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Some applications of compressed sensing in computational
mechanics: model order reduction, manifold learning, data-driven
applications and nonlinear dimensionality reduction

R. Ibañez1 · E. Abisset-Chavanne2 · E. Cueto3 · A. Ammar4 · J. -L. Duval5 · F. Chinesta6

Abstract
Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient
one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to reconstruct a signal at less
than 2Q samplings per second, where Q stands for the highest frequency content of the signal. This property has, however,
important applications in the field of computational mechanics, as we analyze in this paper. We consider a wide variety
of applications, such as model order reduction, manifold learning, data-driven applications and nonlinear dimensionality
reduction. Examples are provided for all of them that show the potentialities of compressed sensing in terms of CPU savings
in the field of computational mechanics.

Keywords Compressed sensing · Model order reduction · Manifold learning · Nonlinear dimensionality reduction

1 Introduction

Model Order Reduction (MOR) is acquiring an utmost
importance for simulation-based engineering. These tech-
niques allow solving efficiently complex mathematical mod-
els, thanks to the use of adapted approximation bases
to describe their solutions. Among the numerous existing
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MOR techniques, Proper Orthogonal Decomposition (POD),
Proper Generalized Decomposition (PGD) and Reduced
Basis (RB) are largely considered in a variety of applications
[13].

Proper Orthogonal Decomposition is a general technique
to extract the most significant characteristics of a system’s
behavior and to represent them in a set of optimal “PODbasis
vectors”. These basis vectors provide an efficient (typically,
low-dimensional) representation of the essential features of
the system behavior, which has proven useful in a variety
of ways. The most common use is to project the solution
of the governing equations onto the reduced-order subspace
defined by these POD basis vectors. This yields an explicit
POD reducedmodel that can be solved instead of the original
system. The POD basis can also provide a low-dimensional
description on which to perform parametric interpolation,
infill missing or “gappy” data, and perform model adapta-
tion. There is an extensive literature and POD has seen broad
application across fields. Some review of POD and its appli-
cations can be found in [4,43].
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Reduced Basis techniques employ an approximation basis
constructed by combining a greedy algorithm and a poste-
riori error indicators. As for the POD, the Reduced Basis
method requires some amount offline work, but then the
reduced basis model can be used online for solving differ-
ent models with control of the solution accuracy, because the
availability of error bounds. When the error is unacceptably
high, the reduced basis can be enriched by invoking a greedy
adaption strategy. Useful review works on the subject are
[37,38,40].

Finally, there exist techniques based on the use of sep-
arated representations, at the heart of the so-called Proper
Generalized Decomposition methods. Such separated rep-
resentations are considered when solving at-hand partial
differential equations by employing procedures based on
the separation of variables. They were already considered in
quantum chemistry to approximate multidimensional quan-
tum wave-functions, e.g., Hartree–Fock and post-Hartree–
Fock methods. In the 80s, Pierre Ladeveze proposed the use
of space-time separated representations of transient solutions
involved in strongly nonlinear models, defining a non-
incremental integration procedure [27,28]. Later, separated
representations were employed for solvingmultidimensional
models suffering the so-called curse of dimensionality [1,2]
as well as in the context of stochastic modeling [36]. Then,
they were extended for separating space coordinates mak-
ing possible the solution of models defined in degenerated
domains, e.g. plate and shells [5] as well as for addressing
parametric models where model parameters were considered
as model extra-coordinates, making possible the offline cal-
culation of the parametric solution that can be viewed as a
metamodel or a computational vademecum, to be used online
for real time simulation, optimization, inverse analysis and
simulation-based control (see [15] for a recent review). Some
recent reviews concerning the PGD can be found in [11,14].

These techniques improved traditional strategies based on
DoE (Design of Experiments), that allowed defining meta-
models, surrogate models or response surfaces. In these
cases, experiments or expensive computational solutions are
performed for a sampling of possible states of the system,
from which a simplified model linking the inputs to the out-
puts of interest is elaborated. Themain difficulties associated
to this procedure concerns the best sampling strategy and the
most adequate interpolation scheme for making prediction
everywhere in the design space from the only knowledge of
the few analyzed scenarios. Latin hypercube and Kriging are
two usual responses to these questions. However, other ques-
tions remain, such asmodel verification (error estimation and
bounds) as well as the definition of adaptive strategies able
to reduce such error locally or globally. Even if there is a
panoply of proposals and applied strategies, most of them
are problem-dependent and fail to be robust and reliable. As
just indicated, model order reduction established routes to

achieve similar goals while circumventing the main issues
just indicated, to finally define a “numerical or graphical
handbook”, constructed offline and efficiently used online
for robust design purposes.

