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Abstract

In this paper, the conditions for the occurrencelifiise and localized necking in thin
sheet metals are investigated. The prediction @sé¢mecking phenomena is undertaken
using an elastigplastic model coupled with ductile damage, whictthen combined
with various plastic instability criteria based ®ifurcation theory. The bifurcation
criteria are first formulated within a general #nw@mensional modeling framework,
and then specialized to the particular case ofepkiress conditions. Some theoretical
relationships or links between the different inwgted bifurcation criteria are
established, which allows a hierarchical classiftca in terms of their conservative
character in predicting critical necking strainsheT resulting numerical tool is
implemented into the finite element code ABAQUSI8i@rd to predict forming limit
diagrams (FLDs), in both situations of a fully ter@mensional formulation and a
plane-stress framework. The proposed approacheis #pplied to the prediction of



diffuse and localized necking for a DC06 mild stemdterial. The predicted FLDs
confirm the above-established theoretical classifim, revealing that the general
bifurcation criterion provides a lower bound foffdse necking prediction, while the
loss of ellipticity criterion represents an uppeubd for localized necking prediction.
Some numerical aspects related to the prestragttefin the development of necking
are also investigated, which demonstrates the dapabf the present approach in
capturing the strain-path changes commonly encoeghtén complex sheet metal
forming operations.
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I ntroduction

During sheet metal forming processes, various tygfedefects related to operating
conditions and/or material characteristics may acAmong them, plastic instabilities
associated with the occurrence of diffuse and ipedl necking are particularly
detrimental, since they limit sheet metal formaililn this context, Keeler and
Backofen (1963) and Goodwin (1968) proposed theaaays well-known concept of
Forming Limit Diagram (FLD), to characterize therrf@bility of thin sheet metals
subjected to in-plane stretching. The determinatbrLDs was originally based on
experimental measurements, which turned out todpg time consuming and entailing
non-negligible costs, not to mention their potdritiak of reproducibility. To overcome
these drawbacks, significant efforts have been t@elvover the last decades to the
development of theoretical indicators that are abl@redict the formability limits of
thin sheet metals. To this end, a complete appre@che prediction of critical limit
strains requires essentially two developments. Titet consists of an advanced
constitutive model capable of reproducing the esslephysical phenomena that occur
during forming operations, while the second pegdmrelevant criteria for the reliable
prediction of plastic instabilities.

Along with the evolution of necking in sheet mefarming processes, ductile
damage plays an important role with regard to tnébility limits of thin sheet
metals. This requires accurate modeling of theainin of ductile damage and its
evolution during loading, in order to reproduce #wtening mechanisms observed
experimentally at large deformations. In this fietdlo well-established theories of
ductile damage have been developed over the pasideades. The first theory, which
has been initiated by the work of Gurson (19773, famther modified by Tvergaard and
Needleman (see, e.g., Tvergaard, 1981; TvergaatdNaedleman 1984), is based on a
micromechanical analysis of void growth that ddsesithe complex ductile damage



mechanisms in porous materials. In this approable, woid volume fraction is
introduced as damage variable, thus accountingtHerdependence of the material
response on hydrostatic pressure. Several impravsmieave been made in the
literature to this type of ductile damage theonyt &t the expense of a large number of
material parameters (see, e.g., Rousselier, 198Igg@nu et al., 1997; Pardoen et al.,
1998; Benzerga and Besson, 2001; Monchiet et@8R The second theory, known as
continuum damage mechanics (CDM), is based onhiemiodynamics of irreversible
processes and is widely used for modeling duct@male in metallic materials (see,
e.g., Lemaitre, 1992; Voyiadjis and Kattan, 199haloche, 1999). In this approach,
the damage variable represents the surface defsitycrocracks across a given plane,
and can be modeled as isotropic scalar variable, (sgy., Lemaitre, 1985, 1992;
Chaboche et al., 2006), or a tensor variable fesotropic damage (Chow and Wang,
1987; Chow and Lu, 1989; Chaboche, 1993; Zhu arst@®, 1995; Abu Al-Rub and
Voyiadjis, 2003, Briinig, 2003). Three main variafis the CDM theory have been
essentially developed in the literature, which #&@sed on the following three
fundamental assumptions: the strain equivalencecipte, the stress equivalence
principle and the energy equivalence principle. T3teain equivalence principle
employs the concept of effective stress, as prapadsg Lemaitre (1971), and
subsequently used by Simo and Ju (1987a, 1987b)Jand989). In contrast to the
strain equivalence principle, the stress equivaeprinciple is based on the concept of
effective strain, as summarized by the works of&and Ju (1987a, 1987b). As to the
third variant for the CDM theory, which is the dlasenergy equivalence principle, it
was first introduced by Cordebois and Sidoroff @Pds an alternative to the available
strain or stress equivalence principles, and exerty Saanouni and co-workers during
the last decades to the total energy equivalensengstion (see, e.g., Saanouni et al.,
1994, 2011; Saanouni and Chaboche, 2003; Saan@06B, 2012; Saanouni and
Hamed, 2013; Ghozzi et al., 2014; Rajhi et al.,£20ue et al., 2015; Badreddine et al.,



2010, 2016, 2017). This total energy equivalendecple defines the undamaged
material state and its corresponding effectiveirsiaad stress variables, so that the total

(elastic and inelastic) energy involved is equahtat for the damaged material state.

To predict the occurrence of diffuse or localizestking in sheet metal forming
processes, the above-discussed constitutive moukd to be coupled with plastic
instability criteria. These criteria can be classif into four categories. The first
category of criteria is based on Considere’s marimforce principle (Considere,
1885), who proposed a diffuse necking criteriontlie particular case of uniaxial
tension. Later, Swift (1952) extended Considergiteigon to the case of in-plane
biaxial loading. For localized necking, Hill (195pyoposed an alternative criterion
based on bifurcation theory, which states that libed necking occurs along the
direction of zero extension. It is worth noting tiall’52 criterion is only applicable to
the left-hand side of the FLD and, therefore, itswaten combined with Swift'’52
criterion to determine a complete FLD. Within tteegory of maximum force principle
criteria, Hora et al. (1994, 1996) and Mattiassbale(2006) proposed two extensions
of Considere’s criterion for the prediction of Itizad necking, which take into account
the strain-path changes. The second category tefrieris based on the approach that
assumes the existence of an initially inhomogeneoegion, with an initial
imperfection, from which localized necking may occtihe initial imperfection may
take the form of geometric imperfection, which ledthe so-called MK approach
(Marciniak and Kuczyski, 1967), and was subsequently extended by Huwohi and
Neale (1978), by allowing the groove, postulatethvain initial orientation, to rotate in
the sheet plane, or material imperfection (see,, &@mamoto, 1978). The third
category of criteria is derived from bifurcation siability theories. These criteria have
sound theoretical foundations, since they invetgighe possibility of bifurcation or

instability in the constitutive description itselyithout introducing arbitrarily user-



defined parameters, such as the initial imperfacsiae in the MK approach. Drucker
(1950, 1956) and, later, Hill (1958) developed guieneral bifurcation conditions,
based on the loss of unigueness for the solutiothefassociated boundary value
problem, which will be referred to in the currenbrk as the general bifurcation
criterion (GB). A local formulation for the GB osition, which corresponds to the
positiveness of the second-order work, may be usedthe prediction of diffuse
necking in sheet metals. In the same context, V&lgkP89) proposed an alternative
criterion, designated as limit-point bifurcationRRB), which is less conservative than
the GB criterion. The LPB criterion is associatedhwthe stationarity of the first
Piola-Kirchhoff stress state, which corresponds to thegudarity of the associated
analytical tangent modulus. Following the pionegnvorks of Hill (1952, 1958, 1962),
Rudnicki and Rice (1975), Stdéren and Rice (197X &ice (1976) proposed a
localization bifurcation criterion to predict thechlization of deformation in the form of
planar shear bands or localized necking in thinameheets. The latter criterion
corresponds to the loss of ellipticity (LE) of thartial differential equations governing
the associated boundary value problem. An alter@albcalization criterion, more
conservative than the LE criterion, was proposedlgoni and Hueckel (1991) and
Neilsen and Schreyer (1993), which consists indks of strong ellipticity (LSE) of the
equations governing the boundary value problem. &other variants for the above-
discussed bifurcation criteria are also worth namtig as well as further analytical
developments with the aim of deriving closed-forrpressions for the critical limit
strains associated with diffuse or localized negkisee, e.g., Doghri and Billardon,
1995; Loret and Rizzi, 1997a, 1997b; Rizzi and Loi®97; Sanchez et al., 2008). In
particular, Benallal and co-workers (see, e.g.,dlahet al., 1993; Pijaudier-Cabot and
Benallal, 1993; Lemaitre et al., 2009) combined @i&M theory with the bifurcation
analysis for the prediction of strain localizationrate-independent materials. In these



works, closed-form solutions were derived for btmbal and nonlocal damage-based

constitutive equations.

