanouni and Chaboche, 2003; Saanouni, 2008, 2012; Saanouni and 

Hamed, 2013; Ghozzi et al., 2014; Rajhi et al., 2014; Yue et al., 2015; Badreddine et al., 
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2010, 2016, 2017). This total energy equivalence principle defines the undamaged 

material state and its corresponding effective strain and stress variables, so that the total 

(elastic and inelastic) energy involved is equal to that for the damaged material state. 

To predict the occurrence of diffuse or localized necking in sheet metal forming 

processes, the above-discussed constitutive models need to be coupled with plastic 

instability criteria. These criteria can be classified into four categories. The first 

category of criteria is based on Considère’s maximum force principle (Considère, 

1885), who proposed a diffuse necking criterion in the particular case of uniaxial 

tension. Later, Swift (1952) extended Considère’s criterion to the case of in-plane 

biaxial loading. For localized necking, Hill (1952) proposed an alternative criterion 

based on bifurcation theory, which states that localized necking occurs along the 

direction of zero extension. It is worth noting that Hill’52 criterion is only applicable to 

the left-hand side of the FLD and, therefore, it was often combined with Swift’52 

criterion to determine a complete FLD. Within the category of maximum force principle 

criteria, Hora et al. (1994, 1996) and Mattiasson et al. (2006) proposed two extensions 

of Considère’s criterion for the prediction of localized necking, which take into account 

the strain-path changes. The second category of criteria is based on the approach that 

assumes the existence of an initially inhomogeneous region, with an initial 

imperfection, from which localized necking may occur. The initial imperfection may 

take the form of geometric imperfection, which led to the so-called M‒K approach 

(Marciniak and Kuczyński, 1967), and was subsequently extended by Hutchinson and 

Neale (1978), by allowing the groove, postulated with an initial orientation, to rotate in 

the sheet plane, or material imperfection (see, e.g., Yamamoto, 1978). The third 

category of criteria is derived from bifurcation or stability theories. These criteria have 

sound theoretical foundations, since they investigate the possibility of bifurcation or 

instability in the constitutive description itself, without introducing arbitrarily user-
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defined parameters, such as the initial imperfection size in the M‒K approach. Drucker 

(1950, 1956) and, later, Hill (1958) developed quite general bifurcation conditions, 

based on the loss of uniqueness for the solution of the associated boundary value 

problem, which will be referred to in the current work as the general bifurcation 

criterion (GB). A local formulation for the GB criterion, which corresponds to the 

positiveness of the second-order work, may be used for the prediction of diffuse 

necking in sheet metals. In the same context, Valanis (1989) proposed an alternative 

criterion, designated as limit-point bifurcation (LPB), which is less conservative than 

the GB criterion. The LPB criterion is associated with the stationarity of the first 

Piola‒Kirchhoff stress state, which corresponds to the singularity of the associated 

analytical tangent modulus. Following the pioneering works of Hill (1952, 1958, 1962), 

Rudnicki and Rice (1975), Stören and Rice (1975) and Rice (1976) proposed a 

localization bifurcation criterion to predict the localization of deformation in the form of 

planar shear bands or localized necking in thin metal sheets. The latter criterion 

corresponds to the loss of ellipticity (LE) of the partial differential equations governing 

the associated boundary value problem. An alternative localization criterion, more 

conservative than the LE criterion, was proposed by Bigoni and Hueckel (1991) and 

Neilsen and Schreyer (1993), which consists in the loss of strong ellipticity (LSE) of the 

equations governing the boundary value problem. Some other variants for the above-

discussed bifurcation criteria are also worth mentioning as well as further analytical 

developments with the aim of deriving closed-form expressions for the critical limit 

strains associated with diffuse or localized necking (see, e.g., Doghri and Billardon, 

1995; Loret and Rizzi, 1997a, 1997b; Rizzi and Loret, 1997; Sánchez et al., 2008). In 

particular, Benallal and co-workers (see, e.g., Benallal et al., 1993; Pijaudier-Cabot and 

Benallal, 1993; Lemaitre et al., 2009) combined the CDM theory with the bifurcation 

analysis for the prediction of strain localization in rate-independent materials. In these 
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works, closed-form solutions were derived for both local and nonlocal damage-based 

constitutive equations. 

The fourth and last category of plastic instability criteria relies on the theory of 

stability, and the associated perturbation analysis, for the prediction of diffuse or 

localized necking (see, e.g., Fressengeas and Molinari, 1987; Dudzinski and Molinari, 

1991; Toth et al., 1996; Boudeau, 1998). This class of criteria represents an interesting 

alternative to the bifurcation approach, especially in the case of strain-rate-dependent 

materials. However, it is noticeable that this latter approach is less commonly used in 

the literature, as compared to the M‒K analysis or the bifurcation theory. 

In the current contribution, an elastic‒plastic model, with Hill’48 anisotropic plastic 

yield surface and mixed isotropic‒kinematic hardening, is coupled with the CDM 

theory, and more specifically, with the Lemaitre isotropic damage model. Referring to 

the earlier works of Benallal et al. (1993) and Doghri and Billardon (1995), who 

coupled the CDM theory with the LE criterion, the proposed elastic‒plastic‒damage 

model is combined with the above-described four bifurcation criteria to predict the 

occurrence of diffuse and localized necking in thin sheet metals. The resulting 

numerical tool is implemented into the finite element code ABAQUS/Standard, within 

the framework of large plastic strains and a fully three-dimensional formulation. 

Specially modified versions of the proposed approach are also implemented in the two 

particular frameworks of small strains and plane-stress conditions. 

The remainder of paper is organized as follows. The constitutive equations of the 

fully coupled elastic‒plastic‒damage model are introduced in the next Section (i.e., 

second Section), along with their numerical implementation and validation. The 

bifurcation criteria adopted for the prediction of diffuse and localized necking are 

presented in the third Section, within a general modeling framework. Then, the 
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bifurcation criteria are specialized to the two particular frameworks of plane-stress 

conditions and small strain analysis. Also, a theoretical classification of these 

bifurcation criteria is established, in terms of their conservative character in predicting 

the critical limit strains. In the fourth Section, the numerical tool resulting from the 

present approach is first validated, and then applied to the prediction of FLDs for a steel 

material. The simulation results confirm the theoretical hierarchy previously established 

for the bifurcation criteria with regard to their order of prediction for the critical necking 

strains. Finally, the main results are summarized and conclusions are drawn. 

 

Elasto-plastic model coupled with ductile damage 

In this Section, the constitutive equations of the elastic‒plastic model coupled with 

ductile damage are described. This constitutive modeling is developed within the 

framework of phenomenological behavior laws with rate-independent associative 

plasticity. The damage is first introduced through an isotropic scalar variable describing 

the degradation of the material elasticity properties. Then, a general thermodynamic 

framework is used to derive the fully coupled constitutive equations under the postulate 

of strain equivalence principle. Finally, the implementation of the resulting fully 

coupled elastic‒plastic‒damage model into the finite element software 

ABAQUS/Standard is performed via a user-defined material (UMAT) subroutine, and 

validated by comparing the numerical predictions with those given by existing 

hardening models available in ABAQUS as well as with reference solutions taken from 

the literature. 
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Anisotropic elastic‒plastic model coupled with ductile damage 

The concept of continuum damage mechanics (CDM) has been widely used in the 

literature to describe the degradation of the material mechanical properties during 

loading. The CDM theory was first introduced by Kachanov (1958) to model creep 

rupture. Subsequently, the CDM approach has been further developed and formulated 

within the framework of thermodynamics to model mainly three types of ductile 

damage: fatigue damage (Chaboche, 1974), creep damage (Rabotnov, 1963; Hult, 1974) 

and ductile plastic damage (see, e.g., Lemaitre, 1985; Lemaitre and Dufailly, 1977). 

More specifically, three damage representation theories have been developed in the 

literature, which are based on three fundamental assumptions; namely, the strain 

equivalence principle, the stress equivalence principle and the energy equivalence 

principle. The first class of damage representation theories, which is based on the strain 

equivalence principle, employs the concept of effective stress, as proposed by Lemaitre 

(1971), and subsequently used by Simo and Ju (1987a, 1987b) and Ju (1989). By 

adopting this concept, the constitutive equations of the damaged material are derived 

from those of the undamaged material by substituting the effective stress tensor σɶ  by its 

expression in terms of the Cauchy stress tensor σ , as follows: 

 
1 d

=
−
σ

σɶ , (1) 

where σ  is the Cauchy stress tensor in the damaged material, and σɶ  the effective stress 

tensor in an equivalent undamaged material. The scalar damage variable d , varying 

from 0 to 1 (with 0d =  for an undamaged material, and 1d =  for a fully damaged 

material), represents the surface density of cavities and cracks within a given plane (see 

Figure 1), and is defined by the following relationship: 
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 1 effd
SS

d
S S

= = − , (2) 

where dS  is the surface of defects (cavities and cracks), effS  denotes the effective 

surface (undamaged surface), and S  is the total surface. 

 

Figure 1. Schematic representation of a partially damaged section. 