Even if, as just indicated, MOR technologies facilitate
better approaches, their main difficulty is that they remain
often too intrusive. Nowadays, the most recents works con-
cerning MOR techniques focus on non-intrusive algorithms.
However, from a pragmatic point of view, all these proposals
remain less direct than usual DoE methodologies, the last
simply consisting of evaluation the model at different points
if the design space by using standard commercial solvers
(adapted to the problem at hand) and then simply interpolat-
ing these solution to any other point. Despite the conceptual
difficulties just referred, the procedure is very simple and
attracted the favor of engineers, designers and practicians.

Thus, the big picture could be formulated as follows: could
direct sampling lead to a robust and reliable parametric solu-
tion?

The answer to this question has been traditionally
addressed in a variety of ways. First, response surface based
methodologies (e.g. [8] and references therein) proposes a
sort of adaptive procedure when the model is refined by
zooming-in when solution approaches to the optimal solu-
tion with respect to a given couple model / optimization
criterion. However, such a procure requires an amount of
online computation because the fine representation is not a
priori available and it must be constructed online during the
optimization process.

Other possibility consists in reconstructing the unknown
solution everywhere from the only knowledge of the calcu-
lated scenarios by making use of adequate interpolations:
polynomials or POD-based modes (inspired from the gappy-
POD formulations [17]). Reduced Basis perform this job
offline: it extract a basis in which the model solution is pro-
jected. This projection is then solved online. However, one
could imagine using directly the offline computed solution
for interpolating it everywhere. The main advantage of this
procedure lies in the fact that in the RB framework the sam-
pling points (as indicated above) are determined from an
adequate “a priori”—ormore generally “a posteriori”—error
indicator, defining a sort of greedy strategy that samples the
space at (almost) optimal points. The main drawback is that
very often the definition of those error indicators requires
some deep knowledge of the considered model and it is not
evident for many complex engineering problems. It is impor-
tant to note that the fact that extracting the basis for projecting
the problem solution and solving online the reduced problem
offers higher precision that the option of directly interpolat-
ing the sampled solutions.

Close to the methodology just described, Borzacchiello
et al. [6,7] proposed the use of hierarchical approximation
bases, making possible that at each level of representation



only the contribution from the previous level to the present
one must be calculated. This strategy allows defining simple
error indicators and refine adaptively the parametric domain.
Similar strategies, all them inspired of sparse-grids [10]
methodologies can be combined with the use of wavelet rep-
resentations in order to profit their inherent multi-resolution
properties, that provide natural error indicators associated
with the weights of the wavelet coefficients at each repre-
sentation level [30]. This techniques allows even addressing
multi-parametric models in a moderate number of dimen-
sions.

More recently, the authors proposed a novel technique
based on the use of sparse identification and Proper General-
ized Decompositions [22]. In it, models established in up to
ten dimensions are identified with a minimum of data thanks
to the sparse structure of PGD and its ability to overcome the
curse of dimensionality.

It is at this point important to note that interpolation is
a tricky issue when the solution defines a slow manifold
embedded in the whole space. In that case to define safe
interpolation one must proceed by interpolating on the mani-
fold. Within the MOR framework, Farhat was one of the first
to claim this necessity [3]. In [3,19,21,31,34,35] manifold
learning was used (using nonlinear dimensionality reduc-
tion strategies [29,32,39]) to extract latent parameters and the
structure of the solution manifold in order to define accurate
interpolations. It has also been employed for the construc-
tion of reduced models operating on the manifold, to define
parametric solutions on it, or simply to define successfully
data-driven computational mechanics applications. In these
last cases, traditional constitutive equations were replaced by
a manifold consisting of collected data.

In the present paper we address the problem of the recon-
struction of a parametric solution from a coarse sampling, but
from a different perspective. Compressive sensing provides
a solid framework for performing random samplings. There
is a vast literature on compressive sensing, extensively used
in data and image analysis (see [25,26,33] and the references
therein). It has recently attracted the interest of the model-
ing and simulation scientific communities to works like [9].
In what follows we first revisit the main concepts related to
compressive sensing. Then in Sect. 3 we apply such ideas to
random sampling of parametric models. Section 4 presents
and discusses some other applications related to data-driven
simulations and hyper-reduction techniques.