The fourth and last category of plastic instabildyteria relies on the theory of
stability, and the associated perturbation analy&is the prediction of diffuse or
localized necking (see, e.g., Fressengeas and Mplit®87; Dudzinski and Molinari,
1991; Toth et al., 1996; Boudeau, 1998). This ctdswiteria represents an interesting
alternative to the bifurcation approach, especiadlfhe case of strain-rate-dependent
materials. However, it is noticeable that thisdatpproach is less commonly used in

the literature, as compared to thellanalysis or the bifurcation theory.

In the current contribution, an elasfptastic model, with Hill'48 anisotropic plastic
yield surface and mixed isotropidnematic hardening, is coupled with the CDM
theory, and more specifically, with the Lemaitretispic damage model. Referring to
the earlier works of Benallal et al. (1993) and Bwgand Billardon (1995), who
coupled the CDM theory with the LE criterion, theoposed elastiglastic-damage
model is combined with the above-described fouurdtion criteria to predict the
occurrence of diffuse and localized necking in tliheet metals. The resulting
numerical tool is implemented into the finite eletheode ABAQUS/Standard, within
the framework of large plastic strains and a fullyee-dimensional formulation.
Specially modified versions of the proposed appnaa@ also implemented in the two
particular frameworks of small strains and plamesst conditions.

The remainder of paper is organized as follows. Gbestitutive equations of the
fully coupled elastieplastic-damage model are introduced in the next Sectian, (i.
second Section), along with their numerical implatagon and validation. The
bifurcation criteria adopted for the prediction diffuse and localized necking are

presented in the third Section, within a generaldetiog framework. Then, the



bifurcation criteria are specialized to the two tigatar frameworks of plane-stress
conditions and small strain analysis. Also, a th8oal classification of these

bifurcation criteria is established, in terms ogithconservative character in predicting
the critical limit strains. In the fourth Sectiothe numerical tool resulting from the
present approach is first validated, and then eggb the prediction of FLDs for a steel
material. The simulation results confirm the théioe hierarchy previously established
for the bifurcation criteria with regard to thender of prediction for the critical necking

strains. Finally, the main results are summarizeti@nclusions are drawn.

Elasto-plastic model coupled with ductile damage

In this Section, the constitutive equations of #lastic-plastic model coupled with
ductile damage are described. This constitutive etiog is developed within the
framework of phenomenological behavior laws withtesmdependent associative
plasticity. The damage is first introduced throaghisotropic scalar variable describing
the degradation of the material elasticity progsitiThen, a general thermodynamic
framework is used to derive the fully coupled canstve equations under the postulate
of strain equivalence principle. Finally, the implentation of the resulting fully
coupled elastigplastic-damage model into the finite element software
ABAQUS/Standard is performed via a user-definedemal (UMAT) subroutine, and
validated by comparing the numerical predictionghwihose given by existing
hardening models available in ABAQUS as well athwiéference solutions taken from

the literature.



Anisotropic elastieplastic model coupled with ductile damage

The concept of continuum damage mechanics (CDM) e widely used in the
literature to describe the degradation of the nedtenechanical properties during
loading. The CDM theory was first introduced by Kanov (1958) to model creep
rupture. Subsequently, the CDM approach has besghefudeveloped and formulated
within the framework of thermodynamics to model nhaithree types of ductile
damage: fatigue damage (Chaboche, 1974), creepggafRabotnov, 1963; Hult, 1974)
and ductile plastic damage (see, e.g., Lemaitr85;19emaitre and Dufailly, 1977).
More specifically, three damage representation rteechave been developed in the
literature, which are based on three fundamentalraptions; namely, the strain
equivalence principle, the stress equivalence pplecand the energy equivalence
principle. The first class of damage representai@ories, which is based on the strain
equivalence principle, employs the concept of eiffecstress, as proposed by Lemaitre
(1971), and subsequently used by Simo and Ju (19B%&/b) and Ju (1989). By
adopting this concept, the constitutive equatiohthe damaged material are derived
from those of the undamaged material by substutie effective stress tensérby its
expression in terms of the Cauchy stress teasa@s follows:

%
1-d’

6 = (1)
where ¢ is the Cauchy stress tensor in the damaged mlatnihé the effective stress
tensor in an equivalent undamaged material. Tharsdamage variabla , varying
from 0 to 1 (withd =0 for an undamaged material, and=1 for a fully damaged
material), represents the surface density of eas/éind cracks within a given plane (see
Figure 1), and is defined by the following relasbip:



d==1-2 2)

where S, is the surface of defects (cavities and cracl), denotes the effective

surface (undamaged surface), @ds the total surface.

Damaged surface
" (surface of cavities)

Total surface

Figure 1. Schematic representation of a partially damageticse

The second class of damage representation thestesed on the stress equivalence
principle, as summarized by the works of Simo an@d1®87a, 1987b), who introduced
the concept of effective strain. Finally, Cordebarsd Sidoroff (1979) proposed the
elastic energy equivalence assumption, which assuheeequality between the elastic
energy defined in the real damaged configuratioth #re one defined in the fictive
undamaged configuration. This leads to the definitof a single couple of state
variable related to the plastic flow. This idea bagn extended later by Saanouni and
co-workers (see, e.g., Saanouni et al.,, 1994, 2@bBBnouni and Chaboche, 2003;
Saanouni, 2008, 2012; Saanouni and Hamed, 2013zZckb al., 2014; Rajhi et al.,
2014; Yue et al., 2015; Badreddine et al., 2010162Q2017) to the total energy
equivalence assumption, from which a couple ofctiffe state variables associated

with each dissipative phenomenon can be defined.
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In this subsection, the elastastic constitutive equations coupled with the
Lemaitre isotropic damage model are formulated iwitthe framework of the
thermodynamics of irreversible processes with statéables. The strain equivalence
principle, using the concept of the effective stras adopted here to derive the fully
coupled elastieplastic-damage model. Assuming isothermal conditions, teknHoltz

free energy is taken as state potential, whichbeaadditively decomposed as follows:

pW:%(l—d)se:C:se+XLéCXa:a+pwr(r), 3)

Elastic contribution Plastic contribution

e

where p is the density,e® is the elastic strain tensor, ar@ is the fourth-order

elasticity tensor. The second-order tengorepresents the back-strain internal variable,
whose associated thermodynamic force is the baekssttensorX. The latter

represents the kinematic hardening, i.e.tthaslation of the yield surface in the stress

space, withX_, andC, being the associated material parameters. Thetmite (r)

in Eqg. (3) is a function of the scalar internalighte r , which represents the isotropic
strain hardening. The associated thermodynamiefmrd¢he scalar variabl®, which

measures the size variation of the yield surfadbeénstress space.

The thermodynamic forces associated with eachnaterariable, i.e.(se,r,a,d),

are derived from the state potenf{isge Eq. (3)) as follows:

Oy _

Cauchy stress tensor o=po = (1-d)C:e". (4)
t
. . _ Oy _ oy
Isotropic hardening stress R= pa— =p pol (5)
r r

11



Kinematic hardening stressx = pg— = % X Cxa. (6)

o
ny e__ Oy _1 .~
Damage driving force Y __pﬁ_is :C:g” (7)

The above damage driving force is commonly called telastic strain energy
density release rate”, which represents the vanatif internal energy density due to
damage growth at constant stress (see, e.g., Lemaf92; Lemaitre et al., 2000). It

can be easily shown that, for linear isotropic titéy, the expression of® reduces to

2

ve =‘;_2E!%(1+1))+3(1— m)(i—Hj } (8)

3., . . : , : :
where J, = 56 6 is the equivalent effective stress in the sensevarf Mises,

6 =6-6"1 is the deviatoric part of the effective stress aﬁ'élz%&:l is the

hydrostatic effective stress, whilé and » denote, respectively, the Young modulus

and Poisson ratio.

The second principle of thermodynamics, writterthie form of the Clausiuduhem
inequality, must be always satisfied in order tewgr the validity of the model. In the

case of isothermal processes, the Claugufiem inequality writes
6:D-py =0, 9)

where the second-order tens@ represents the strain rate, which is additively
decomposed into two second-order tensbfsand DP, representing the elastic strain

rate and the plastic strain rate, respectively, (De= D° +DP").

12



The free energy ratg in Eq. (9) writes

Oy :De+a—w'a+a—wr‘+a—wd.

: (10)
oc° do  or ad

Substituting the above equation in Eq. (9), anagishe definition of the associated

thermodynamic forces, the Claustiimihem inequality becomes
6:D°-X:a-Ri+Y®d=0. (11)

In the particular case when the plastic dissipati®nnegligible, the following
condition must be always satisfied:

Y°d=0, (12)

which requires the damage ratk to be positive, sincer® is a positive quadratic
function (see Eq. (7)).

Once all the state variables are defined, theidutom laws are derived from a
dissipation potentiaF , which is a convex function of the associated rtregtynamic

forces. Its general form is given by

3

F:Fp(&',X,R)+4 X:X+F(Y), (13)

sat

where the first termF_ (6', X, R) represents the plastic yield function, the sectemoh

™ X:X is related to the nonlinear part of the kinemhtcdening, and the last term

sat

F, (Ye) is the damage potential.