 

The second class of damage representation theories is based on the stress equivalence 

principle, as summarized by the works of Simo and Ju (1987a, 1987b), who introduced 

the concept of effective strain. Finally, Cordebois and Sidoroff (1979) proposed the 

elastic energy equivalence assumption, which assumes the equality between the elastic 

energy defined in the real damaged configuration and the one defined in the fictive 

undamaged configuration. This leads to the definition of a single couple of state 

variable related to the plastic flow. This idea has been extended later by Saanouni and 

co-workers (see, e.g., Saanouni et al., 1994, 2011; Saanouni and Chaboche, 2003; 

Saanouni, 2008, 2012; Saanouni and Hamed, 2013; Ghozzi et al., 2014; Rajhi et al., 

2014; Yue et al., 2015; Badreddine et al., 2010, 2016, 2017) to the total energy 

equivalence assumption, from which a couple of effective state variables associated 

with each dissipative phenomenon can be defined. 
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In this subsection, the elastic−plastic constitutive equations coupled with the 

Lemaitre isotropic damage model are formulated within the framework of the 

thermodynamics of irreversible processes with state variables. The strain equivalence 

principle, using the concept of the effective stress, is adopted here to derive the fully 

coupled elastic−plastic−damage model. Assuming isothermal conditions, the Helmholtz 

free energy is taken as state potential, which can be additively decomposed as follows: 

 ( )
Elastic contribution Plastic contribution

1
(1 ) : : :

2 3
e e rsat XX C

ρψ d ρψ r− += ε C ε + α α

������� ���������
, (3) 

where ρ  is the density, e
ε  is the elastic strain tensor, and C  is the fourth-order 

elasticity tensor. The second-order tensor α  represents the back-strain internal variable, 

whose associated thermodynamic force is the back-stress tensor X . The latter 

represents the kinematic hardening, i.e. the translation of the yield surface in the stress 

space, with satX  and XC  being the associated material parameters. The potential ( )rψ r  

in Eq. (3) is a function of the scalar internal variable r , which represents the isotropic 

strain hardening. The associated thermodynamic force is the scalar variable R , which 

measures the size variation of the yield surface in the stress space. 

The thermodynamic forces associated with each internal variable, i.e. ( ), , ,e r dε α , 

are derived from the state potential (see Eq. (3)) as follows: 

Cauchy stress tensor ( )1 : e
e

ψ
ρ d

∂= = −
∂

σ C ε
ε

. (4) 

Isotropic hardening stress 
rψ ψ

R ρ ρ
r r

∂ ∂= =
∂ ∂

. (5) 
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Kinematic hardening stress 
3 sat X

ψ 2
ρ X C

∂= =
∂

X α
α

. (6) 

Damage driving force  
1

: :
2

e e eψ
Y ρ

d

∂= − =
∂

ε C ε . (7) 

The above damage driving force is commonly called the “elastic strain energy 

density release rate”, which represents the variation of internal energy density due to 

damage growth at constant stress (see, e.g., Lemaitre, 1992; Lemaitre et al., 2000). It 

can be easily shown that, for linear isotropic elasticity, the expression of eY  reduces to 

 ( ) ( )
22

2

2

2
1 3 1 2

2 3

H
e J σ

Y υ υ
E J

  
 = + + −  
   

ɶ
, (8) 

where 2

3
:

2
J ′ ′= σ σɶ ɶ  is the equivalent effective stress in the sense of von Mises, 

Hσ′ = −σ σ 1ɶ ɶ ɶ  is the deviatoric part of the effective stress and 
1

:
3

Hσ = σ 1ɶɶ  is the 

hydrostatic effective stress, while E  and υ  denote, respectively, the Young modulus 

and Poisson ratio. 

The second principle of thermodynamics, written in the form of the Clausius−Duhem 

inequality, must be always satisfied in order to ensure the validity of the model. In the 

case of isothermal processes, the Clausius−Duhem inequality writes 

 : 0ρψ− ≥σ D ɺ , (9) 

where the second-order tensor D  represents the strain rate, which is additively 

decomposed into two second-order tensors eD  and pD , representing the elastic strain 

rate and the plastic strain rate, respectively (i.e., e p= +D D D ). 
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The free energy rate ψɺ  in Eq. (9) writes 

 : :e
e

ψ ψ ψ ψ
ψ r d

r d

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

D α
ε α

ɺɺɺ ɺ . (10) 

Substituting the above equation in Eq. (9), and using the definition of the associated 

thermodynamic forces, the Clausius−Duhem inequality becomes 

 : : 0p eR r Y d− − + ≥σ D X α ɺɺ ɺ . (11) 

In the particular case when the plastic dissipation is negligible, the following 

condition must be always satisfied: 

 0eY d ≥ɺ , (12) 

which requires the damage rate dɺ  to be positive, since eY  is a positive quadratic 

function (see Eq. (7)). 

Once all the state variables are defined, their evolution laws are derived from a 

dissipation potential F , which is a convex function of the associated thermodynamic 

forces. Its general form is given by 

 ( ) ( )3
, , :

4
e

p d
sat

F F R F Y
X

′= + +σ X X Xɶ , (13) 

where the first term ( ), ,pF R′σ Xɶ  represents the plastic yield function, the second term 

3
:

4 satX
X X  is related to the nonlinear part of the kinematic hardening, and the last term 

( )e
dF Y  is the damage potential. 
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By applying the classical normality rule pertaining to generalized standard materials, 

the evolution laws are written as 

 

p

e

F
λ

F
r λ

R
F

λ

F
d λ

Y

∂ = ∂


∂ = −
 ∂
 ∂ = −
 ∂
 ∂
 =

∂

D
σ

α
X

ɺ

ɺɺ

ɺɺ

ɺ ɺ

, (14) 

where λɺ  is the plastic multiplier. 

In this work, the plastic potential pF  in Eq. (13) is assumed to be equal to the plastic 

yield function, which leads to the classical associative plasticity theory. Accordingly, 

the plastic potential pF  can be written in the following generic form: 

 ( , )pF σ Y′= −σ Xɶ , (15) 

where σ  is the equivalent effective stress, while 0Y = Y + R is a measure of the size of 

the yield surface, with 0Y  being the initial yield stress. 

The initial anisotropy of the material is taken into account here via the equivalent 

effective stress σ . In the literature, several plastic yield surfaces have been used to 

represent the plastic anisotropy of materials (see, e.g., Hill, 1948, 1990, 1993; Barlat et 

al., 1991; Banabic et al., 2003). In this work, the quadratic Hill’48 yield criterion is 

adopted for modeling the plastic anisotropy of the material. The corresponding 

equivalent effective stress is given by the following expression: 
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 ( , ) ( ) ( )σ ′ ′ ′= − : : −σ X σ X M σ Xɶ ɶ ɶ , (16) 

where M  is a fourth-order tensor that contains the six anisotropy coefficients of the 

quadratic Hill’48 yield criterion. 

Using the above definitions, the plastic yield conditions, written in the form of 

Kuhn–Tucker inequalities, can be expressed as follows: 

 

0( ) ( ) 0

0

0

p

p

F R Y

λ

λF

 ′ ′= − : : − − − ≤
 ≥
 =

σ X M σ Xɶ ɶ

ɺ

ɺ

. (17) 

The plastic strain rate pD , defined by Eq. (14), can be expressed in the case of 

Hill’48 yield criterion as 

 p F
λ λ

∂= =
∂

D V
σ

ɺ ɺ ɶ , (18) 

where 
1 ( )

1 d σ

′: −=
−

M σ X
V

ɶɶ  is the plastic flow direction, normal to the yield surface. 

 

Hardening evolution laws 

From the evolution laws given by Eq. (14) and the definition of the plastic potential pF  

(see Eq. (15)), the evolution law for the isotropic strain hardening r  is given by 

 
F

r λ λ
R

∂= − =
∂
ɺ ɺɺ . (19) 
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To provide the best description for the experimental stress‒strain response that 

characterizes the material strain-hardening behavior, several well-known hardening 

functions have been proposed in the literature. The most commonly used isotropic 

hardening laws are adopted in this work, due to their simple expressions that involve a 

reduced number of parameters. Table 1 provides the expressions of these classical 

isotropic hardening laws, as functions of the equivalent plastic strain ε , in the case of 

plasticity uncoupled from damage. When damage is coupled with plasticity, then the 

equivalent plastic strain ε  in Table 1 should be replaced by λ  to account for the 

coupling with damage. Indeed, the equivalent plastic strain rate εɺ  is related to the 

plastic multiplier λɺ  by the following relationship: 

 
1

λ
ε

d
=

−

ɺ
ɺ , (20) 

which is derived from the plastic work equivalence principle (i.e., P( ) :σ ε ′= −σ X Dɺ ɶ ). 

 

Table 1. Commonly used isotropic hardening laws. 