2 Overview of compressed sensing

Most of nonlinear dimensionality reduction techniques con-
sider least-squares fitting of the data. However, compressed
sensing is based in the use of the L1 norm instead. As
described in [26], there is a subtle link between sparsity and

the use of the L1 norm. When considering curve fitting, the
use of standard L2 norms magnifies the importance of outly-
ing points because of the squared norm. The impact of these
outlying points in the fitted curve can be significant.

In the same spirit, the solution of underdetermined alge-
braic systems is a tricky issue because they represent an
infinite number of solutions. As illustrated in [26], the use
of the pseudo-inverse produces a fully populated solution
vector whereas when considering the “Matlab” backslash,
the obtained solution contains many zero entries, so that it
results to be sparse. When solving the problem with L2 and
L1 optimizations (trying to obtain the minimum norm solu-
tion), the former becomes much less sparse than the last. In
the case of overdetermined systems the same tendencies can
be observed.

Thus, from a purely engineering viewpoint, L1-norm can
be associated to sparsity. For this reason the L1 norm was
considered as an appealing candidate for addressing signal
reconstruction. It is able to overcome the Nyquist–Shannon
sampling theory that states that for recovering a signal,
one must sample at twice the rate of the highest frequency
involved in the signal.

Let us consider a vector f , in the usual space or time
domains, and its counterpart in a domain in which it should
accept a sparse representation, i.e., its vector counterpart c
contains many zeros. These spaces are in general the ones
related to frequency (Fourier or discrete cosines transforms)
or the ones related tomulti-resolution wavelets, amongmany
other possible choices. We denote by T the matrix making
possible this discrete transformation, i.e.,

Tc = f . (1)

Since vector c is expected to have many zero entries (as
soon as it corresponds, by assumption, to a space inwhich the
signal becomes sparse), one could expect that its expression
could be determined by employing only some rows of matrix
T and vector f . This implies solving the resulting underdeter-
mined system making use of a L1-norm based optimization.

The choice of such rows can be made in different ways.
However, the most usual one consists of a random selection.
From a matrix perspective, such extraction simply consists
of defining a diagonal matrix, with unit entries at the rows we
want to extract. If the set of rows to be extracted is denoted
by S, the extraction matrix E is defined from

{
Eii = 1 if i ∈ S,

Ei j = 0 otherwise.

Rows containing only zeros are then eliminated from the
matrix, thus generating a rectangular one, here denoted as E.

The solution of problem (1) can thus be approximated by
that of the underdetermined system



ETc = Ef, (2)

by using a L1-norm based optimization.
In sum, the two main ingredients sparse sampling are: (i)

the use of an adequate space in which the solution of the
problem at hand is expected to exhibit sparsity, and (ii) the
solution of the underdetermined problemby using a L1 norm.

Compressed sensing is at the origin os the so-called “single
pixel camera”. In it, instead of acquiring the global image
information, i.e., a pixel vector f , to be then compressed,
only a few of its entries are acquired, namely Ef . As soon as
vector c is calculated by solving Eq. (2), the whole solution
can be reconstructed from Eq. (1).

In the sequel, to solve the system of Eq. (2) we have
preferred to employ the least absolute shrinkage and selec-
tion operator, LASSO, method [42]. Just as a recall, LASSO
solves a minimization problem that involves an L2- min-
imization of the system of equations plus a penalty term
involving a L1-norm of the unknown field,

min
c

(||ETc − Ef ||2L2 + λ||c||L1).

This simple modification of the original compressed sensing
procedure has revealed to avoid some of the numerical prob-
lems associated with the solution of an under-constrained
system, providing a new coordinate system such that the
solution is sparse. Its performance will be analyzed in Sect. 6
below.

3 Obtention of parametric models by
compressed sensing

As discussed in the introduction, parametric solutions of the
type u(x, t,μ)—where μ represents the set of parameters
in the problem—obtained by the (off-line) application of
PGD techniques are extremely valuable for conducting (on-
line) real-time simulations as well as optimization, inverse
analysis, simulation-based control and uncertainty propaga-
tion under real-time constraints [12,16]. However, the PGD
constructor is strongly invasive with respect to the use of
commercial simulation codes. To circumvent or, at least, alle-
viate such a constraint, sampling of the parametric space and
a subsequent interpolation of these samples could be an alter-
native route. However, by making it in the original space
the sampling becomes sometimes too dense to capture the
richness or as consequence of the Nyquist theorem. As just
discussed in the previous section, compressed sensing by-
passes such difficulties in many cases.