13



By applying the classical normality rule pertaintaggeneralized standard materials,

the evolution laws are written as

F=—j—
(14)

where / is the plastic multiplier.
In this work, the plastic potentid, in Eq. (13) is assumed to be equal to the plastic

yield function, which leads to the classical asatiee plasticity theory. Accordingly,

the plastic potentiaF, can be written in the following generic form:

F, =5, X)-Y, (15)

where g is the equivalent effective stress, whife=Y, + R is a measure of the size of

the yield surface, witly, being the initial yield stress.

The initial anisotropy of the material is takenardccount here via the equivalent
effective stresss. In the literature, several plastic yield surfatese been used to
represent the plastic anisotropy of materials (seg, Hill, 1948, 1990, 1993; Barlat et
al., 1991; Banabic et al., 2003). In this work, tiieadratic Hill'48 yield criterion is
adopted for modeling the plastic anisotropy of tmaterial. The corresponding

equivalent effective stress is given by the follogvexpression:

14



76, X)=/(6' - X):M : (6'-X), (16)

where M is a fourth-order tensor that contains the sixseatnopy coefficients of the
quadratic Hill'48 yield criterion.

Using the above definitions, the plastic yield dtiods, written in the form of

Kuhn—Tucker inequalities, can be expressed asvistlo

F,=J(@ -X):M:(§'-X)-R-Y,<0
420 . (17)
AF, =0

The plastic strain rat®”, defined by Eg. (14), can be expressed in the oése

Hill'48 yield criterion as

DP =ia—F=i\7, (18)
Jo

whereV =

1 M:@E -X)

1-d is the plastic flow direction, normal to the yieddrface.
- o

Hardening evolution laws

From the evolution laws given by Eq. (14) and teéndtion of the plastic potentiaF,

(see Eq. (15)), the evolution law for the isotrogli@in hardening is given by

F=—j—=/. 19
3R (19)
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To provide the best description for the experimestaessstrain response that
characterizes the material strain-hardening belnadeveral well-known hardening
functions have been proposed in the literature. ost commonly used isotropic
hardening laws are adopted in this work, due ta gimple expressions that involve a
reduced number of parameters. Table 1 provideseipgessions of these classical
isotropic hardening laws, as functions of the egl@nt plastic strairt, in the case of
plasticity uncoupled from damage. When damage ileal with plasticity, then the
equivalent plastic strairz in Table 1 should be replaced by to account for the

coupling with damage. Indeed, the equivalent plastiain ratez is related to the

plastic multiplieri by the following relationship:
. A
& =—, 20
“T1-d (20)

which is derived from the plastic work equivalepeimciple (i.e.,c & = (6" - X):D").

Table 1. Commonly used isotropic hardening laws.

Isotropic
hardening law

Y ke" Yo+k" k(g *E) Yot Ry(l- €)

Hollomon Ludwig Swift Voce

Similarly, the evolution law for the back-straimser a is derived as

. M : (&' - X .
a:—za—F:( (6-x)__3 x]z. 21)
oX o sat

Substituting the above expression into the ratenfof Eq. (6) leads to

16



X =Cy (% Xt (1- d)V—in, (22)

where V is defined by Eq. (18). Note that the saturatimedtion for the back-stress
variable X , whose evolution law is given by Eq. (22), coimsdvith that of the plastic
flow direction (see Eq. (18)). However, other kiragim hardening models have been
proposed in the literature, in which the saturatioection for the back-stress tensgr
differs from the plastic flow direction. In partiem, the well-known
Armstrong-Frederick kinematic hardening law (see Armstrong &nederick, 1966)
has been originally proposed based on the followeng form (see also, e.g., Haddadi et
al., 2006; Butuc et al., 2011):

X =Cy (X =X)A=H,4, (23)

~1

~ (9
where A =——
o

is the saturation direction, which differs frometiplastic flow

direction given by Eg. (18). Note that in the catg¢he von Mises yield surface, the
above saturation directiofi coincides with that of the plastic flow directidh. In this
work, the hardening parameters as well as the48ilinisotropy coefficients, used for
the prediction of FLDs for a DC06 mild steel madérivere experimentally identified
by Haddadi et al. (2006). In the latter referenttes original ArmstrongFrederick
kinematic hardening law (see Eq. (23)), togethehwhe Swift isotropic hardening law
and the Hill'48 plastic yield criterion, were codsred in the identification procedure.
Consequently, the nonlinear kinematic hardening dgven by Eq. (23) is adopted in
the current contribution. Adopting this choiceslitould be noted that the evolution law
given by Eq. (23) does not derive directly from therent thermodynamic approach.
Nevertheless, it is very easy to slightly modifye tetate potential as well as the

dissipation potential given by Egs. (3) and (18spectively, by introducing the fourth-

17



order tensorM and its inverse, so that Eq. (23) derives strégivardly from these

potentials, thus providing a consistent thermodyiodramework.
Damage evolution law

Softening behavior that takes place at large sttaimg loading is accounted for in this
work by coupling the elastiplastic model with the Lemaitre ductile damage (kaéne,

1985). Different formulations can be found in theerhture to define the damage
potential for ductile materials. In this work, tf@lowing damage potential is adopted

(see, e.g., Lemaitre, 1985; Saanouni et al. (2010))

s+
1 5 (YQ_YEJ if Ye>ve
Fo= (o) & AL y

0 otherwise

(24)

where S;, s,, f, andY are the damage-related parameters, wkiflds defined by

Eq. (8).

The associated damage evolution law derives frend#tmage potentidt, as

1 (YE—\(G

Su
: , Aif Ye2Ye
d:Hdi: (1_d)ﬂd j i

: (25)

d

0 otherwise

Elastic—plastic tangent modulus

According to the strain equivalence principle (&g (1)), the Cauchy stress can be

expressed using the following relationship:

18



6=(1-d)C:(z-="). (26)

From the above equation, the Cauchy stress rateriged as:
6:(1—d)c:(D—DP)—lc, 27)
1-d

which can be rewritten in the following compacier&rm:
6=C%":D, (28)

where C* is the elastieplastic tangent modulus, which is part of the idggats

required in the formulation of the bifurcation eria developed in the next Section. In
order to determine the expression of the elaglistic tangent modulu€®, the plastic
multiplier 1 needs to be first derived using the consistenagition pr =0 along with

the evolution equations described in the previoestiBn, which writes (Haddag et al.,
2009)

_ V:C:D
V:C:V+V:H, +H, '

(29)

where V:(l—d)\7, while H, is the scalar isotropic hardening modulus, which

governs the evolution of isotropic hardening (iX¥.z R= I—l,/i). By combining EQs.

(18), (25), (27), and (29), Eg. (28) can be rewritin the following form:

(30)

6:((1—d)C—

(C:v)O(V:C)+He0(V:C) D
V:C:V+V:H, +H, o

From the above equation, the elagpiastic tangent modulu§® is given by

19



C6p=(1—d)C—[C:V+HI"_|&]D(V:C), (31)

whereH, =V :C:V+V:H, +H,.

Numerical implementation of the fully coupled maatel its validation

Explicit time integration scheme

The resulting fully coupled model is implementedoirthe finite element code
ABAQUS/Standard. This allows solving boundary vajueblems (BVP), which are
governed, within the framework of isothermal pr@assand quasi-static analysis, by

the following strong form of equilibrium equatioos a given domain :

div(e)+b=0 inQ
olh=t onoQ, , (32)
u=a onoQ,

where 9Q2, and 0Q2, are complementary boundary subsurfaces of theaflsiwface
0Q (i.e., 0Q=0Q,U0Q, and 0Q,N0Q, =0), b is the body force vectot, is the
externally-applied force vector odQ,, n is a unit vector normal t@Q,, u is the

displacement field, andi is the prescribed displacement, which is appliadtie

boundary subsurfacéQ, . In the context of the finite element method, leraative to

the above strong form of equilibrium equations he tveak variational formulation,

which is commonly called the principle of virtuabvks (PVW).

20



The constitutive equations described in the previSaction together with the weak
form of the BVP allow us to derive the quasi-stditiite element formulation, which is

expressed here by the following set of nonlinearaéigns:
K=f, (33)

where K is the stiffness matrix, whose calculation reguitbe consistent tangent
modulus and the discrete gradient operator of @atiliidual finite element, whild is
the generalized force vector. For each increment tlé applied loading,
ABAQUS/Standard solves the above system of equatidaratively using the
Newton-Raphson method in order to obtain the nodal digphent vectoru of the
studied structure. On the other hand, the strege sis well as the consistent tangent
modulus, required for setting up the global equilliilm system (see Eq. (33)), have to be
computed and updated at each integration pointadfoeve this, the explicit forward
fourth-order Runge—Kautta integration scheme is ugethis work. This choice is a
reasonable compromise in terms of computationalicieffcy, accuracy, and
convergence. However, it requires small time in@ets to ensure accuracy and
stability (see, e.g., Li and Nemat-Nasser, 1993jd<@002).