Isotropic 
hardening law 

Hollomon Ludwig Swift Voce 

Y  nkε  0
nY kε+  ( )0

n
k ε ε+  ( )0 1 RC ε

satY R e−+ −  

 

Similarly, the evolution law for the back-strain tensor α  is derived as 

 
( ): 3

2 sat

F
λ λ

σ X

′ −∂= − = − ∂  

M σ X
α X

X

ɶɺ ɺɺ . (21) 

Substituting the above expression into the rate form of Eq. (6) leads to 
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 ( )2
1

3X satC X d λ
 = − − 
 

X V X ɺɺ ɶ , (22) 

where Vɶ  is defined by Eq. (18). Note that the saturation direction for the back-stress 

variable X , whose evolution law is given by Eq. (22), coincides with that of the plastic 

flow direction (see Eq. (18)). However, other kinematic hardening models have been 

proposed in the literature, in which the saturation direction for the back-stress tensor X  

differs from the plastic flow direction. In particular, the well-known 

Armstrong−Frederick kinematic hardening law (see Armstrong and Frederick, 1966) 

has been originally proposed based on the following rate form (see also, e.g., Haddadi et 

al., 2006; Butuc et al., 2011): 

 ( )X satC X λ λ= − = XX n X Hɺ ɺɺ ɶ , (23) 

where 
σ

′ −= σ X
n
ɶ

ɶ  is the saturation direction, which differs from the plastic flow 

direction given by Eq. (18). Note that in the case of the von Mises yield surface, the 

above saturation direction nɶ  coincides with that of the plastic flow direction Vɶ . In this 

work, the hardening parameters as well as the Hill’48 anisotropy coefficients, used for 

the prediction of FLDs for a DC06 mild steel material, were experimentally identified 

by Haddadi et al. (2006). In the latter reference, the original Armstrong−Frederick 

kinematic hardening law (see Eq. (23)), together with the Swift isotropic hardening law 

and the Hill’48 plastic yield criterion, were considered in the identification procedure. 

Consequently, the nonlinear kinematic hardening law given by Eq. (23) is adopted in 

the current contribution. Adopting this choice, it should be noted that the evolution law 

given by Eq. (23) does not derive directly from the current thermodynamic approach. 

Nevertheless, it is very easy to slightly modify the state potential as well as the 

dissipation potential given by Eqs. (3) and (13), respectively, by introducing the fourth-
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order tensor M  and its inverse, so that Eq. (23) derives straightforwardly from these 

potentials, thus providing a consistent thermodynamic framework. 

Damage evolution law 

Softening behavior that takes place at large strain during loading is accounted for in this 

work by coupling the elastic‒plastic model with the Lemaitre ductile damage (Lemaitre, 

1985). Different formulations can be found in the literature to define the damage 

potential for ductile materials. In this work, the following damage potential is adopted 

(see, e.g., Lemaitre, 1985; Saanouni et al. (2010)): 

 ( )

1
1

if
11

0 otherwise

d

d

se e
e ed i

iβ
d d d

S Y Y
Y Y

F s Sd

+  −
 ≥ = + −  



. (24) 

where dS , ds , dβ  and e
iY  are the damage-related parameters, while eY  is defined by 

Eq. (8). 

The associated damage evolution law derives from the damage potential dF  as 

 ( )
1

if
1

0 otherwise

d

d

se e
e ei

iβ
d d

Y Y
λ Y Y

d H λ Sd

  −
 ≥ = =  −  



ɺ
ɺ ɺ , (25) 

 

Elastic–plastic tangent modulus 

According to the strain equivalence principle (see Eq. (1)), the Cauchy stress can be 

expressed using the following relationship: 
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 ( ) ( )p1 d= − : −σ C ε ε . (26) 

From the above equation, the Cauchy stress rate is derived as: 

 ( ) ( )p1
1

d
d

d
= − : − −

−
σ C D D σ

ɺ
ɺ , (27) 

which can be rewritten in the following compact rate form: 

 ep= :σ C Dɺ , (28) 

where epC  is the elastic‒plastic tangent modulus, which is part of the ingredients 

required in the formulation of the bifurcation criteria developed in the next Section. In 

order to determine the expression of the elastic‒plastic tangent modulus epC , the plastic 

multiplier λɺ  needs to be first derived using the consistency condition 0pF =ɺ  along with 

the evolution equations described in the previous Section, which writes (Haddag et al., 

2009) 

 
Y

λ
H

: :=
: : + : +X

V C D
V C V V H

ɺ
ɶ

, (29) 

where ( )1 d−V = Vɶ , while YH  is the scalar isotropic hardening modulus, which 

governs the evolution of isotropic hardening (i.e., YY R H λ= = ɺɺ ɺ ). By combining Eqs. 

(18), (25), (27), and (29), Eq. (28) can be rewritten in the following form: 

 ( ) ( ) ( ) ( )
1 d

Y

H
d

H

 : ⊗ : + ⊗ :
= − − : : : + : + X

C V V C σ V C
σ C D

V C V V H

ɶ
ɺ

ɶ
. (30) 

From the above equation, the elastic‒plastic tangent modulus epC  is given by 
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[ ] ( )

(1 ) dep

λ

H
d

H

: + ⊗ :
= − −

C V σ V C
C C

ɶ
, (31) 

where λ YH H= : : + : +XV C V V Hɶ . 

 

Numerical implementation of the fully coupled model and its validation 

Explicit time integration scheme 

The resulting fully coupled model is implemented into the finite element code 

ABAQUS/Standard. This allows solving boundary value problems (BVP), which are 

governed, within the framework of isothermal processes and quasi-static analysis, by 

the following strong form of equilibrium equations on a given domain Ω : 

 

( )
t

u

div inΩ

on Ω

ˆ on Ω

 + =


⋅ = ∂
 = ∂

σ b 0

σ n t

u u

, (32) 

where tΩ∂  and uΩ∂  are complementary boundary subsurfaces of the global surface 

Ω∂  (i.e., t uΩ Ω Ω∂ = ∂ ∂∪  and t uΩ Ω∂ ∂ = ∅∩ ), b  is the body force vector, t  is the 

externally-applied force vector on tΩ∂ , n  is a unit vector normal to tΩ∂ , u  is the 

displacement field, and ̂u  is the prescribed displacement, which is applied on the 

boundary subsurface uΩ∂ . In the context of the finite element method, an alternative to 

the above strong form of equilibrium equations is the weak variational formulation, 

which is commonly called the principle of virtual works (PVW). 
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The constitutive equations described in the previous Section together with the weak 

form of the BVP allow us to derive the quasi-static finite element formulation, which is 

expressed here by the following set of nonlinear equations: 

 =⋅K u f , (33) 

where K  is the stiffness matrix, whose calculation requires the consistent tangent 

modulus and the discrete gradient operator of each individual finite element, while f  is 

the generalized force vector. For each increment of the applied loading, 

ABAQUS/Standard solves the above system of equations iteratively using the 

Newton−Raphson method in order to obtain the nodal displacement vector u  of the 

studied structure. On the other hand, the stress state as well as the consistent tangent 

modulus, required for setting up the global equilibrium system (see Eq. (33)), have to be 

computed and updated at each integration point. To achieve this, the explicit forward 

fourth-order Runge–Kutta integration scheme is used in this work. This choice is a 

reasonable compromise in terms of computational efficiency, accuracy, and 

convergence. However, it requires small time increments to ensure accuracy and 

stability (see, e.g., Li and Nemat-Nasser, 1993; Kojic, 2002). 

One can notice that, for the fully coupled model, the evolution of all internal 

variables can be written in the form of the following global differential equation: 

 ( )= yy h yɺ , (34) 

where vector y  includes all internal variables of the present model. The implementation 

of this compact form, using the fourth-order Runge–Kutta explicit time integration 

scheme, is straightforward and allows incorporating various hardening laws and plastic 

yield surfaces (see Mansouri et al. (2014) for more details). The resulting explicit time 

integration algorithm is summarized in Table 2. 
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Note that, within the large strain framework, the use of objective derivatives for the 

tensorial variables is required in order to ensure the incremental objectivity of the 

model. Several objective rates have been developed in the literature, which allow 

simplifying the time derivatives of the constitutive equations, thus making them 

identical in form to a small-strain formulation. Another convenient way, which is quite 

equivalent to the use of objective rates, is the formulation and time integration of the 

constitutive equations in the so-called local objective frames. Different objective local 

frames have been proposed; one possible choice is the co-rotational frame associated 

with the anti-symmetric part W  of the velocity gradient G , resulting in the 

conventional Jaumann rate. Another choice has been suggested by the polar 

decomposition theorem for the deformation gradient: = ⋅F V R , where V  is the left 

stretch tensor and R  is the rotation tensor, which leads to the objective derivative of 

Green−Naghdi. The goal of such objective derivatives is to satisfy the material 

invariance by eliminating all the rotations that do not contribute to the material 

response. 

Although the co-rotational Jaumann rate is the most commonly-used objective 

derivative, it has some well-recognized drawbacks. The main downside that has been 

pointed out in the use of the Jaumann rate consists of undesirable oscillations in the 

shear stress−strain response, as a result of large rotation of the stress principle axes, in 

particular when kinematic hardening is considered (see, e.g., Dafalias, 1985). It must be 

noted, however, that in the current work, only in-plane biaxial loading paths are 

considered for the prediction of conventional FLDs for sheet metals, which excludes the 

occurrence of shear strains during the simulations. Moreover, the limit strains expected 

from the application of the present bifurcation criteria, which correspond to the 

occurrence of diffuse or localized necking, are relatively small when compared to the 

large strains that sheet metals can undergo before fracture. Consequently, the Jaumann 
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rate is adopted in this work to describe the rotation of the material frame, which is 

consistent with the choice adopted in the ABAQUS software. 