In order to illustrate the proposed procedure, we consider
the parametric heat equation

Fig. 1 Parametric solution u(x, κ) of Eq. (3)

κ
∂2u

∂x2
= s, in �x = (0, L = 1), (3)

with κ the thermal conductivity, s = 1 the source term
(assumed constant in the space domain), and with bound-
ary conditions u(x = 0) = 0 and u(x = L) = 1.

We are interested in solving this thermal model for any
thermal conductivity κ ∈ �κ = [0.1, 1.5]. Solving it using
the standard PGD approach (for an in-deep discussion of
this problem the interested reader should consult [12,16])
we obtain the solution depicted in Fig. 1. It reveals that,
by increasing the conductivity, the solution becomes flat-
ter, since the generated heat can easily reach the domain
boundaries x = 0 and x = L leaving the domain. Lower
conductivities imply higher temperatures because of the dif-
ficulty of evacuating the produced heat.

In order to show the potential of compressed sensing, we
consider K = 100 coordinates along �κ . From them, we
randomly select Kr = 10 samples, defining the sampling
set S = {κ1, . . . , κKr }. At these particular locations, Eq.
(3) is solved by using standard finite differences or finite
elements. These discrete solutions, consisting of vectors con-
taining nodal temperatures for each choice of the thermal
conductivity are denoted by uk , k = 1, . . . , Kr .

Considering now different nodes in the spatial mesh asso-
ciated to �x , xi , we define vectors fi whose j-th entry reads

fi j = uκ j (xi ).

Vector fi contains K − Kr unknown entries, those related to
thermal conductivities not in the sampling set S. However
this does not constitute a problem, since the corresponding
rows are not affected by the extraction matrix E. Only the
rows with known entries will be extracted.

At this point, by using a wavelet representation to define
the transformation matrix T—in particular, a biorthogonal
3.1 one—, the parametric model at node xi will read

Tci = fi , (4)



Fig. 2 Reference versus compressed sensing based reconstruction of
the nodal solution evolution with the model parameter. Left: Solution
at a given nodal position. Black nodes represent the sampling points.
These are also indicated on the right

or, by extracting the selected entries,

ETci = Efi . (5)

Solving the underdetermined problem using a L1-norm,
we obtain ci , from which the nodal parametric equation can
be reconstructed everywhere from

fi = Tci . (6)

Figure 2 compares the reference and reconstructed solu-
tions at a particular node. We deliberately chose one located
in the center of the domain in order to involve large gradients.
In this figure the sampling nodes are also depicted.

We thus see how by sampling only the ten percent of all
parametric nodal positions we obtain a remarkable accuracy
in the reconstruction of the thermal field. Notably, this strat-
egy allows the use of commercial software to obtain response
surface-like solutions to parametric models and constitutes
an alternative and valuable constructor of meta-models. It
avoids the typical oscillations that polynomial approxima-
tions provokewhen the sampling points are chosen randomly
and do not correspond with the Gauss-Lobatto points. In that
sense, compressed sensing produces solutions closer to the
ones associated with the use of Kriging, that avoids large
oscillations thanks to its statistical nature.

4 Manifold learning

Compressed sensing could also play a fundamental role
in data-driven simulations. For the sake of simplicity, but
without loss of generality, we consider mechanical tests
conducted on a perfectly linear elastic material. Thus, for
M randomly applied external loads, we assume ourselves
able to collect M couples (σm, εm), m = 1, . . . , M . Every
stress-strain couple could be thought of as a single point
Pm in a phase space of dimension D = 12 (the six distinct
components of the stress and strain tensors, respectively).
In the sequel, Voigt notation will be considered, i.e., stress

and strain tensors will be represented as vectors and con-
sequently the fourth-order elastic tensor reduces to a 6 × 6
square matrix.