One can notice that, for the fully coupled modéle tevolution of all internal
variables can be written in the form of the follogiglobal differential equation:

y=h,(y), (34)

where vectory includes all internal variables of the present elodihe implementation
of this compact form, using the fourth-order Rurlgetta explicit time integration
scheme, is straightforward and allows incorporatiagous hardening laws and plastic
yield surfaces (see Mansouri et al. (2014) for nmaetils). The resulting explicit time

integration algorithm is summarized in Table 2.
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Note that, within the large strain framework, thee wf objective derivatives for the
tensorial variables is required in order to ensilme incremental objectivity of the
model. Several objective rates have been develapeitie literature, which allow
simplifying the time derivatives of the constitigivequations, thus making them
identical in form to a small-strain formulation. éther convenient way, which is quite
equivalent to the use of objective rates, is thentdation and time integration of the
constitutive equations in the so-called local otiyecframes. Different objective local
frames have been proposed; one possible choideeisd-rotational frame associated
with the anti-symmetric partW of the velocity gradientG, resulting in the
conventional Jaumann rate. Another choice has bsaeygested by the polar
decomposition theorem for the deformation gradignt: V [R, where V is the left
stretch tensor andR is the rotation tensor, which leads to the obyectierivative of
GreenrNaghdi. The goal of such objective derivatives @ datisfy the material
invariance by eliminating all the rotations that dot contribute to the material

response.

Although the co-rotational Jaumann rate is the nmmmhmonly-used objective
derivative, it has some well-recognized drawbadkse main downside that has been
pointed out in the use of the Jaumann rate conefstsdesirable oscillations in the
shear stresstrain response, as a result of large rotatiorhefstress principle axes, in
particular when kinematic hardening is considess( e.g., Dafalias, 1985). It must be
noted, however, that in the current work, only lafe biaxial loading paths are
considered for the prediction of conventional FLiDissheet metals, which excludes the
occurrence of shear strains during the simulatiMmeover, the limit strains expected
from the application of the present bifurcationtemin, which correspond to the
occurrence of diffuse or localized necking, aratieély small when compared to the

large strains that sheet metals can undergo béfacaure. Consequently, the Jaumann
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rate is adopted in this work to describe the rotatdf the material frame, which is
consistent with the choice adopted in the ABAQUBveare.

Table 2. Outline of the explicit time integration algorithm.

For t = 0, initialization of the state variableg =0

Input data:Ae andy, (e, X,,R,, d,)

SetAc, =0 andAy, =0

Fori=1,...N (with N =4 for the 4-order Runge—Kutta method)

Computes, =6, +alo,_, andy, =y, +aly,_,, with a= {O% —; J}

« Plastic yield condition: if, (&}, X;,R) <0 then (elastic loading)
Ac, =(1-d,)C:Ae, Ay, =0, C* =(1-d,)C
+ Else, if Az:V, <0 then (elastic unloading)

Apply the same treatment as in the previous operati
» Otherwise (plastic loading)

By, =h, (y, +ady, )AL, As, =(1-d,)C:(De -0’ - A

[C:V,+H,6 |O(V,:C)

C¥* =(1-d)C-
=1-d) H,
End for
Update stress and state variables
N N . 1111
6,.,=6,+> bAc, andy, =y, +> bAy, withb={== = -
i=1 i=1 6 3 3 6

Compute the tangent modulus
N

Calg — Z hCialg

i=1
Returne,,, and C*? to check the equilibrium.
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Numerical validation

The constitutive equations of the above elagl&sticcdamage model have been
implemented into the finite element coABAQUS/Standard, within the framework of
large strains and a three-dimensional formulafidre numerical validation of this finite
element implementation of the model is conductegwise in this subsection. In a first
step, the numerical implementation of the elagi@stic model alone (i.e., without

coupling with damage) is preliminarily validateddbgh various classical tests.

The first numerical simulations consist of Bausgeinshear tests. The latter allow
validating the nonlinear hardening behavior, whishdescribed by the combined
isotropic and kinematic hardening model. More dpeadly, the combined hardening
model based on the Voce isotropic hardening law #rel Armstrong—Frederick
kinematic hardening law, together with the von Misgeld criterion, is used in this
simulation, which allows comparing the numericauiés with those obtained using the
same combined hardening model available in the ABSoftware. The associated
elasticity and hardening parameters, which cornedpo a standard aluminum material,
are summarized in Table 3. Three Bauschinger stesés are simulated as follows:
three different amounts of shear strain, i.e. 0.2,and 0.3, are first prescribed to the
studied aluminum material, then followed by a reeeshear loading path up to a shear
strain of-0.1. Figure 2 reports the simulated shear ststssn curves obtained with
the developed UMAT subroutine and the built-in ABB® model. These comparisons
with the reference results given by ABAQUS revéal good accuracy of the developed

integration algorithm in the case of combined nuedir hardening model.

Table 3. Elasticity and hardening material parameters usethe simulations.

Material E(MPa) o Y,(MPa) R, ,(MPa) C, X, (MPa) C,
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Aluminum  70,00C 0.33 124.2 167 9.5 34.9 146.5

200+
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-d2 ' 0.0 ' 62 ' 64

Shear strain

Figure 2. Shear stresstrain curves obtained with the developed UMAT sukine and
the built-in ABAQUS model.

In order to evaluate the accuracy of the numermoglementation of the anisotropic
behavior, which is based on the Hill’48 yield crite, simulations of classical uniaxial
tensile tests at 0°, 45° and 90° from the rollimgction are performed here. To achieve
this, the aluminum material presented in the previgalidation tests is used here with
the Hill'48 yield criterion. The corresponding amiiopy coefficients are reported in
Table 4. It is worth noting that the description @hstic anisotropy available in
ABAQUS, which is based on the Hill'48 yield criten, can only be combined with
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isotropic hardening. Accordingly, to allow considtecomparisons, only the Voce
isotropic hardening model is used in the curremusations of uniaxial tensile tests at
different orientations from the rolling directionn addition to the anisotropy
coefficients given in Table 4, the elasticity andcé hardening parameters used in these

simulations are taken from Table 3.

Table 4. Hill'48 anisotropy coefficients for the studied altnum material.

Material F G H L M N

Aluminum  0.700 0.480 0.520 1.500 1.500 1.265

Figure 3 shows the simulated strestsain curves for the uniaxial tensile tests at 0°,
45° and 90° from the rolling direction. It is cldhiat the numerical results given by the
developed UMAT subroutine are in excellent agreégméth those obtained with the
built-in ABAQUS model for all considered orientat® Moreover, Figure 4 reports the
normalized yield surfaces for both the von Miseq Hlill'48 yield criteria, where it can
be seen that the yield surfaces provided by the WMWbroutine and the built-in
ABAQUS model coincide.
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Figure 3. Uniaxial stressstrain curves obtained with the developed UMAT suline
and the built-in ABAQUS model, at 0°, 45° and 9@5nfh the rolling direction.

—o— ABAQUS - von Mises
—o— UMAT - von Mises
—o— ABAQUS - Hill'48
—o— UMAT - Hill'48

Figure 4. von Mises and Hill’48 normalized yield surfacegasbed with the developed
UMAT subroutine and the built-in ABAQUS model.
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To further validate the tensorial aspect of thetataplastic model, without coupling
with damage, simulations are performed on a reciangplate with a hole, which
involve heterogeneous stress / strain states witi@rplate. The geometry, dimensions
and loading conditions for this test are all spediin Figure 5. The plate is subjected to
a prescribed displacement of 2 mm along the ledgtiction. The mixed hardening
model available in ABAQUS, which is based on the® @sotropic hardening combined
with the ArmstrongFrederick kinematic hardening and the von Misetdyseirface, is
adopted in these simulations. The associated @tgséind hardening parameters are
taken from Table 3. Due to the symmetry, only onarter of the plate is modeled.
Figure 6 shows the simulation results, in termdoaid-displacement responses, as
obtained with the UMAT subroutine and the builtABAQUS model. These numerical
results reveal the excellent agreement betweernvibemodels. Moreover, Figure 7
displays the distribution of the equivalent plasti@in within the plate, as predicted by
the developed UMAT and the built-in ABAQUS models A&learly shown by this
figure, the distribution of the equivalent plasstrain is well reproduced by the

implemented model when compared with the referédf®&QUS results.

HRRRNRAEN

50 mm

Thicknesst=1 mm
R8m

100 mm
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Figure 5. Heterogeneous mechanical test based on a rectapdata with a hole.

16000
< 120001
g —o— ABAQUS
o y —— UMAT (without damage)
o
Q 80004 J

4000
O T T T T T T T T T 1
0.0 0.4 0.8 1.2 1.6 2.0

Displacement (mm)
Figure 6. Numerical loagdisplacement curves obtained with the UMAT subroaiti
and the built-in ABAQUS model for the rectanguléatp with a hole.

PEEQ
(Avg: 75%)
+4.377e-01

| 77

Figure 7. Equivalent plastic strain distribution obtainediwihe UMAT subroutine and
the built-in ABAQUS model for the rectangular platgh a hole.
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Now that the elastigplastic model without coupling with damage has beaidated
through the above numerical simulations, it willdv@luated in what follows in the case
of coupling with damage. Note that, because thly ftdupled elastieplastic-damage
model is not available in ABAQUS, the numerical ules will be compared with
reference solutions taken from the literature. He tvorks of Doghri and Billardon
(1995), a phenomenological elasftastic model with a von Mises plastic yield sugac
and Ludwig’s isotropic hardening has been couplél the Lemaitre damage approach
and used to predict the uniaxial tensile respomsettiree fictitious materials. The
elasticity and hardening parameters as well asd#imeage parameters for the studied
materials are summarized in Table 5, which correddo standard steel materials with
three different values for the hardening exponer(see the expression of the Ludwig
hardening law given in Table 1).