 

 

Table 2. Outline of the explicit time integration algorithm. 

For t = 0 , initialization of the state variables 0 =y 0  

Input data: ∆ε  and ( ), , ,n n n n nR dy σ X  

Set 0 =∆σ 0  and 0 =∆y 0  

For 1,...,i N=  (with 4N =  for the 4th-order Runge–Kutta method) 

Compute 1i n i ia −= + ∆σ σ σ  and 1i n i ia −= + ∆y y y , with 
1 1
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2 2
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 
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• Otherwise (plastic loading) 
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End for 
Update stress and state variables 

1
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N

n n i i
i

b+
=

∆∑σ σ σ  and 1
1

= +
N

n n i i
i

b+
=
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1 1 1 1
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Compute the tangent modulus 

1

=
N

alg alg
i i

i

b
=
∑C C  

Return 1n+σ  and algC  to check the equilibrium. 
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Numerical validation 

The constitutive equations of the above elastic‒plastic‒damage model have been 

implemented into the finite element code ABAQUS/Standard, within the framework of 

large strains and a three-dimensional formulation. The numerical validation of this finite 

element implementation of the model is conducted stepwise in this subsection. In a first 

step, the numerical implementation of the elastic‒plastic model alone (i.e., without 

coupling with damage) is preliminarily validated through various classical tests. 

The first numerical simulations consist of Bauschinger shear tests. The latter allow 

validating the nonlinear hardening behavior, which is described by the combined 

isotropic and kinematic hardening model. More specifically, the combined hardening 

model based on the Voce isotropic hardening law and the Armstrong–Frederick 

kinematic hardening law, together with the von Mises yield criterion, is used in this 

simulation, which allows comparing the numerical results with those obtained using the 

same combined hardening model available in the ABAQUS software. The associated 

elasticity and hardening parameters, which correspond to a standard aluminum material, 

are summarized in Table 3. Three Bauschinger shear tests are simulated as follows: 

three different amounts of shear strain, i.e. 0.1, 0.2 and 0.3, are first prescribed to the 

studied aluminum material, then followed by a reverse shear loading path up to a shear 

strain of ‒0.1. Figure 2 reports the simulated shear stress−strain curves obtained with 

the developed UMAT subroutine and the built-in ABAQUS model. These comparisons 

with the reference results given by ABAQUS reveal the good accuracy of the developed 

integration algorithm in the case of combined nonlinear hardening model. 

Table 3. Elasticity and hardening material parameters used for the simulations. 

Material E (MPa) υ  0Y (MPa) satR (MPa) RC  satX (MPa) XC  
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Aluminum 70,000 0.33 124.2 167 9.5 34.9 146.5 
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Figure 2. Shear stress−strain curves obtained with the developed UMAT subroutine and 

the built-in ABAQUS model. 

 

In order to evaluate the accuracy of the numerical implementation of the anisotropic 

behavior, which is based on the Hill’48 yield criterion, simulations of classical uniaxial 

tensile tests at 0°, 45° and 90° from the rolling direction are performed here. To achieve 

this, the aluminum material presented in the previous validation tests is used here with 

the Hill’48 yield criterion. The corresponding anisotropy coefficients are reported in 

Table 4. It is worth noting that the description of plastic anisotropy available in 

ABAQUS, which is based on the Hill’48 yield criterion, can only be combined with 
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isotropic hardening. Accordingly, to allow consistent comparisons, only the Voce 

isotropic hardening model is used in the current simulations of uniaxial tensile tests at 

different orientations from the rolling direction. In addition to the anisotropy 

coefficients given in Table 4, the elasticity and Voce hardening parameters used in these 

simulations are taken from Table 3. 

Table 4. Hill’48 anisotropy coefficients for the studied aluminum material. 

Material F G H L M N 

Aluminum 0.700 0.480 0.520 1.500 1.500 1.265 

 

Figure 3 shows the simulated stress−strain curves for the uniaxial tensile tests at 0°, 

45° and 90° from the rolling direction. It is clear that the numerical results given by the 

developed UMAT subroutine are in excellent agreement with those obtained with the 

built-in ABAQUS model for all considered orientations. Moreover, Figure 4 reports the 

normalized yield surfaces for both the von Mises and Hill’48 yield criteria, where it can 

be seen that the yield surfaces provided by the UMAT subroutine and the built-in 

ABAQUS model coincide. 
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Figure 3. Uniaxial stress−strain curves obtained with the developed UMAT subroutine 

and the built-in ABAQUS model, at 0°, 45° and 90° from the rolling direction. 
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Figure 4. von Mises and Hill’48 normalized yield surfaces obtained with the developed 

UMAT subroutine and the built-in ABAQUS model. 
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To further validate the tensorial aspect of the elastic−plastic model, without coupling 

with damage, simulations are performed on a rectangular plate with a hole, which 

involve heterogeneous stress / strain states within the plate. The geometry, dimensions 

and loading conditions for this test are all specified in Figure 5. The plate is subjected to 

a prescribed displacement of 2 mm along the length direction. The mixed hardening 

model available in ABAQUS, which is based on the Voce isotropic hardening combined 

with the Armstrong−Frederick kinematic hardening and the von Mises yield surface, is 

adopted in these simulations. The associated elasticity and hardening parameters are 

taken from Table 3. Due to the symmetry, only one quarter of the plate is modeled. 

Figure 6 shows the simulation results, in terms of load−displacement responses, as 

obtained with the UMAT subroutine and the built-in ABAQUS model. These numerical 

results reveal the excellent agreement between the two models. Moreover, Figure 7 

displays the distribution of the equivalent plastic strain within the plate, as predicted by 

the developed UMAT and the built-in ABAQUS model. As clearly shown by this 

figure, the distribution of the equivalent plastic strain is well reproduced by the 

implemented model when compared with the reference ABAQUS results. 

10
0 

m
m

50 mm
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Thickness t = 1 mm
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Figure 5. Heterogeneous mechanical test based on a rectangular plate with a hole. 
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Figure 6. Numerical load−displacement curves obtained with the UMAT subroutine 

and the built-in ABAQUS model for the rectangular plate with a hole. 

 

Figure 7. Equivalent plastic strain distribution obtained with the UMAT subroutine and 

the built-in ABAQUS model for the rectangular plate with a hole. 
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Now that the elastic−plastic model without coupling with damage has been validated 

through the above numerical simulations, it will be evaluated in what follows in the case 

of coupling with damage. Note that, because the fully coupled elastic−plastic−damage 

model is not available in ABAQUS, the numerical results will be compared with 

reference solutions taken from the literature. In the works of Doghri and Billardon 

(1995), a phenomenological elastic‒plastic model with a von Mises plastic yield surface 

and Ludwig’s isotropic hardening has been coupled with the Lemaitre damage approach 

and used to predict the uniaxial tensile response for three fictitious materials. The 

elasticity and hardening parameters as well as the damage parameters for the studied 

materials are summarized in Table 5, which correspond to standard steel materials with 

three different values for the hardening exponent n  (see the expression of the Ludwig 

hardening law given in Table 1). 

 
Table 5. Elasticity, hardening, and damage parameters for the studied materials (Doghri 

and Billardon, 1995). 

Material E (MPa) υ  0Y (MPa) k (MPa) n  dβ  ds  dS (MPa) e
iY (MPa) 

M1 200,000 0.3 200 10,000 0.3 1 1 0.5 0 

M2 200,000 0.3 200 10,000 0.6 1 1 0.5 0 

M3 200,000 0.3 200 10,000 1 1 1 0.5 0 

 

Figure 8 compares the predictions yielded by the implemented model with the 

reference solutions taken from Doghri and Billardon (1995). These comparisons 

concern the evolution with deformation of the Cauchy stress and damage, for the three 

studied materials. It can be observed that the simulated Cauchy stress and damage 

variable coincide with their counterparts taken from the reference solutions, for the 
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three materials investigated, which validates the numerical implementation of the 

present model. 
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Figure 8. Comparison between the results of the current implemented model and the 

reference solutions taken from Doghri and Billardon (1995) in terms of simulations of 

uniaxial tensile tests for the three studied materials: (a) True stress−strain response, and 

(b) damage evolution. 

 

Modeling of material instabilities based on bifurcation theory 

Various theoretical criteria have been developed in the literature for the prediction of 

diffuse and localized necking, and most of them are based on the maximum force 

principle, bifurcation analysis, and multi-zone methods. In this paper, attention is 

focused on the prediction of diffuse and localized necking with the bifurcation 

approach. Four plastic instability criteria are presented in this Section: two diffuse 

necking indicators based on the general bifurcation (GB) and limit-point bifurcation 

(a) (b) 
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(LPB) criteria, respectively; and two localized necking indicators based on the loss of 

ellipticity (LE) and loss of strong ellipticity (LSE) criteria, respectively. These necking 

criteria are first presented in their general theoretical framework, and then will be 

specialized to the case of plane-stress conditions, small strain assumptions as well as 

large strain framework. 

Before introducing these bifurcation criteria, the tensorial variables involved in their 

theoretical formulations are defined hereafter. 