In the spirit of Locally Linear Embeddings [39], we
assume that every point on the constitutive manifold can be
linearly approximated, within a small enough neighborhood,
as a function of the M available data. In other words,

Pm =
M∑
i=1

WmiPi ,

with Wmi = 0 if i /∈ Sm (the set containing the K -nearest
neighbors of Pm). By minimizing the functional

H(C) =
∑
i∈Sm

(σ i − Cεi )
2.

we obtain the secant elastic behavior C(Pm) ≡ Cm . The stan-
dard weak form of the equilibrium equation will be therefore

∫
�

ε∗(x) : σ (x) d� =
∫

�N

u∗(x) · t(x) d�, (7)

that can be rewritten as [24]

∫
�

ε∗(x) · (C(x)ε(x)) d� =
∫

�N

u∗(x) · t(x) d�.

This weak form allows us to solve the mechanical problem at
one of the iterations of the nonlinear solver. Other discretiza-
tion alternative strategies were discussed in [24].

However, as previously argued, prior to proceed with the
calculations summarized above, one must accomplish the
construction of the so-called constitutive manifold. In [24]
the authors considered an inverse approach that assumed a
tentative constitutive manifold. From it, a complex mechan-
ical test was simulated and the strain prediction compared
to data coming from an experimental field measurement.
From the measured gap between predictions and experimen-
tal results, the constitutive manifold is updated providing a
new strain prediction. The process continues until conver-
gence is reached. In other words, until the fixed point of
the data-driven inverse strategy is found. We proved in [24]
the capability of such a method to identify the constitutive
manifold associated to nonlinear elasticity. However, its gen-
eralization to more complex behaviors—like those involving
internal variables—seems technically complex [20,23].

One possible route to explore consists in making use of
well-experienced experimental methodologies. These were
often developed for calibrating constitutive equations by test-
ing coupons subjected to simple stress states. These tests
are very well understood and offer valuable information
for calibrating complex constitutive equations. However, by



Fig. 3 Reference (left column) versus compressed sensing based recon-
structed behaviormanifold (right column).Redpoints indicate sampling
locations. (Color figure online)

restricting to them, the constitutive manifold remains mostly
unexplored, since too sparse information is accessible.

It is at this point that compressed sensing seems to offer a
valuable opportunity. Indeed, if the constitutive manifold is
viewed as a sort of image of the phase space of the material,
a small quantity of data points could be enough to deter-
mine the whole manifold. A parallelism could be established
with the so-called single pixel camera, following the rationale
described in Sect. 2 [26].

To evaluate the performance of such a procedure, we con-
sider a hypothetical nonlinear plane-stress elastic behavior,
that in Voigt notation reads

C = E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ , (8)

with the elastic coefficients given by

{
E = E0 + E1Tr(ε)

ν = ν0 + ν1Tr(ε)
,

with E0, E1, ν0 and ν1 positive constants, and where Tr(•)

refers to the trace operator acting on tensor •. In the numer-
ical example discussed below the material coefficients were
selected as E0 = 10, ν0 = 0.1, E1 = 10 and ν1 = 0.1.

We considered different strain couples (εxx , εyy) and
determine from the constitutive Eq. (8) the associated stress
couples (σxx , σyy). Figure 3 depicts the reference solutions
and the considered points (in red) that served to reconstruct
the approximated manifold from the compressed sensing
rationale.We do not considered the off-diagonal components
because they define a one-dimensional manifold that is quite
simple to approximate, as proved in the previous section.

It can be noticed that, despite the small number of
sampling points, the reconstructed constitutive manifold
reproduces accurately the reference solution, thus constitut-
ing an excellent candidate to perform few iterations of the
data-driven inverse strategy described in [24] to improve it.
Obviously, an advantage of the methodology here described
is the possibility to update the reconstructed solution as soon
as new data-points are available from testing facilities able to
explore new regions of the constitutivemanifold. In any case,
sparse sampling within the compressed sensing framework
appears as a valuable option in data-driven computational
mechanics applications.

5 Model order reduction

We consider a last possible application of compressed sens-
ing. It concerns the application to model order reduction,
particularly in its hyper-reduction variant, revisited below.

Standard discretization of a given model in the form of a
PDE equipped with suitable initial and boundary conditions
leads to a linearized system

KU = G, (9)

where, as usual, K represents the tangent stiffness matrix, U
a vector containing the nodal degrees of freedom, and G the
nodal force vector.