Table 5. Elasticity, hardening, and damage parameters @stihdied materials (Doghri
and Billardon, 1995).

Material E(MPa) o Y,(MPa) kMPa) n B, s S (MPa) Y*(MPa)

M1 200,00C 0.3 200 10,000 03 1 1 0.5 0
M2 200,00C 0.3 200 10,000 0.6 1 1 0.5 0
M3 200,00C 0.3 200 10,000 1 1 1 0.5 0

Figure 8 compares the predictions yielded by thelemented model with the
reference solutions taken from Doghri and Billard(#®95). These comparisons
concern the evolution with deformation of the Caustress and damage, for the three
studied materials. It can be observed that the lsieadl Cauchy stress and damage

variable coincide with their counterparts takennfréhe reference solutions, for the
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three materials investigated, which validates thenerical implementation of the
present model.

(a) o M1 (Reference) (b) 0.7 ° Ml (Reference)

o M1 (UMAT)

20000 £7d M1 (UMAT) 9
0.6 o M2 (Reference)
- o M2 (Reference)
& s v o M2 (UMAT)
=, 15001 g (UMAT) g o5 a M3 (Reference)
o 4 a M3 (Reference) 8
2 Soa § M3 (UMAT)
N "Smmy, -~ M3 (UMAT) S ot ' &
5 1000 ¢ SN ° f e
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I @ o e
o ¥ "
o 0.1+ ; AE
| , . . . , . , 0.0
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Figure 8. Comparison between the results of the currentamphted model and the
reference solutions taken from Doghri and Billard®®95) in terms of simulations of
uniaxial tensile tests for the three studied matgria) True stresstrain response, and

(b) damage evolution.

Modeling of material instabilities based on bifurcation theory

Various theoretical criteria have been developetha literature for the prediction of
diffuse and localized necking, and most of them lamsed on the maximum force
principle, bifurcation analysis, and multi-zone hwats. In this paper, attention is
focused on the prediction of diffuse and localizeecking with the bifurcation
approach. Four plastic instability criteria are gengted in this Section: two diffuse

necking indicators based on the general bifurca{®B) and limit-point bifurcation
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(LPB) criteria, respectively; and two localized kieg indicators based on the loss of
ellipticity (LE) and loss of strong ellipticity (LS criteria, respectively. These necking
criteria are first presented in their general te&oal framework, and then will be

specialized to the case of plane-stress conditiems|l strain assumptions as well as

large strain framework.

Before introducing these bifurcation criteria, teasorial variables involved in their

theoretical formulations are defined hereafter.

The large strain elastiplastic formulation involves the multiplicative
decomposition of the deformation gradigntinto an elastic parE® and a plastic part

FP as follows:
F=F°FP. (35)

The first PiolaKirchhoff stress tensoB (also known as the Boussinesq stress

tensor), which is the work conjugate to the aboekr@d deformation gradierf, is
defined in terms of the Cauchy stress tensoby B =JF " [¢, with J being the

Jacobian (i.e., determinant df), and F™ the transpose of the inverse of the
deformation gradient. Making use of the previousdgcribed constitutive equations, it

is possible to derive a fourth-order tangent mosllt, which allows relating the work-

conjugate variable8 andF through the following rate form relationship:
B=L®%:F. (36)

The velocity gradientG is defined in terms of the deformation gradiéntby the

following expression:

G=F[F™ . (37)
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Within the large strain framework, the nominal ssr¢ensorN , which is defined as

the transpose of the first Pieléirchhoff stress tensoB (i.e., N=B"), can be related

to the velocity gradienG by the following rate form relationship:
N=L:G, (38)

where L is the corresponding tangent modulus, which wellderived here within the
framework of an updated Lagrangian approach. Nwéthe derivation of this tangent
modulusL requires several steps. First, the strsigain constitutive relation, which is
expressed by EqQ. (28) in a (material) co-rotatidraahe, is rewritten in a fixed frame in
terms of the Jaumann derivative of the Cauchy stressor. Then, the nominal stress
rate tensor is expressed in terms of the Cauclesstrate tensor, using an updated
Lagrangian approach. Finally, combining the resgltequations and exploiting the
different definitions of stresses and associatetkvwonjugate variables, the expression
of the tangent moduluk is given by the following relationship (see, eldaddag et
al., 2009; Abed-Meraim et al., 2014a):

Tlijkl =G; A
. . 1
L =C®+T,-T,-T,, with {T,, :E(cilkcsjl +4q, ). (39)

T3ijk| = % (Gik 5j| -G C?k )

Finally, considering thatN and B are transpose of each other, the fourth-order

tangent modulud.® involved in Eq. (36) can be easily expressed ims$eof L , using

index notation, as follows:

Lligjld =Ly - (40)
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General hifurcation criterion

Introduced by Drucker (1950, 1956) and Hill (195®8) general bifurcation criterion
(GB) is a necessary condition for the loss of uaiggss of the solution to the boundary
value problem for rate-independent solids. The g¢mrdfor which any bifurcation for
the rate boundary value problem is excluded coomdp to the positiveness of the
second-order work, defined over the structuresmeference undeformed configuration

as follows:

jAF:LB:AFdQO>o, (41)
Qo

where Q, is the volume of the solid in its reference undeifed configuration.

The condition given by the above equation is a bifurcation condition that
excludes all types of bifurcation, such as georo@tstabilities or material instabilities,
and depends on the geometry of the structure anddamy conditions. The use of a
local formulation for the criterion given by EqQ. 1|4 allows predicting plastic

instabilities in stretched sheet metals, such fiss#i necking
AF:LB:AF>0, (42)

The above condition is generally more restrictikant that given by Eqg. (41) and,
accordingly, it may be considered as a lower botmmdhe occurrence of diffuse or
localized necking. In practice, the satisfaction tbé positive definiteness of the
guadratic form given in Eq. (42) requires the caindi of positiveness of all of the

eigenvalues of the symmetric part of the tangerduhes L®.
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Limit-point bifurcation criterion

A particular case of the GB criterion is the lipiint bifurcation (LPB) criterion,
according to which plastic instability is assocthigith a stationary state for the first
Piola-Kirchhoff stress, which leads to the following cdrmah (Valanis, 1989; Neilsen
and Schreyer, 1993):

B=L®:F=0. (43)

The above condition is reached when the tangentuutosd.® becomes singular, or
in an equivalent way, when its smallest eigenvalaeishes. It should be noted that,
within the framework of small strains, associafplasticity, and with no coupling with
damage, both GB and LPB criteria lead to the saradigion of necking, due to the

resulting symmetry of the tangent modulu’ (Abed-Meraim et al., 2014a).
Loss of ellipticity criterion

Rice and co-workers (see Rudnicki and Rice, 1976g,R1976) proposed a strain
localization criterion based on the loss of elbfii (LE) condition. In such an
approach, the localization of deformation in thexfef an infinite band defined by its
normal n (see Figure 9) is viewed as a transition from andgeneous state of
deformation towards a heterogeneous one correspgpnii a discontinuity in the

velocity gradient.
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Figure 9. Schematic illustration of an infinite localizatiband and its orientation.

The equilibrium conditions along the localizaticankl, which express the continuity

of the nominal stress rate vector across the disuaty surfaces, write
n EEN]] =0, (44)

where[[N]] =N*-N~ denotes the jump in the nominal stress rate athestcalization

band planes. Using Maxwell’'s compatibility conditjaghe jump in the velocity gradient

can be written in the following form:
[G]=¢On, (45)

where the jump amplitude vectar= [[G]]m\ characterizes the localization bifurcation

mode (e.g., shear mode whériin). By combining the above equations, the critical
condition, which corresponds to the loss of eltipyi of the associated boundary value
problem, can be derived for a non-trivial soluti@n vector ¢, and writes (see, e.g.,
Rice, 1976, Benallal et al., 1993)

detQ = detO L [ = ( (46)
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where Q is called the acoustic tensor. The complete espesof L is given in Eq.

(39).

The above loss of ellipticity condition is numefligasolved by computing the
determinant of the acoustic tens@ for each loading increment. The numerical
detection of strain localization is achieved whiea minimum of the determinant of the
acoustic tensoQ, over all possible normal vectors to the local@atband, becomes

non-positive.