The large strain elastic−plastic formulation involves the multiplicative 

decomposition of the deformation gradient F  into an elastic part eF  and a plastic part 

pF  as follows: 

 = e p⋅F F F . (35) 

The first Piola‒Kirchhoff stress tensor B  (also known as the Boussinesq stress 

tensor), which is the work conjugate to the above-defined deformation gradient F , is 

defined in terms of the Cauchy stress tensor σ  by 1= TJ − ⋅B F σ , with J  being the 

Jacobian (i.e., determinant of F ), and 1T−F  the transpose of the inverse of the 

deformation gradient. Making use of the previously described constitutive equations, it 

is possible to derive a fourth-order tangent modulus BL , which allows relating the work-

conjugate variables B  and F  through the following rate form relationship: 

 B= :B L Fɺ ɺ . (36) 

The velocity gradient G  is defined in terms of the deformation gradient F  by the 

following expression: 

 1= −⋅G F Fɺ . (37) 
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Within the large strain framework, the nominal stress tensor Ν , which is defined as 

the transpose of the first Piola‒Kirchhoff stress tensor B  (i.e., = TN B ), can be related 

to the velocity gradient G  by the following rate form relationship: 

 = :Ν L Gɺ , (38) 

where L  is the corresponding tangent modulus, which will be derived here within the 

framework of an updated Lagrangian approach. Note that the derivation of this tangent 

modulus L  requires several steps. First, the stress‒strain constitutive relation, which is 

expressed by Eq. (28) in a (material) co-rotational frame, is rewritten in a fixed frame in 

terms of the Jaumann derivative of the Cauchy stress tensor. Then, the nominal stress 

rate tensor is expressed in terms of the Cauchy stress rate tensor, using an updated 

Lagrangian approach. Finally, combining the resulting equations and exploiting the 

different definitions of stresses and associated work-conjugate variables, the expression 

of the tangent modulus L  is given by the following relationship (see, e.g., Haddag et 

al., 2009; Abed-Meraim et al., 2014a): 

 1 2 3
ep= + − −L C T T T ,  with   ( )

( )

1ijkl ij kl

2ijkl ik jl il jk

3ijkl ik jl il jk

T σ

1
T σ σ

2
1

T σ σ
2

δ

δ δ

δ δ


=


 = +

 = −

. (39) 

Finally, considering that N  and B  are transpose of each other, the fourth-order 

tangent modulus BL  involved in Eq. (36) can be easily expressed in terms of L , using 

index notation, as follows: 

 B
ijkl jiklL L= . (40) 



34 

 

General bifurcation criterion 

Introduced by Drucker (1950, 1956) and Hill (1958), the general bifurcation criterion 

(GB) is a necessary condition for the loss of uniqueness of the solution to the boundary 

value problem for rate-independent solids. The condition for which any bifurcation for 

the rate boundary value problem is excluded corresponds to the positiveness of the 

second-order work, defined over the structure in its reference undeformed configuration 

as follows: 

 
0

B
0

Ω

∆ ∆ Ω 0d: : >∫ F L F ɺ ɺ , (41) 

where 0Ω  is the volume of the solid in its reference undeformed configuration. 

The condition given by the above equation is a non-bifurcation condition that 

excludes all types of bifurcation, such as geometric instabilities or material instabilities, 

and depends on the geometry of the structure and boundary conditions. The use of a 

local formulation for the criterion given by Eq. (41) allows predicting plastic 

instabilities in stretched sheet metals, such as diffuse necking 

 B
∆ ∆ 0: : >F L F ɺ ɺ , (42) 

The above condition is generally more restrictive than that given by Eq. (41) and, 

accordingly, it may be considered as a lower bound to the occurrence of diffuse or 

localized necking. In practice, the satisfaction of the positive definiteness of the 

quadratic form given in Eq. (42) requires the condition of positiveness of all of the 

eigenvalues of the symmetric part of the tangent modulus BL . 
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Limit-point bifurcation criterion 

A particular case of the GB criterion is the limit-point bifurcation (LPB) criterion, 

according to which plastic instability is associated with a stationary state for the first 

Piola‒Kirchhoff stress, which leads to the following condition (Valanis, 1989; Neilsen 

and Schreyer, 1993): 

 B= : =B L F 0ɺ ɺ . (43) 

The above condition is reached when the tangent modulus BL  becomes singular, or 

in an equivalent way, when its smallest eigenvalue vanishes. It should be noted that, 

within the framework of small strains, associative plasticity, and with no coupling with 

damage, both GB and LPB criteria lead to the same prediction of necking, due to the 

resulting symmetry of the tangent modulus BL  (Abed-Meraim et al., 2014a). 

Loss of ellipticity criterion 

Rice and co-workers (see Rudnicki and Rice, 1975; Rice, 1976) proposed a strain 

localization criterion based on the loss of ellipticity (LE) condition. In such an 

approach, the localization of deformation in the form of an infinite band defined by its 

normal n  (see Figure 9) is viewed as a transition from a homogeneous state of 

deformation towards a heterogeneous one corresponding to a discontinuity in the 

velocity gradient. 
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Figure 9. Schematic illustration of an infinite localization band and its orientation. 

 
The equilibrium conditions along the localization band, which express the continuity 

of the nominal stress rate vector across the discontinuity surfaces, write 

 ⋅ =n N 0	 
ɺ
� �
 � , (44) 

where + −= −N N N	 
ɺ ɺ ɺ
� �
 �  denotes the jump in the nominal stress rate across the localization 

band planes. Using Maxwell’s compatibility condition, the jump in the velocity gradient 

can be written in the following form: 

 � �= ⊗G c nɺ , (45) 

where the jump amplitude vector � �= ⋅c G nɺ  characterizes the localization bifurcation 

mode (e.g., shear mode when ⊥c nɺ ). By combining the above equations, the critical 

condition, which corresponds to the loss of ellipticity of the associated boundary value 

problem, can be derived for a non-trivial solution for vector cɺ , and writes (see, e.g., 

Rice, 1976, Benallal et al., 1993) 

 det det( ) 0= ⋅ ⋅ =Q n L n , (46) 
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where Q  is called the acoustic tensor. The complete expression of L  is given in Eq. 

(39). 

The above loss of ellipticity condition is numerically solved by computing the 

determinant of the acoustic tensor Q  for each loading increment. The numerical 

detection of strain localization is achieved when the minimum of the determinant of the 

acoustic tensor Q , over all possible normal vectors to the localization band, becomes 

non-positive. 

 

Loss of strong ellipticity criterion 

Within the same family of criteria, based on bifurcation theory, the loss of strong 

ellipticity (LSE) criterion was proposed by Bigoni and Zaccaria (1992), Bigoni (1996) 

to predict the occurrence of strain localization. The condition of LSE is a special case of 

the loss of positiveness of the second-order work, given by the GB criterion (Hill, 

1958). In the latter, no restriction is imposed on the form of the velocity gradient Fɺ  

involved in Eq. (42), and thus all types of bifurcation modes, i.e. diffuse or localized 

modes, can be predicted. If one restricts the velocity gradient mode ∆Fɺ , in Eq. (42), to 

take a compatible form, then one recovers the LSE condition from the GB criterion. 

Accordingly, for restrictive localized modes that satisfy the compatibility condition 

(Neilson and Schreyer, 1993), the LSE condition can be written in the following form: 

 0 , 1⋅ ⋅ > ∀ ≠ =c Q c c 0 nɺ ɺ ɺ , (47) 

where the acoustic tensor = ⋅ ⋅Q n L n  is the same as that discussed in the previous 

subsection. In practice, the satisfaction of the strong ellipticity condition is equivalent to 

the condition of positive definiteness of the acoustic tensor Q , which in turn amounts to 
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the positiveness of all of the eigenvalues of the symmetric part of the acoustic tensor Q  

(Bigoni and Hueckel, 1991; Neilson and Schreyer, 1993). It is worth noting that, within 

the framework of small strains, associative plasticity, and with no coupling with 

damage, both LE and LSE criteria predict the same critical limit strains, due to the 

resulting symmetry of the acoustic tensor Q . 

 

 

 

Theoretical classification of the bifurcation criteria 

In this subsection, a theoretical classification is attempted for the bifurcation criteria 

previously described and summarized in Table 6, according to their order of prediction 

of plastic instabilities. To achieve this, a well-known mathematical property is 

introduced here as follows: 

Let A  be a given matrix and symA  its symmetric part (i.e., ( ) 2sym T= +A A A , with 

TA  being the transpose of A ). Then, the real parts of the eigenvalues iη A  of matrix A  

are bounded by the smallest and largest eigenvalues 
sym

iη A  of its symmetric part. This 

mathematical classification writes (see Abed-Meraim, 1999): 

 
( ) ( ) ( ) ( ) ( )min max

sym sym

sym symi i i
Sp Sp

η η η≤ ≤A A A

A A
Re , (48) 

where ( )iη A
Re  denotes the real part of the eigenvalue iη A . From the above 

mathematical property, the following inequalities can be derived: 
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 ( )( ) ( )
( )( )

BB

B Bmin
sym

sym i i
SpSp

η η
 
 
 

≤
LL

L LRe , (49) 

 
( ) ( )( ) ( )

( )( )min
sym

sym
i i

SpSp
η η≤

QQ
Q QRe . (50) 

As discussed in the previous subsections, the LPB criterion is a particular case of the 

GB criterion. Accordingly, by virtue of the above properties, the GB criterion is more 

conservative than the LPB criterion (Franz et al., 2013; Abed-Meraim et al., 2014a). In 

other words, the singularity of the tangent modulus BL  cannot occur before the loss of 

positive definiteness of the symmetric part of the tangent modulus BL  (see Eq. (49)). 