When considering a reduced basis—based on the appli-
cation of POD or RB methodologies, for instance—, the
unknown vector U can be projected onto the reduced basis
according to U = Bu. The size of vector u is in general
much smaller than the size of the original unknown vec-
tor U. Here, B represents the basis transformation matrix,
whose columns are the nodal description of the approxi-
mation functions involved in the reduced basis. Thus, the
original algebraic system can be rewritten as

KBu = G,

that premultiplying by the transpose ofB leads to the reduced
system

BTKBu = BTG = g,

that can be viewed as aGalerkin discretization operatingwith
the reduced basis instead of the one related to the usual finite
element approximation.

However, Ryckelynck noted that since the size of vector
u is reduced, one could consider only a few equations for
computing it, and called the technique hyper-reduction [41].



Thus, he suggested to perform integration only in some par-
ticular elements of the mesh, thus leading to a matrix Khr

(where the superscript refers to its hyper-reduced nature),
whose majority of rows are actually not evaluated and thus
populated by zeros. However, the resulting reduced system
BTKhrB is invertible. Ryckelynck studied is his works dif-
ferent strategies to choose the best elements in which to
perform integration, andmany other authors proposed differ-
ent alternativeswith a similar objective. It is also important to
note that BTKhr could be expressed as BPG,TK, with BPG

ensuring the equivalence BPG,TK = BTKhr , that allows
us to interpret the hyper-reduction as a Petrov-Galerkin for-
mulation. Advanced hyper-reduction methodologies were
considered by the same authors aswell as by Farhat and coau-
thors [18]. In what follows, we consider a similar procedure,
but now inspired from the compressed sensing rationale.

The starting point is again the original algebraic system
(9) that, by assuming sparsity in a target space (e.g. discrete
cosines, Fourier, wavelet, …) for both the source and the
unknown vectors,G andU respectively, allows writing, after
assuming the same target space for both vectors, expressed
from the transformation matrix T,

{
G = TĜ
U = TÛ

,

and consequently

KTÛ = TĜ,

or

T−1KTÛ = Ĝ,

on which the extraction applies.
To show the potential of this proposal we consider again

the discrete system that results from the discretization of a
plane-stress elastic problem. Figure 4 depicts the reference
solution and the one resulting from the reduced formulation
just describedwhen extracting randomly 25%of the involved
equations, proving the potential of the proposed methodol-
ogy.

6 Time-dependent problems

In this section we will develop a space-time approach for the
solution of transient problems with the help of compressed
sensing techniques. We will study three different partial dif-
ferential equations. Namely, steady, transient Poisson and
wave equations will be considered, Eqs. (10), (11) and (12),
respectively:

Fig. 4 Reference versus compressed sensing-based model order reduc-
tion

α�u(x, t) = b(x, t) ∀x ∈ �, (10)
∂u

∂t
− α�u(x, t) = b(x, t) ∀x ∈ �, (11)

and

∂2u

∂2t
− α�u(x, t) = b(x, t) ∀x ∈ �. (12)

These equations must be equipped with suitable Dirichlet
boundary conditions at some part of the boundary ∂�D in
order to make the solution unique. For the sake of simplicity,
but without loosing generality, we will impose homogeneous
Dirichlet boundary conditions at the Dirichlet portion of the
Domain � = [0, 1] × [0, 1], �D ,

u(x = 0, y) = 0.

When dealing with time derivatives, initial conditions
have to be imposed,

u(x, 0) = 0,

and, possibly, in the case of the wave equation also,

u̇(x, 0) = 0.

We will consider a source term that varies in time as,

b(x, t) = A cosωt .

To approximately solve Eqs. (10), (11) and (12), finite
elements in space and finite differences in time have been
used. Therefore, equilibrium for steady/transient Poisson and
wave equations at the i-th time step read



Kui = f i ,
1

�t
M(ui − ui−1) + Kui = f i ,

and

1

�t2
M(ui+1 − 2ui + ui−1) + Kui = f i ,

respectively.
Assume now that we prefer to solve every time step

together. We should write a single system of equations of
the form

Aû = f̂ . (13)

Here,matrixA is a block-diagonalmatrix containing amatrix
K at each block for the steady Poisson case. The first and sec-
ond time derivatives appearing in transient Poisson and wave
equations will generate coupling terms between consecutive
time steps by means of the M matrices. û and f̂ are the con-
catenation of spatial nodal unknowns and forces for every
time step.