Loss of strong ellipticity criterion

Within the same family of criteria, based on bifation theory, the loss of strong
ellipticity (LSE) criterion was proposed by Bigoand Zaccaria (1992), Bigoni (1996)
to predict the occurrence of strain localizatioheTondition of LSE is a special case of
the loss of positiveness of the second-order wgiken by the GB criterion (Hill,
1958). In the latter, no restriction is imposedtba form of the velocity gradierf
involved in Eq. (42), and thus all types of bifuroa modes, i.e. diffuse or localized
modes, can be predicted. If one restricts the Wglgradient modeAF , in Eq. (42), to
take a compatible form, then one recovers the L&kdition from the GB criterion.
Accordingly, for restrictive localized modes thattisfy the compatibility condition
(Neilson and Schreyer, 1993), the LSE conditiontmamvritten in the following form:

¢c@E>0 0¢#0,|n|=1, (47)

where the acoustic tens@ =n[L [h is the same as that discussed in the previous
subsection. In practice, the satisfaction of thergg ellipticity condition is equivalent to

the condition of positive definiteness of the at¢mugnsorQ , which in turn amounts to
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the positiveness of all of the eigenvalues of yraraetric part of the acoustic tensQr
(Bigoni and Hueckel, 199Neilson and Schreyer, 1993). It is worth noting tkathin
the framework of small strains, associative plasticand with no coupling with
damage, both LE and LSE criteria predict the santeal limit strains, due to the

resulting symmetry of the acoustic ten€pr

Theoretical classification of the bifurcation crite

In this subsection, a theoretical classificatioraisempted for the bifurcation criteria
previously described and summarized in Table 6grateg to their order of prediction
of plastic instabilities. To achieve this, a welldevn mathematical property is
introduced here as follows:

Let A be a given matrix and*™ its symmetric part (i.e A" = (A +A T)/Z, with

AT being the transpose @ ). Then, the real parts of the eigenvalgésof matrix A

are bounded by the smallest and largest eigenvajfies of its symmetric part. This

mathematical classification writes (see Abed-Mer&i80n9):

min) (/7{*%) < Re (/7iA ) < max (mAsym) , (48)

s;(ASV’"

where Re(OiA) denotes the real part of the eigenvalpgé. From the above

mathematical property, the following inequalitiesnde derived:
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min (/7i (LB)) < ReB)(/yi (%)), (49)

s;(LBsym) siL
in, (7.(Q°7))= 16, (.(Q)). (50)

As discussed in the previous subsections, the LR&ion is a particular case of the
GB criterion. Accordingly, by virtue of the aboveoperties, the GB criterion is more
conservative than the LPB criterion (Franz et2013; Abed-Meraim et al., 2014a). In
other words, the singularity of the tangent modulfiscannot occur before the loss of

positive definiteness of the symmetric part of tdr@gent modulus.® (see Eq. (49)).

By adopting the same mathematical reasoning asealooe can demonstrate that the
LSE criterion is more conservative than the LEetitin. In other words, the singularity
of the acoustic tenso cannot occur before the loss of positive defiregmnof the

symmetric part of the acoustic tens@r(see Eq. (50)).

Another hierarchical classification can be estdélgids which involves the GB
criterion and the LSE criterion, the latter beingpecial case of the former. Indeed, the
GB condition requires the positive definitenessh&f quadratic form given in Eq. (42)
over a larger space, while the LSE condition idrieted to a subspace of localized
deformation modes (i.e., those satisfying the cdibbity condition). Accordingly, the

GB criterion is more conservative than the LSEecian.

The above discussions allow us to establish théovidg general theoretical
classification: the GB criterion is interpreted aasower bound to diffuse or localized
necking, while the LE criterion appears as an ujyoeend to the occurrence of localized
necking. Intermediate modes ranging between th@sebbunds are provided by the
LPB criterion and the LSE criterion. Figure 10 glitates the expected order of
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occurrence of necking, as predicted by the diffebefurcation criteria, on the basis of

the above-established theoretical classification.

Table 6. Summary of the bifurcation criteria investigated.

Criterion Condition Mode
General bifurcation AF:LB:AF=0 diffuse or localized
Limit-point bifurcation L®:F=0 diffuse or localized
Loss of strong ellipticity CnL M) [E=0 localized

Loss of ellipticity det [ )= 0 localized

Major strain

A

Loss of ellipticity—— —

~

Loss of strong ellipticity—> .., \\ -
Se, L ~
'.... \\\ 7 . ““‘
Limit-point bifurcation—— ™.,
' ~ ."-.--““‘ . -
General bifurcation—-s«_ \ R

\7
Minor strain

>

Figure 10. lllustration of the expected order of occurrentaexking, as predicted by

the different bifurcation criteria.

Plane-stress framework
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Because the present work is essentially intendedhéo prediction of diffuse and
localized necking in thin metal sheets, in relatigth the associated FLDs, the relevant
tangent modulus required for all bifurcation ciidefsee Eq. (39)) is derived here within
the framework of plane-stress conditions. To thid,¢he nominal stress rate, defined in
Eq. (38), is rewritten within the framework of péastress theory by the following

relationship:

N, =L G,, with a,p,y,0=12 (51)

afyé y0 !

The componentd_';s,ya of the plane-stress tangent modulus are derivaa those

relating to the three-dimensional tangent modulls using the following
transformation:

_ Laﬂ33L 399 (52)

L3333

LPS =L

afys — = apyo

It is worth noting that, within the plane-stressnfrework, the band orientation for the

LE and LSE criteria is restricted to be lying i tplane (i.e.¢ =0 in Figure 9).

Small strain framework

In this subsection, the assumption of small straénadopted and its consequences on
the formulation of the above-derived necking crieare analyzed. An important
consequence of the small strain assumptions istllgatonvective stress components
vanish; the latter originate from the large strdormulation of the constitutive

equations, and enter the expression of the tangesdulus L involved in the
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bifurcation criteria (see Eq. (39)). In such cir@iances, the tangent modulls

reduces to the analytical tangent modulis
L =C®. (53)

Doghri and Billardon (1995) investigated the oceunne of strain localization within
the framework of small strains and plane-stresslitioms. In those works, the concept

of critical scalar hardening modulus was proposediétect the singularity of the

analytical tangent modulu€®’, a condition equivalent to the LPB criterion when
specialized to the small strain framework. Thisdibon can be derived by applying the

following Lemma(Doghri and Billardon, 1995):

Let a and b be two second-order tensors, ahdhe fourth-order identity tensor.

The following fourth-order tensom =1 —(aD b)/h is invertible if and only if

h#a:b, and in this case its inverse™ writes

alb
—, 54
. (54)

mt=1+

where h' =h-a:b is the critical scalar hardening modulus. In thsecof the present
elastie-plastic model coupled with the Lemaitre damage @gqgin, the critical condition
h' =0, corresponding to the singularity of the analyti@agent modulusC®, can be

easily derived as follows:
h =(1-d)H,-[C:V + Hs]: V. (55)

The use of the above scalar condition for analy#egcritical necking strains within

the small strain framework is a useful tool, whistvery easy to implement, as it does
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not require any determinant minimization over afkmal vectors to the localization

band, or any other form of eigenvalue analysis.

Application to the prediction of plastic instabilities

The constitutive equations presented in this wodveh been combined with the
bifurcation criteria described in the previous 8sttin order to predict the occurrence
of necking in sheet metals. The resulting appro&clmplemented into the finite
element code ABAQUS/Standard. In order to reprodudemogeneous deformation
state prior to bifurcation, the simulations arefpened using a single finite element
with reduced integration (C3D8R element in ABAQU®}ich is subjected to various
linear strain paths that are those typically agbte sheet metals under in-plane biaxial
stretching. The main motivation behind the choick such a basic loading
configuration, which corresponds to a very simglarxary value problem, is to satisfy
the conditions of application of ‘intrinsic’ neclgncriteria that are inherent to the
‘material’ alone, with no interference with strucl (geometric) effects. Indeed,
structural or geometric effects may lead to non-bgemeous stress states or cause
elastic unloading when damage-induced softeningpissidered (see, e.g., Lemaitre et
al., 2009), thus compromising the applicabilitytié above-discussed necking criteria.
The geometry and boundary conditions of the sifiglee element model adopted in the
simulations are illustrated in Figure 11. Direcgah and 2 represent the major and the
minor directions, respectively. The linear straaths are obtained by varying the strain-

path ratio 8 =¢,/¢, from -0.5, for the uniaxial tensile loading path, to t falanced

biaxial expansion.
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Figure 11. Single finite element (C3D8R) subjected to in-jgldomaxial stretching.

In the following subsections, the framework of @astress conditions, as described
in the previous Section, is adopted to predictahtcal necking strains in thin sheet
metals. Several numerical aspects are investigatedrder to validate all of the

theoretical results discussed previously.

Small strain framework

Within the framework of small strains, Doghri andl@don (1995) investigated strain
localization for homogenous plane-stress problesisgubifurcation criteria. In those
works, a rate-independent plasticity model coupléti the Lemaitre damage approach

was adopted. The material parameters are the saithese reported in Table 5.
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Figure 12. Diffuse necking predictions with the bifurcationteria and the scalar

condition of critical hardening modulus =0, for (a) M1 material, and (b) M2

material.

Figure 12 shows the predictions of diffuse neckotgained with the GB and LPB

criteria as well as with the scalar condition afical hardening modulush{ =0), for
materials M1 and M2. It is noteworthy that, althbubge predictions shown in Figure 12
are related to diffuse necking, which usually oscprior to localized necking, their
levels are unusually low (less than 0.02 and 0.64 rhaterials M1 and M2,
respectively), which do not represent realisticiligtrains, as experimentally observed.
This is due to the fictitious (unrealistic) matérgarameters taken in Doghri and
Billardon (1995), and used in the present study & validation purposes.