By adopting the same mathematical reasoning as above, one can demonstrate that the 

LSE criterion is more conservative than the LE criterion. In other words, the singularity 

of the acoustic tensor Q  cannot occur before the loss of positive definiteness of the 

symmetric part of the acoustic tensor Q  (see Eq. (50)). 

Another hierarchical classification can be established, which involves the GB 

criterion and the LSE criterion, the latter being a special case of the former. Indeed, the 

GB condition requires the positive definiteness of the quadratic form given in Eq. (42) 

over a larger space, while the LSE condition is restricted to a subspace of localized 

deformation modes (i.e., those satisfying the compatibility condition). Accordingly, the 

GB criterion is more conservative than the LSE criterion. 

The above discussions allow us to establish the following general theoretical 

classification: the GB criterion is interpreted as a lower bound to diffuse or localized 

necking, while the LE criterion appears as an upper bound to the occurrence of localized 

necking. Intermediate modes ranging between these two bounds are provided by the 

LPB criterion and the LSE criterion. Figure 10 illustrates the expected order of 
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occurrence of necking, as predicted by the different bifurcation criteria, on the basis of 

the above-established theoretical classification. 

Table 6. Summary of the bifurcation criteria investigated. 

Criterion Condition Mode 

General bifurcation B
∆ ∆ 0: : =F L F ɺ ɺ  diffuse or localized 

Limit-point bifurcation B : =L F 0ɺ  diffuse or localized 

Loss of strong ellipticity ( ) 0⋅ ⋅ ⋅ ⋅ =c n L n cɺ ɺ  localized 

Loss of ellipticity det( ) 0⋅ ⋅ =n L n  localized 

 

Loss of ellipticity

Major strain

Minor strain

Loss of strong ellipticity

Limit-point bifurcation

General bifurcation

 

 

Figure 10. Illustration of the expected order of occurrence of necking, as predicted by 

the different bifurcation criteria. 

 

Plane-stress framework 
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Because the present work is essentially intended to the prediction of diffuse and 

localized necking in thin metal sheets, in relation with the associated FLDs, the relevant 

tangent modulus required for all bifurcation criteria (see Eq. (39)) is derived here within 

the framework of plane-stress conditions. To this end, the nominal stress rate, defined in 

Eq. (38), is rewritten within the framework of plane-stress theory by the following 

relationship: 

 PS
Ν L Gαβγδαβ γδ=ɺ ,   with   , , , 1,2α β γ δ = . (51) 

The components PSLαβγδ  of the plane-stress tangent modulus are derived from those 

relating to the three-dimensional tangent modulus L  using the following 

transformation: 

 33 33PS

3333

L L
L L

L
αβ γδ

αβγδ αβγδ= − . (52) 

It is worth noting that, within the plane-stress framework, the band orientation for the 

LE and LSE criteria is restricted to be lying in the plane (i.e., ϕ = 0  in Figure 9). 

 

Small strain framework 

In this subsection, the assumption of small strains is adopted and its consequences on 

the formulation of the above-derived necking criteria are analyzed. An important 

consequence of the small strain assumptions is that the convective stress components 

vanish; the latter originate from the large strain formulation of the constitutive 

equations, and enter the expression of the tangent modulus L  involved in the 



42 

 

bifurcation criteria (see Eq. (39)). In such circumstances, the tangent modulus L  

reduces to the analytical tangent modulus epC  

 epL = C . (53) 

Doghri and Billardon (1995) investigated the occurrence of strain localization within 

the framework of small strains and plane-stress conditions. In those works, the concept 

of critical scalar hardening modulus was proposed to detect the singularity of the 

analytical tangent modulus epC , a condition equivalent to the LPB criterion when 

specialized to the small strain framework. This condition can be derived by applying the 

following Lemma (Doghri and Billardon, 1995): 

Let a  and b  be two second-order tensors, and I  the fourth-order identity tensor. 

The following fourth-order tensor ( ) h− ⊗m = I a b  is invertible if and only if 

h ≠ :a b , and in this case its inverse −1m  writes 

 1
*h

− ⊗= + a b
m I , (54) 

where *h h= − :a b  is the critical scalar hardening modulus. In the case of the present 

elastic‒plastic model coupled with the Lemaitre damage approach, the critical condition 

* 0h = , corresponding to the singularity of the analytical tangent modulus epC , can be 

easily derived as follows: 

 ( ) [ ]* 1 dh d H Hλ= − − : :C V + σ Vɶ . (55) 

The use of the above scalar condition for analyzing the critical necking strains within 

the small strain framework is a useful tool, which is very easy to implement, as it does 
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not require any determinant minimization over all normal vectors to the localization 

band, or any other form of eigenvalue analysis. 

 
Application to the prediction of plastic instabilities 

The constitutive equations presented in this work have been combined with the 

bifurcation criteria described in the previous Section, in order to predict the occurrence 

of necking in sheet metals. The resulting approach is implemented into the finite 

element code ABAQUS/Standard. In order to reproduce a homogeneous deformation 

state prior to bifurcation, the simulations are performed using a single finite element 

with reduced integration (C3D8R element in ABAQUS), which is subjected to various 

linear strain paths that are those typically applied to sheet metals under in-plane biaxial 

stretching. The main motivation behind the choice of such a basic loading 

configuration, which corresponds to a very simple boundary value problem, is to satisfy 

the conditions of application of ‘intrinsic’ necking criteria that are inherent to the 

‘material’ alone, with no interference with structural (geometric) effects. Indeed, 

structural or geometric effects may lead to non-homogeneous stress states or cause 

elastic unloading when damage-induced softening is considered (see, e.g., Lemaitre et 

al., 2009), thus compromising the applicability of the above-discussed necking criteria. 

The geometry and boundary conditions of the single finite element model adopted in the 

simulations are illustrated in Figure 11. Directions 1 and 2 represent the major and the 

minor directions, respectively. The linear strain paths are obtained by varying the strain-

path ratio 2 1= ε εɺ ɺβ  from ‒0.5, for the uniaxial tensile loading path, to 1 for balanced 

biaxial expansion. 
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Figure 11. Single finite element (C3D8R) subjected to in-plane biaxial stretching. 

 

In the following subsections, the framework of plane-stress conditions, as described 

in the previous Section, is adopted to predict the critical necking strains in thin sheet 

metals. Several numerical aspects are investigated in order to validate all of the 

theoretical results discussed previously. 

 

Small strain framework 

Within the framework of small strains, Doghri and Billardon (1995) investigated strain 

localization for homogenous plane-stress problems using bifurcation criteria. In those 

works, a rate-independent plasticity model coupled with the Lemaitre damage approach 

was adopted. The material parameters are the same as those reported in Table 5. 
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Figure 12. Diffuse necking predictions with the bifurcation criteria and the scalar 

condition of critical hardening modulus * 0h = , for (a) M1 material, and (b) M2 

material. 

 

Figure 12 shows the predictions of diffuse necking obtained with the GB and LPB 

criteria as well as with the scalar condition of critical hardening modulus (* 0h = ), for 

materials M1 and M2. It is noteworthy that, although the predictions shown in Figure 12 

are related to diffuse necking, which usually occurs prior to localized necking, their 

levels are unusually low (less than 0.02 and 0.04 for materials M1 and M2, 

respectively), which do not represent realistic limit strains, as experimentally observed. 

This is due to the fictitious (unrealistic) material parameters taken in Doghri and 

Billardon (1995), and used in the present study only for validation purposes. 

It can be seen from Figure 12 that the limit strains predicted with the GB criterion are 

slightly lower than those predicted with the LPB criterion for the strain paths close to 

the uniaxial tensile loading path (i.e., extreme left part of the predicted diffuse necking 

curve). This difference is more perceptible for material M2, for which the hardening 

exponent n  is higher than that of material M1 (see Figure 12(b)). However, the GB and 

LPB criteria predict equivalent limit strains for the strain paths close to the balanced 

(a) (b) 
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biaxial tensile loading path (i.e., extreme right part of the predicted diffuse necking 

curve). These results are fully consistent with the theoretical classification reported in 

the previous Section, where the GB criterion has been shown to be generally more 

conservative than the LPB criterion. 

With regard to the diffuse necking predictions given by the critical hardening 

modulus *h , the associated results coincide exactly with those predicted with the LPB 

criterion, for all studied materials. This result is fully consistent because both criteria 

amount to the same condition of singularity of the analytical tangent modulus epC ; 

however, they are implemented as two different necking indicators, which are revealed 

to be equivalent. 