Solving directly the system (13) is a legit approach.
Indeed, the usual time-marching approach is recovered.
However, we would like to explore the advantages of com-
pressed sensing. If the unknown field û is projected onto a
new basis enabling a sparse representation, a hyper-reduction
results, as seen in the previous section. Therefore, an under-
determined system needs to be solved by performing a
L1-norm minimization. Thus, we will seek to solve the fol-
lowing system:

EATĉ = Ef̂,

whereT is again the projectionmatrix, andE is the extraction
operator that defines randomly which rows are going to be
selected to perform the L1 minimization. Finally, ĉ are the
unknown coefficients in the new basis. When a time step is
chosen, every spatial node related to this time step is auto-
matically selected to keep spatial global equilibrium.

Since we know that the dependance in time of the source
term was caused by a cosine function, a smart choice for the
projection base in our case is the discrete cosines transform
(DCT). It isworth to say that the choice of the projection basis
is problem dependent. For instance, if our excitation force
evolves as a Heaviside step function, it may be convenient to
use a Haar-wavelet-based projection.

6.1 Numerical performance of the LASSO scheme

The functional that the LASSO algorithm seeks to minimize
does not have a closed-form solution. Hence, an iterative
algorithm has to be used in order to find the minimum of the
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Fig. 5 Relative Tolerance of LASSO method versus solution error in
logarithmic scale. The legend represent the time, in seconds, required
to solve the LASSO minimization. 10 out 75 time steps are sampled

functional, such as a steepest descent method. When using
LASSO, there is a numerical parameter called the relative
tolerance, which controls the maximum admisible difference
between two iterations of the steepest descent method. If the
difference between two iterations is smaller than the rela-
tive tolerance, the iterative algorithm stops. Therefore, the
smaller the relative tolerance, the higher number of iterations
are required, but the solution will be more accurate. Fig-
ure 5 shows the relative tolerance of LASSO method versus
solution error in logarithmic scale. The colors of the points
represent the time, in seconds, required to solve the underde-
termined system by means of LASSO. As it can be noticed,
the lower the relative tolerance, the lower error in the solu-
tion is obtained. Yet, the time to solve the system increases.
The number of spatial snapshots ui to build the LASSO sys-
tem was 10 out of 75 total time steps. The solution error is
measured by

εU = 1

N
||û − ûR ||L2,

where ûR is the reference solution, which is assumed to be
the one of the usual time marching approach. N represents
the number of total unknowns.

At the end of the day, a compromise between the solu-
tion error and computational cost should be accomplished.
The quality of the reconstructed solution depends also on the
number of snapshots. Figure 6 shows the number of snapshots
versus solution error in logarithmic scale. The legend repre-
sents the time required to solve the LASSO minimization.
The relative tolerance is set to 0.8e− 5. Obviously, the more
snapshots ui we consider, the more accurate is the solution
and less time is required to solve the system of equations.

In our cases, a relative tolerance of 1e − 5 provides good
results. If the relative tolerance is set to 1e−6, it will provide



Fig. 6 Number of snapshots versus solution error in logarithmic scale.
The legend represents time, in seconds, required to solve the LASSO
minimization. Relative tolerance set to 1e − 5

Fig. 7 DCT coefficients at a given spatial node with a bad tolerance in
LASSO (Relative tolerance 1e−4)

even better results in terms of error, but it will take more time
to minimize the functional. Figure 7 shows the DCT coef-
ficients solving the entire system of equations (red) and the
ones obtained after minimizing LASSO (blue) with a relative
tolerance of 1e− 4. As it can be noticed, there are some dif-
ferences between the red and blue curves, meaning that the
iterative algorithm has finished before reaching the proper
minimum of the functional. Figure 8 shows how imposing a
smaller tolerance will provide better results. Of course, the
price to pay is that the LASSOminimization takesmore time.

6.2 Numerical results

In this section, several numerical examples involving the
three equations considered in theprevious sectionwill be ana-
lyzed. Sparsity of the new basis will play an important role to

Fig. 8 DCT coefficients at a given spatial node equation with a good
tolerance in LASSO (Relative tolerance 0.8e−5)

Table 1 Parameters employed
in the analysis of Eqs. (10)–(12) Parameter Value

T f , sim. time 0.1

ω 125.6

Number of
time steps

200

α 1

A −100

� [0, 1] × [0, 1]
Spatial dofs 16 × 16

make the LASSO algorithm efficient. Parameters employed
in the solution of Eqs. (10)–(12) are compiled in Table 1.