It can be seen from Figure 12 that the limit sggredicted with the GB criterion are
slightly lower than those predicted with the LPBtesion for the strain paths close to
the uniaxial tensile loading path (i.e., extrenmi¢ part of the predicted diffuse necking
curve). This difference is more perceptible for enal M2, for which the hardening
exponentn is higher than that of material M1 (see Figureb)lR(However, the GB and

LPB criteria predict equivalent limit strains fdwet strain paths close to the balanced
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biaxial tensile loading path (i.e., extreme riglatrtpof the predicted diffuse necking
curve). These results are fully consistent with tteoretical classification reported in
the previous Section, where the GB criterion hasnbshown to be generally more

conservative than the LPB criterion.

With regard to the diffuse necking predictions givby the critical hardening

modulush’, the associated results coincide exactly with ehm®dicted with the LPB

criterion, for all studied materials. This reswdtfully consistent because both criteria

amount to the same condition of singularity of #malytical tangent modulu€*®’;
however, they are implemented as two different mgckndicators, which are revealed

to be equivalent.

With regard to localized necking, the FLDs predictth the LE and LSE criteria
are compared in Figure 13 to the reference FLDnakem Doghri and Billardon
(1995), where the LE criterion has been used aldinean be observed that the
predictions obtained with the present LE criteria@ in good agreement with the
reference results, which allows validating the entrtheoretical approach as well as its
numerical implementation in ABAQUS/Standard. Alsle FLDs predicted with the
LSE criterion are slightly lower than those preddctwith the LE criterion, especially
for the strain paths close to the uniaxial tensdlading path. Again, this order of
prediction is fully consistent with the theoreticdssification reported in the previous
Section, where it has been shown that the LSEriontas generally more conservative

than the LE criterion.
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Figure 13. FLDs predicted with the LE and LSE criteria andhgarison with the
reference results, for (a) M1 material, and (b) ii&erial.

As discussed in the previous Section, the hieraathiheoretical link that was
established between the GB criterion and the LStermn can also be numerically
verified. Figure 14 shows comparisons between tBea@d LSE criteria, in terms of
predicted limit strains, for both studied materidfs the neighborhood of the uniaxial
tensile loading path, the GB criterion predictsical necking strains slightly lower than
those given by the LSE criterion, while for strgaths close to the balanced biaxial
loading path, the predictions of strain localizatigielded by the LSE criterion fall
significantly higher than the critical necking $tr® obtained with the GB criterion.
These numerical results are also fully conformathwthe theoretical classification
established in the previous Section, which reveéhed the GB criterion represents a
lower bound to all bifurcation criteria and, in peular, it is more conservative than the

LSE criterion (see Figure 14).
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Figure 14. Necking predictions with comparison between thed®B8 LSE criteria.

Large strain framework

In this subsection, the proposed approach, whicmbooes the fully coupled
constitutive equations with the bifurcation crigeris applied within the framework of
large strains and plane-stress conditions. Fordaatn purposes, the GB and LPB
criteria will be first compared to the maximum fercriterion proposed by Swift (1952),
for which analytical expressions for the criticahit strains can be obtained in the case
of simplified constitutive equations, namely, rigodastic model (with no coupling with
damage) with von Mises yield surface and isotrdpacdening under linear in-plane
loading paths. Then, the LSE and LE criteria w#l bbsed to predict the FLDs for a
DCO06 anisotropic mild steel material. Subsequerglypumerical classification for this
class of bifurcation criteria is attempted, in terai their order of prediction of necking,
in order to validate the theoretical classificatiestablished in the previous Section.
Finally, some numerical aspects will be investidatghich are related to the effect of
convective stress components as well as the impfaptestrain on the prediction of

diffuse and localized necking.
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Diffuse necking predictions

The Swift diffuse necking criterion (Swift, 195Z)0mmonly known as the maximum
force criterion (MFC), is an extension of the Colése criterion (Considére, 1885) to
the case of in-plane biaxial loading, by assumhmgg tiffuse necking occurs when the

applied major and minor forces=( and F,, respectively) reach simultaneously their

maximum. This criterion can be expressedras 0 and F, = (, where the directions 1

and 2 correspond to the major and minor directicespectively (see Figure 11). Within
the framework of rigid flow theory of plasticity {thout coupling with damage) and
isotropic hardening, the above condition leadsh® following general form of the
Swift'52 criterion (Abed-Meraim et al., 2014b):

2 2
( aaj ( 0z j
_ ot 0,
de _\do, 0o, (56)

cdg 0o 0o ’
—0, +
0o, do,

0,
where ¢, and o, are the principal Cauchy stress components asedcwith the in-
plane forcesF, andF,, respectively.

In the caseof proportional loading with a von Mises yield sagé, the MFC

expression can be further developed as

5 430~ 3+ 4°
& —g(0)=! ) 7
oHe 4(1—0c+0c2)E

where the stress ratia =o¢,/0, varies from 0 (for uniaxial tensile loading patb)1

(for balanced biaxial loading path).

49



The critical equivalent strai@,, associated with the occurrence of diffuse necking

can be analytically derived from the above equatiothe case of simple hardening

laws. The corresponding critical major straip and minor straire,, are obtained using

the classical plastic flow rule, and write

(58)

Table 7 summarizes the analytical expressions,tHer critical equivalent strain,
obtained with the Swift'’52 diffuse necking critemidor four commonly used isotropic
hardening laws. It is noteworthy that these anedytexpressions are made possible
within the framework of large strain rigid-plastici(without coupling with damage)

along with a von Mises plastic yield surface amedir loading paths.

Table 7. Closed-form solutions, for the critical equivalsirain, obtained with the

Swift'’52 diffuse necking criterion for differentatropic hardening laws.

Isotropic
hardening law

Expression €.
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Hollomon Y=k g(a)
. —\n n —_
Swift Y = k(eo +8) g(a) €o
o 1 Rsat(CR+ g(a))
Voce Y=Y+ R,(1- —In
o Rfi- ) g ( 9(a) (Rt %)
i - =N nk —=n-1
Ludwig Y=Y+ k" rootof | ke"———¢" +Y, =0
9(a)

Simulations have been conducted to determine thieatrlimit strains at diffuse
necking obtained with the GB and LPB criteria, lmojpting the different isotropic
hardening laws given in Table 7. The correspondingdrang parameters are reported

in Table 8.

Table 8. Hardening parameters used in the simulations &igbfnecking using the GB
and LPB criteria as well as in the analytical solus given by Swift'52 diffuse necking

criterion.

Isotropic
Y, (MP MP C
hardening law 0(MPa) k(MPa) €o n R..(MPa) R

Hollomon — 580 - 0.2 - —
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Ludwig 200 580 — 0.2 — —
Swift - 580 4.87513 0.2 - -
Voce 200 — — — 350 10
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Figure 15. Critical necking strains predicted by the GB, LRBd Swift'52 criteria for

different isotropic hardening laws.

For all of the isotropic hardening laws listed imble 8, the diffuse necking
predictions given by the GB, LPB, and Swift'52 eriti are depicted in Figure 15. The
simulation results show that the GB and LPB critdaad to the same predictions.
Furthermore, the critical necking strains given the closed-form solutions of the
Swift’52 criterion are equivalent to those obtairveith the GB and LPB criteria. These
results are fully consistent with those reportedAbred-Meraim et al. (2014b), where
theoretical links between the Swift'52 diffuse nixckcriterion and the GB criterion

were established.
Localized necking predictions

In this subsection, the prediction of localized kieg for a DC06 mild steel material is
undertaken using the LE and LSE criteria. The bemay the DCO06 steel material is
described by the fully coupled elasfitastic-damage model. The Hill'48 plastic yield
criterion along with a mixed isotropikinematic hardening model, consisting of the
Swift isotropic and the Armstror§rederick kinematic laws, are adopted. The

corresponding elasticity, anisotropy, and harderpagameters were experimentally
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identified by Haddadi et al. (2006) using an ineerdentification procedure based on
several off-axes uniaxial tension and simple shesis. As to damage, the latter was not
considered in the identification procedure relatittg the elastieplastic behavior.
Therefore, the damage parameters used in the foldpsimulations do not reflect the
damage behavior of the DCO6 steel material, siheg have not been experimentally
identified. These damage-related parameters asn tatlhkm Haddag et al. (2009), who
used fictitious damage parameters for the DCO0A steterial. All material parameters

are summarized in Table 9.

Table 9. Elasticity, anisotropy, hardening, and damage patars for the DC06 mild
steel (Haddadi et al., 2006; Haddag et al., 2009).

Material E (MPa) v F G H L M N

200,00C 0.3 0.2510.297 0.703 1515 129
DCO6 &g k(MPa) n Cx Xau(MPa) By s, § (MPa) Y*(MPa)

0.00308 433.59 0.2191.45 116.7 5 1 2 0
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Figure 16. FLDs predicted with the LSE and LE criteria foe thC06 mild steel

material.
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Figure 17. Orientation of the localization band, as prediciétth the LSE, LE, and

Hill'52 criteria for the DC06 mild steel material.
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Figure 16 shows the FLDs predicted with the LSE BEdcriteria for the studied
DCO06 mild steel. It can be observed that both bdtion criteria provide the same
predictions of localized necking for the studiedtenial. This result is also consistent
with the theoretical classification reported in fhrevious Section, according to which
the LSE criterion is generally more conservativantithe LE criterion. In other words,
localized necking strains predicted with the LEtesion cannot fall below their
counterparts obtained with the LSE criterion, ahd tis true for any strain path

considered.