With regard to localized necking, the FLDs predicted with the LE and LSE criteria 

are compared in Figure 13 to the reference FLD taken from Doghri and Billardon 

(1995), where the LE criterion has been used alone. It can be observed that the 

predictions obtained with the present LE criterion are in good agreement with the 

reference results, which allows validating the current theoretical approach as well as its 

numerical implementation in ABAQUS/Standard. Also, the FLDs predicted with the 

LSE criterion are slightly lower than those predicted with the LE criterion, especially 

for the strain paths close to the uniaxial tensile loading path. Again, this order of 

prediction is fully consistent with the theoretical classification reported in the previous 

Section, where it has been shown that the LSE criterion is generally more conservative 

than the LE criterion. 
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Figure 13. FLDs predicted with the LE and LSE criteria and comparison with the 

reference results, for (a) M1 material, and (b) M2 material. 

 

As discussed in the previous Section, the hierarchical theoretical link that was 

established between the GB criterion and the LSE criterion can also be numerically 

verified. Figure 14 shows comparisons between the GB and LSE criteria, in terms of 

predicted limit strains, for both studied materials. In the neighborhood of the uniaxial 

tensile loading path, the GB criterion predicts critical necking strains slightly lower than 

those given by the LSE criterion, while for strain paths close to the balanced biaxial 

loading path, the predictions of strain localization yielded by the LSE criterion fall 

significantly higher than the critical necking strains obtained with the GB criterion. 

These numerical results are also fully conformal with the theoretical classification 

established in the previous Section, which revealed that the GB criterion represents a 

lower bound to all bifurcation criteria and, in particular, it is more conservative than the 

LSE criterion (see Figure 14). 

(a) (b) 
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Figure 14. Necking predictions with comparison between the GB and LSE criteria. 

 

Large strain framework 

In this subsection, the proposed approach, which combines the fully coupled 

constitutive equations with the bifurcation criteria, is applied within the framework of 

large strains and plane-stress conditions. For validation purposes, the GB and LPB 

criteria will be first compared to the maximum force criterion proposed by Swift (1952), 

for which analytical expressions for the critical limit strains can be obtained in the case 

of simplified constitutive equations, namely, rigid‒plastic model (with no coupling with 

damage) with von Mises yield surface and isotropic hardening under linear in-plane 

loading paths. Then, the LSE and LE criteria will be used to predict the FLDs for a 

DC06 anisotropic mild steel material. Subsequently, a numerical classification for this 

class of bifurcation criteria is attempted, in terms of their order of prediction of necking, 

in order to validate the theoretical classification established in the previous Section. 

Finally, some numerical aspects will be investigated, which are related to the effect of 

convective stress components as well as the impact of prestrain on the prediction of 

diffuse and localized necking. 

(a) (b) 
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Diffuse necking predictions 

The Swift diffuse necking criterion (Swift, 1952), commonly known as the maximum 

force criterion (MFC), is an extension of the Considère criterion (Considère, 1885) to 

the case of in-plane biaxial loading, by assuming that diffuse necking occurs when the 

applied major and minor forces (1F  and 2F , respectively) reach simultaneously their 

maximum. This criterion can be expressed as 1 20  and 0F F= =ɺ ɺ , where the directions 1 

and 2 correspond to the major and minor directions, respectively (see Figure 11). Within 

the framework of rigid flow theory of plasticity (without coupling with damage) and 

isotropic hardening, the above condition leads to the following general form of the 

Swift’52 criterion (Abed-Meraim et al., 2014b): 

 

2 2

1 2
1 2

1 2
1 2

σ σ
σ σ

σ σdσ
σ σσ dε
σ σ

σ σ

   ∂ ∂+   ∂ ∂   = ∂ ∂+
∂ ∂

, (56) 

where 1σ  and 2σ  are the principal Cauchy stress components associated with the in-

plane forces 1F  and 2F , respectively. 

In the case of proportional loading with a von Mises yield surface, the MFC 

expression can be further developed as 

 ( ) ( )
( )

2 3

3
2 2

4 3 3 4

4 1

α α αdσ
g α

σdε
α α

− − +
= =

− +
, (57) 

where the stress ratio 2 1α σ σ=  varies from 0 (for uniaxial tensile loading path) to 1 

(for balanced biaxial loading path). 
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The critical equivalent strain cε , associated with the occurrence of diffuse necking, 

can be analytically derived from the above equation in the case of simple hardening 

laws. The corresponding critical major strain 1cε  and minor strain 2cε  are obtained using 

the classical plastic flow rule, and write 

 
1 2

1

2 2
2

1
2

1

1
2

1

c c c

c c c

α

f
ε ε ε

σ α α

α
f

ε ε ε
σ α α

  −  ∂  = =
∂ − +


  −  ∂  = = ∂ − +

. (58) 

Table 7 summarizes the analytical expressions, for the critical equivalent strain, 

obtained with the Swift’52 diffuse necking criterion for four commonly used isotropic 

hardening laws. It is noteworthy that these analytical expressions are made possible 

within the framework of large strain rigid-plasticity (without coupling with damage) 

along with a von Mises plastic yield surface and linear loading paths. 

 
 
 
 
 
 
 
 
Table 7. Closed-form solutions, for the critical equivalent strain, obtained with the 

Swift’52 diffuse necking criterion for different isotropic hardening laws. 

Isotropic 
hardening law 

Expression cε  
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Hollomon nY kε=  ( )
n

g α
 

Swift ( )0

n
Y k ε ε= +  ( ) 0

n
ε

g α
−  

Voce ( )0 1 RC ε

satY Y R e−= + −  
( )( )

( )( )0

1 sat R

R sat

R C g α
ln

C g α R Y

 +
 
 + 

 

Ludwig 0
nY Y kε= +  root of 

( )
1

0 0n nnk
kε ε Y

g α

− 
− + = 

  
 

 

Simulations have been conducted to determine the critical limit strains at diffuse 

necking obtained with the GB and LPB criteria, by adopting the different isotropic 

hardening laws given in Table 7. The corresponding hardening parameters are reported 

in Table 8. 

 

 

 

 

 

 

Table 8. Hardening parameters used in the simulations of diffuse necking using the GB 

and LPB criteria as well as in the analytical solutions given by Swift’52 diffuse necking 

criterion. 

Isotropic 
hardening law 0Y (MPa) k (MPa) 0ε  n  satR (MPa) RC  

Hollomon ‒ 580 ‒ 0.2 ‒ ‒ 
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Ludwig 200 580 ‒ 0.2 ‒ ‒ 

Swift ‒ 580 4.875 10-3 0.2 ‒ ‒ 

Voce 200 ‒ ‒ ‒ 350 10 
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Figure 15. Critical necking strains predicted by the GB, LPB, and Swift’52 criteria for 

different isotropic hardening laws. 

For all of the isotropic hardening laws listed in Table 8, the diffuse necking 

predictions given by the GB, LPB, and Swift’52 criteria are depicted in Figure 15. The 

simulation results show that the GB and LPB criteria lead to the same predictions. 

Furthermore, the critical necking strains given by the closed-form solutions of the 

Swift’52 criterion are equivalent to those obtained with the GB and LPB criteria. These 

results are fully consistent with those reported in Abed-Meraim et al. (2014b), where 

theoretical links between the Swift’52 diffuse necking criterion and the GB criterion 

were established. 

Localized necking predictions 

In this subsection, the prediction of localized necking for a DC06 mild steel material is 

undertaken using the LE and LSE criteria. The behavior of the DC06 steel material is 

described by the fully coupled elastic‒plastic‒damage model. The Hill’48 plastic yield 

criterion along with a mixed isotropic‒kinematic hardening model, consisting of the 

Swift isotropic and the Armstrong‒Frederick kinematic laws, are adopted. The 

corresponding elasticity, anisotropy, and hardening parameters were experimentally 

(d) 
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identified by Haddadi et al. (2006) using an inverse identification procedure based on 

several off-axes uniaxial tension and simple shear tests. As to damage, the latter was not 

considered in the identification procedure relating to the elastic‒plastic behavior. 

Therefore, the damage parameters used in the following simulations do not reflect the 

damage behavior of the DC06 steel material, since they have not been experimentally 

identified. These damage-related parameters are taken from Haddag et al. (2009), who 

used fictitious damage parameters for the DC06 steel material. All material parameters 

are summarized in Table 9. 

 

Table 9. Elasticity, anisotropy, hardening, and damage parameters for the DC06 mild 

steel (Haddadi et al., 2006; Haddag et al., 2009). 

Material E (MPa) υ  F G H L M N  

DC06 

200,000 0.3 0.251 0.297 0.703 1.5 1.5 1.29  

0ε  k (MPa) n  XC  satX (MPa) dβ  ds  dS (MPa)  e
iY (MPa) 

0.00308 433.59 0.219 1.45 116.7 5 1 2 0 
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Figure 16. FLDs predicted with the LSE and LE criteria for the DC06 mild steel 

material. 
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Figure 17. Orientation of the localization band, as predicted with the LSE, LE, and 

Hill’52 criteria for the DC06 mild steel material. 
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Figure 16 shows the FLDs predicted with the LSE and LE criteria for the studied 

DC06 mild steel. It can be observed that both bifurcation criteria provide the same 

predictions of localized necking for the studied material. This result is also consistent 

with the theoretical classification reported in the previous Section, according to which 

the LSE criterion is generally more conservative than the LE criterion. In other words, 

localized necking strains predicted with the LE criterion cannot fall below their 

counterparts obtained with the LSE criterion, and this is true for any strain path 

considered. 