The first equation to be tested is Eq. (10). The global sys-
tem of equations is uncoupled from time step to time step
due to the fact that it does not involve a time derivative.
Figure 9 depicts the value of u(x = (0.5, 0.5), t) for both an
usual time-marching approach and for a compressed sensing-
based procedure. In this case only 5 time instants out of 200
are considered in the LASSO minimization. As it can be
noticed, the blue curve tends to capture the overall behav-
ior of the red curve (reference solution). However, there are
still some noisy peaks appearing in the blue curve due to
the small number of time instants involved in the computa-
tion. Figure 10 shows the coefficients of the discrete cosines
transform, which is indeed what the LASSO algorithm com-
putes. It can be noticed how some high frequency peaks are
appearing causing the small oscillations in the u field.

The results are better if we increase the number of sampled
time instants up to ten. Figures 11 and 12 show u and c
fields, respectively. It should be highlighted that the high-
frequency peaks are no longer appearing. Furthermore, the
leakage pollution close to the main peak is filtered thanks to
the LASSO algorithm.



Fig. 9 u(x = (0.5, 0.50), t) for steady Poisson’s case. Five time
instants are sampled out of two hundred possible time steps

Fig. 10 c(x = (0.5, 0.50), ω) for steady Poisson’s case. Five time
instants are sampled out of two hundred possible time steps

Fig. 11 u(x = (0.5, 0.50), t) for steady Poisson’s case. Five time
instants are sampled out of two hundred possible time steps

The case of the wave Eq. (12), with a second derivative in
time, is less problematic than the one involving first deriva-
tives only, see Eq. (11), since it forces the response to follow
the loading, whereas the transient Poisson equation involves

Fig. 12 c(x = (0.5, 0.50), ω) for steady Poisson’s case. Five time
instants are sampled out of two hundred possible time steps

Fig. 13 u(x = (0.5, 0.50), t) for the wave equation. 30 time instants
are sampled out of two hundred possible time steps

diffusion. Therefore, we will expect a sparser solution than
in problem (11).

Figure 13 shows the u field for the wave equation case.
Since the source term is a cosine function, the response of
the system is also a cosine. Furthermore, the system must be
initialized with a non-homogeneous initial condition. Other-
wise, compatibility conditions of the timemarching approach
will no longer be satisfied. Figure 14 shows the DCT coeffi-
cients c for the wave equation case. As it can be noticed, the
first coefficient accounts for a solid rigid-like translation (i.e.,
the cosine is not centered in 0) and the other peak coincides
with the frequency of the source term.

Figures 15, 16, 17 and 18 show the expected behavior:
imposing a cosine in the source term with a first time deriva-
tive will cause a sinusoidal response, which is not sparse in
the projected base, due to the diffusion effects. Hence, more
time instants need to be taken into account in order to achieve
an accurate result.



Fig. 14 c(x = (0.5, 0.50), t) for the wave equation. 30 time instants
are sampled out of two hundred possible time steps

Fig. 15 u(x = (0.5, 0.50), t) for transient Poisson’s case. 100 time
instants are sampled out of two hundred possible time steps

Fig. 16 c(x = (0.5, 0.50), t) for transient Poisson’s case. 100 time
instants are sampled out of two hundred possible time steps

7 Conclusions

In thisworkweexploreddifferent applications of compressed
sensing in computational mechanics. First, we proved that it

Fig. 17 u(x = (0.5, 0.50), t) for transient Poisson’s case. 150 time
instants are sampled out of two hundred possible time steps

Fig. 18 c(x = (0.5, 0.50), t) for transient Poisson’s case. 150 time
instants are sampled out of two hundred possible time steps

could be a valuable strategy for performing random sam-
plings to evaluate solutions of parametric models. Then,
inspired from the so-called “single pixel camera”, we ana-
lyzed the use of the compressed sensing methodology to
reconstruct constitutive manifolds from the only knowledge
of a quire reduced number of data-points. Finally, in the pre-
ceding section, we proved that the same methodology can be
employed for reducing significantly the size of the discrete
system of equations that results from the application of stan-
dard discretization techniques defining a new kind of model
order reduction techniques.

All these different application rely on a single technique
and we strongly believe that it will play a very relevant role
in computational mechanics for the years to come.
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