The orientation of the localization band is alseestigated here, using the LSE and
LE criteria. Note that this band orientation isyodefined by a single in-plane angle,
since the framework of plane-stress conditionslgpéed in this work. Figure 17 shows
the localization band orientations for the diffd@retrain-path ratios, as predicted by the
LSE and LE criteria, which are additionally commhrevith the analytical band
orientation given by the Hill'52 localized neckimgiterion (Hill, 1952). The obtained
orientation predictions are in good agreement with Hil’'52 analytical formula

(<9=tan‘1(‘/—ﬁ)), for both LSE and LE criteria. It is worth notirigat because the

Hill'52 criterion is only applicable to the left-hd side of the FLD, the comparison in

the range of positive biaxial stretching (i.¢8,>0) only involves the LSE and LE

criteria, which predict the same band orientations.

Numerical classification of the bifurcation critari

A numerical classification for the bifurcation enita, in terms of their order of
prediction of necking, is attempted in this subsector comparison purposes with the
theoretical classification established in the pwasi Section (see Figure 10).

Simulations are again performed within the framédwairlarge strains and plane-stress
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conditions. Using the present approach that conshitbe fully coupled
elastie-plastic-damage model with the bifurcation criteria, critickmit strains
corresponding to the occurrence of diffuse andliped necking are determined for the
DCO06 mild steel (see Table 9 for the associatecenahtparameters). Figure 18 shows
the critical limit strains predicted with the intigsted class of bifurcation criteria.
Although the limit strain predictions given by tl3 and LPB criteria coincide for the
studied material, which is also the case for thedjotions yielded by the LSE and LE
criteria, the theoretical classification establghe the previous Section remains well
respected. More specifically, the GB criterion agppeas a lower bound to all the
bifurcation criteria, in terms of prediction of kg, while the LE criterion provides an
upper bound. Similar results have been found indAlderaim et al. (2014a), where a
three-dimensional formulation for the bifurcatiomiteria, combined with a fully
coupled elastigplastic-damage model, has been applied.
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Figure 18. Order of prediction of the limit strains, as yietbby the different

bifurcation criteria, for the DC06 mild steel.

Effect of convective stress components

The effect of the convective stress componentdherptediction of the critical necking
strains is analyzed in this subsection for the D@l steel (see Table 9 for the
associated material parameters). These so-callecective stress components originate
from the large strain framework and enter the esgiom of the tangent modulls (see
tensors T,, T,, and T, involved in Eq. (38)). It is worth noting that whehe

convective stress components are disregarded, vwdoglesponds to adopting a small
strain framework, the tangent modulusreduces to the elastiglastic tangent modulus

C® (see Egs. (31) and (38)).
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Figure 19 shows the effect of the convective stismponents on the predicted
necking strains. These simulation results revea, ttor the GB and LPB criteria (see
Figure 19(a) and (b)), the convective stress coraptnplay a significant role in the
prediction of diffuse necking for the full rangegifain paths investigated. Indeed, these
convective stress components have a major deziabileffect, thus precipitating early
occurrence of diffuse necking. This destabilizifige proves to be more important for
strain paths in the neighborhood of the uniaxiatile loading path (i.e., left-hand side

of the predicted diffuse necking curve).

With regard to the LSE and LE criteria, the conixecktress components also reveal
a considerable effect on the prediction of localinecking(see Figure 19(c) and (d)).
More specifically, when the convective stress congmds are taken into consideration,
the corresponding localization predictions are Imslefor both localization criteria. The
observed decrease in the predicted limit straimsush more significant in the left-hand

side of the FLD, while a smaller effect can st bbserved in the range of positive

biaxial stretching (i.e., around plane-strain tensiﬁD[O, 0.153). For strain paths

located in the neighborhood of the balanced biabeakile loading path, the effect of

convective stress components is negligibly smalbfuth localized necking criteria.
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Figure 19. Effect of convective stress components on theigtied of necking strains
for the DC06 mild steel using (a) GB criterion, iBB criterion, (c) LSE criterion, and
(d) LE criterion.

It is worth noting that, in a recent work (Mansoetial., 2014), a similar study has

been conducted using the GursduwergaardNeedleman damage model for porous

materials combined with the LE criterion, withiretframework of large strains and a

60



fully three-dimensional formulation. In the lattémvestigation, the effect of the
convective stress components on strain localizatias been found to be negligibly
small, for the full range of strain paths considerehese observed differences, in terms
of the impact of the convective stress componentshe localization predictions, are
clearly attributable to the fully three-dimensiof@amulation used in the former study,

as compared to the plane-stress approach adoptied aurrent contribution.

Effect of prestrain

In this subsection, the impact of strain-path clksngn the prediction of strain
localization is analyzed by considering two typégestrain, namely a 5% uniaxial
tensile prestrain (UT prestrain) and a 5% balanbexial tensile prestrain (BBT

prestrain). The direct FLDs (without prestrainyegi by the LSE and LE criteria, are
compared to sequential FLDs obtained after applyimg UT and BBT prestrain,

respectively. The predicted direct and sequentiid-are reported in Figure 20, for the
DCO06 mild steel studied in the previous subsectidige obtained results show that,
with respect to the direct FLD, the sequential Flabs translated to the left, for the UT
prestrain, and to the right, for the BBT prestrdihis prestrain effect on the prediction
of FLDs is consistent with previously reported istigations (see, e.g., Franz et al.,
2009; Haddag et al., 2009; Mansouri et al., 20d4here different constitutive equations
have been combined with the LE criterion.
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Figure 20. Effect of prestrain (5% uniaxial tensile prestramd 5% balanced biaxial
tensile prestrain) on the prediction of the FLDstfee DC06 mild steel, using (a) LSE

Conclusions

criterion, and (b) LE criterion.

In this work, a phenomenological elasfiastic model, coupled to the Lemaitre

isotropic damage approach, has been combined Vagtipinstability criteria based on

bifurcation theory to predict the occurrence offudie and localized necking in thin

sheet metals. The resulting numerical tool has mplemented into the finite element

software ABAQUS/Standard via user-defined matesidbroutines. For the prediction

of diffuse and localized necking, four bifurcatibased criteria have been considered:

GB and LPB for diffuse necking predictions, and L&kd LE for localized necking

predictions. This class of bifurcation criteria Heeen first formulated within a general

large strain and fully three-dimensional framewofken, plane-stress, respectively,

small strain versions for the bifurcation critehave been derived from the general,
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large strain, fully three-dimensional formulatidvioreover, in the case of small strain
framework, an analytical indicator correspondingtite singularity of the analytical
tangent modulus is derived for the prediction dfugie necking, which is an alternative
to the LPB criterion when specialized to the snséddin framework. For this class of
bifurcation criteria, a theoretical classificatibas been established, which reveals that
the GB criterion is the most conservative (intetgreas a lower bound), while the LE

criterion is the less conservative (thus providamgupper bound).

Before applying the proposed approach to the ptiediof critical necking strains in
the context of thin sheet metals, some numericgdsssnents have been undertaken for
validation purposes. The bifurcation criteria asllvas the condition given by the
analytical critical hardening modulus have beendea#d within the framework of
small strains and plane-stress conditions, by coimgpathe predicted results with
reference predictions taken from the literaturethiii the framework of large strains
and plane-stress conditions, the GB and LPB caiteave been validated with respect to
the maximum force criterion (Swift, 1952), in thase of rigid-plasticity with a von
Mises yield surface and various isotropic hardemmgdels. The orientations of the
localization band obtained with the LSE and LEecié have also been verified and
found in good agreement with those given by thé'32illocalized necking criterion.
Using the above class of bifurcation criteria, tngical limit strains, corresponding to
the occurrence of diffuse and localized neckingdddC06 mild steel material, have
been numerically determined. The GB and LPB catprovide the same predictions for
the occurrence of diffuse necking for the studieatanal. Quite similar trends have
been observed in the prediction of localized neghkising the LSE and LE criteria.
Throughout the simulations, the numerical preditioconsistently confirmed the

hierarchical classification for the bifurcation teria, which was preliminarily
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established theoretically on the basis of matheraltirguments, in both situations of

small strain and large strain frameworks.

The sensitivity of the predicted necking straingpplication of a prestrain as well as
to the so-called convective stress componentsleadaen investigated. With regard to
the convective stress components, which arise fitwenlarge strain framework, their
effects on the prediction of necking have been doujuite significant (i.e.,
destabilizing), thus promoting early occurrencenetking. Finally, the well-known
effects of prestrain on strain localization preidics have been systematically observed,
consistent with previously reported results in titerature, which demonstrates the
capability of the current approach in capturing tha@n effects characteristic of strain-
path changes.

Although in the present contribution the proposepraach has been applied to
fictitious materials for theoretical classificatipuirposes, it can be used in future work
with realistic material parameters, which should ibdentified at large strain with
appropriate mechanical tests, in order to prediet dccurrence of necking in actual

materials.
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