The orientation of the localization band is also investigated here, using the LSE and 

LE criteria. Note that this band orientation is only defined by a single in-plane angle, 

since the framework of plane-stress conditions is adopted in this work. Figure 17 shows 

the localization band orientations for the different strain-path ratios, as predicted by the 

LSE and LE criteria, which are additionally compared with the analytical band 

orientation given by the Hill’52 localized necking criterion (Hill, 1952). The obtained 

orientation predictions are in good agreement with the Hill’52 analytical formula 

( ( )1tanθ β−= − ), for both LSE and LE criteria. It is worth noting that because the 

Hill’52 criterion is only applicable to the left-hand side of the FLD, the comparison in 

the range of positive biaxial stretching (i.e., 0β > ) only involves the LSE and LE 

criteria, which predict the same band orientations. 

 

Numerical classification of the bifurcation criteria 

A numerical classification for the bifurcation criteria, in terms of their order of 

prediction of necking, is attempted in this subsection for comparison purposes with the 

theoretical classification established in the previous Section (see Figure 10). 

Simulations are again performed within the framework of large strains and plane-stress 
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conditions. Using the present approach that combines the fully coupled 

elastic‒plastic‒damage model with the bifurcation criteria, critical limit strains 

corresponding to the occurrence of diffuse and localized necking are determined for the 

DC06 mild steel (see Table 9 for the associated material parameters). Figure 18 shows 

the critical limit strains predicted with the investigated class of bifurcation criteria. 

Although the limit strain predictions given by the GB and LPB criteria coincide for the 

studied material, which is also the case for the predictions yielded by the LSE and LE 

criteria, the theoretical classification established in the previous Section remains well 

respected. More specifically, the GB criterion appears as a lower bound to all the 

bifurcation criteria, in terms of prediction of necking, while the LE criterion provides an 

upper bound. Similar results have been found in Abed-Meraim et al. (2014a), where a 

three-dimensional formulation for the bifurcation criteria, combined with a fully 

coupled elastic‒plastic‒damage model, has been applied. 
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Figure 18. Order of prediction of the limit strains, as yielded by the different 

bifurcation criteria, for the DC06 mild steel. 

 

Effect of convective stress components 

The effect of the convective stress components on the prediction of the critical necking 

strains is analyzed in this subsection for the DC06 mild steel (see Table 9 for the 

associated material parameters). These so-called convective stress components originate 

from the large strain framework and enter the expression of the tangent modulus L  (see 

tensors 1T , 2T , and 3T  involved in Eq. (38)). It is worth noting that when the 

convective stress components are disregarded, which corresponds to adopting a small 

strain framework, the tangent modulus L  reduces to the elastic‒plastic tangent modulus 

epC  (see Eqs. (31) and (38)). 
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Figure 19 shows the effect of the convective stress components on the predicted 

necking strains. These simulation results reveal that, for the GB and LPB criteria (see 

Figure 19(a) and (b)), the convective stress components play a significant role in the 

prediction of diffuse necking for the full range of strain paths investigated. Indeed, these 

convective stress components have a major destabilizing effect, thus precipitating early 

occurrence of diffuse necking. This destabilizing effect proves to be more important for 

strain paths in the neighborhood of the uniaxial tensile loading path (i.e., left-hand side 

of the predicted diffuse necking curve). 

With regard to the LSE and LE criteria, the convective stress components also reveal 

a considerable effect on the prediction of localized necking (see Figure 19(c) and (d)). 

More specifically, when the convective stress components are taken into consideration, 

the corresponding localization predictions are lowered for both localization criteria. The 

observed decrease in the predicted limit strains is much more significant in the left-hand 

side of the FLD, while a smaller effect can still be observed in the range of positive 

biaxial stretching (i.e., around plane-strain tension: [ ]0, 0.18β∈ ). For strain paths 

located in the neighborhood of the balanced biaxial tensile loading path, the effect of 

convective stress components is negligibly small for both localized necking criteria. 
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Figure 19. Effect of convective stress components on the prediction of necking strains 

for the DC06 mild steel using (a) GB criterion, (b) LPB criterion, (c) LSE criterion, and 

(d) LE criterion. 

 

It is worth noting that, in a recent work (Mansouri et al., 2014), a similar study has 

been conducted using the Gurson‒Tvergaard‒Needleman damage model for porous 

materials combined with the LE criterion, within the framework of large strains and a 

(a) (b) 

(c) (d) 
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fully three-dimensional formulation. In the latter investigation, the effect of the 

convective stress components on strain localization has been found to be negligibly 

small, for the full range of strain paths considered. These observed differences, in terms 

of the impact of the convective stress components on the localization predictions, are 

clearly attributable to the fully three-dimensional formulation used in the former study, 

as compared to the plane-stress approach adopted in the current contribution. 

 

Effect of prestrain 

In this subsection, the impact of strain-path changes on the prediction of strain 

localization is analyzed by considering two types of prestrain, namely a 5% uniaxial 

tensile prestrain (UT prestrain) and a 5% balanced biaxial tensile prestrain (BBT 

prestrain). The direct FLDs (without prestrain), given by the LSE and LE criteria, are 

compared to sequential FLDs obtained after applying the UT and BBT prestrain, 

respectively. The predicted direct and sequential FLDs are reported in Figure 20, for the 

DC06 mild steel studied in the previous subsections. The obtained results show that, 

with respect to the direct FLD, the sequential FLDs are translated to the left, for the UT 

prestrain, and to the right, for the BBT prestrain. This prestrain effect on the prediction 

of FLDs is consistent with previously reported investigations (see, e.g., Franz et al., 

2009; Haddag et al., 2009; Mansouri et al., 2014), where different constitutive equations 

have been combined with the LE criterion. 
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Figure 20. Effect of prestrain (5% uniaxial tensile prestrain and 5% balanced biaxial 

tensile prestrain) on the prediction of the FLDs for the DC06 mild steel, using (a) LSE 

criterion, and (b) LE criterion. 

 

Conclusions 

In this work, a phenomenological elastic‒plastic model, coupled to the Lemaitre 

isotropic damage approach, has been combined with plastic instability criteria based on 

bifurcation theory to predict the occurrence of diffuse and localized necking in thin 

sheet metals. The resulting numerical tool has been implemented into the finite element 

software ABAQUS/Standard via user-defined material subroutines. For the prediction 

of diffuse and localized necking, four bifurcation-based criteria have been considered: 

GB and LPB for diffuse necking predictions, and LSE and LE for localized necking 

predictions. This class of bifurcation criteria has been first formulated within a general 

large strain and fully three-dimensional framework. Then, plane-stress, respectively, 

small strain versions for the bifurcation criteria have been derived from the general, 

(a) (b) 
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large strain, fully three-dimensional formulation. Moreover, in the case of small strain 

framework, an analytical indicator corresponding to the singularity of the analytical 

tangent modulus is derived for the prediction of diffuse necking, which is an alternative 

to the LPB criterion when specialized to the small strain framework. For this class of 

bifurcation criteria, a theoretical classification has been established, which reveals that 

the GB criterion is the most conservative (interpreted as a lower bound), while the LE 

criterion is the less conservative (thus providing an upper bound). 

Before applying the proposed approach to the prediction of critical necking strains in 

the context of thin sheet metals, some numerical assessments have been undertaken for 

validation purposes. The bifurcation criteria as well as the condition given by the 

analytical critical hardening modulus have been validated within the framework of 

small strains and plane-stress conditions, by comparing the predicted results with 

reference predictions taken from the literature. Within the framework of large strains 

and plane-stress conditions, the GB and LPB criteria have been validated with respect to 

the maximum force criterion (Swift, 1952), in the case of rigid-plasticity with a von 

Mises yield surface and various isotropic hardening models. The orientations of the 

localization band obtained with the LSE and LE criteria have also been verified and 

found in good agreement with those given by the Hill’52 localized necking criterion. 

Using the above class of bifurcation criteria, the critical limit strains, corresponding to 

the occurrence of diffuse and localized necking for a DC06 mild steel material, have 

been numerically determined. The GB and LPB criteria provide the same predictions for 

the occurrence of diffuse necking for the studied material. Quite similar trends have 

been observed in the prediction of localized necking using the LSE and LE criteria. 

Throughout the simulations, the numerical predictions consistently confirmed the 

hierarchical classification for the bifurcation criteria, which was preliminarily 
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established theoretically on the basis of mathematical arguments, in both situations of 

small strain and large strain frameworks. 

The sensitivity of the predicted necking strains to application of a prestrain as well as 

to the so-called convective stress components has also been investigated. With regard to 

the convective stress components, which arise from the large strain framework, their 

effects on the prediction of necking have been found quite significant (i.e., 

destabilizing), thus promoting early occurrence of necking. Finally, the well-known 

effects of prestrain on strain localization predictions have been systematically observed, 

consistent with previously reported results in the literature, which demonstrates the 

capability of the current approach in capturing the main effects characteristic of strain-

path changes. 

Although in the present contribution the proposed approach has been applied to 

fictitious materials for theoretical classification purposes, it can be used in future work 

with realistic material parameters, which should be identified at large strain with 

appropriate mechanical tests, in order to predict the occurrence of necking in actual 

materials. 
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