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Influence of the shape on the roughness-induced
transition

J.-Ch. Loiseau, S. Cherubini, J.-Ch. Robinet, E. Leriche

Abstract Global instability analysis of the three-dimensional floasptwo rough-
ness elements of different shape, namely a cylinder and @smpresented. In both
cases, the eigenspectrum is made of modes characteriseddricase symmetry
and localised mostly in the zones of large base flow shear.pfingary instabil-
ity exhibited is the same in both cases and consists in aatemblunstable mode
closely related to streaks local instability. For the cglénhowever, a whole branch
of modes is in addition destabilised as the Reynolds nunstferther increased.

1 Introduction

Delaying transition in spatially developing boundary lajlews has been a long
time challenge. For small amplitude disturbances and sufieal Reynolds num-
bers, the linear stability theory predicts the slow traasiprocess due to the genera-
tion, amplification and secondary instability of Tollmi&ehlichting (TS) waves. It
has been shown recently in Ref.[1] that those TS waves catabiised by stream-
wise streaks. In this experimental work, sub-optimal $tsdsave been created using
a periodic array of cylindrical roughness elements. Dedpi¢ stabilising effect of
the streaks on the TS waves, the flow may undergo transitidarbulence right
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downstream the roughness elements provided the strealstrang enough. This
roughness-induced transition has been extensively iigagstl experimentally by
different authors [2, 3, 4]. For cylindrical roughness edgnts, in the early 60’s,
most of the results available back then have been reviewRefifi5] into one tran-
sition diagram, thus giving an empirical criterion for ts#tion. However, fewer
studies have been carried out on smooth roughness eleraadtshe influence of
the shape of the roughness on the destabilisation processobhget been investi-
gated in detail. Though the mechanism responsible for ittando turbulence in
the flow past a 3D roughness element is not yet fully undedstioés believed that
it is due to an instability of the streaks induced by the rowegs elements. Thus,
in order to investigate the origin of unsteadiness, a glatsthbility analysis on
the three-dimensional flow past a sharp-edged and a smoagihmess element is
performed.

2 Problem formulation

The aim of the present work is to investigate the influencéeshape of the rough-
ness element on the streaks generation further downstileagaith their possible
global instability. Two different kinds of roughness elarteehaving aspect ratio
d/k =2 (whered is the diameter anHd is the maximum height of the roughness),
both mounted on a flat plate, have thus been considered:radogial roughness el-
ement, and a smoother one defined by a cubic cosine funbtions: kcos (rr /d),

r being the distance from the centre of the bump omxthe plane.

The flow past these roughness elements is studied using thiec®mpressible
Navier-Stokes (NS) equations, non-dimensionalised vapect to the maximum
heightk of the roughness and the free-stream velodity therefore, the Reynolds
number is defined aBe= U.k/v, v being the kinematic viscosity. The computa-
tional domain extends from= —15 tox = 90 in the streamwise direction, has a
spanwise extent df, = 16 and wall-normal dimensiadn, = 50 such that the global
stability results are almost independent of the domain. Sihbe Blasius velocity
profile prescribed at the inlek & —15) is chosen such that, in the absence of the
roughness element, one would have a theoretical Blasiusdaoy layer thickness
of &gg =2 atx=0.

The behaviour of an infinitesimal perturbation= (u,p)" superposed to a 3D
steady stat&) = (U,P)T has been studied using a global stability analysis. The
steady base flows have been computed using the selectiveefregidamping (SFD)
approach introduced in Ref.[6]. The following boundary dibions have been ap-
plied: at the inlet, the Blasius boundary layer velocity fppeois imposed for the
streamwise and wall-normal components of the velocity,reagits spanwise com-
ponentis set to zero. At the outlet, a standard outflow boyratandition is used. In
the spanwise direction, periodic boundary conditionsragised for the three com-
ponents of the velocity. At the upper boundary, the stre@womponent has been
set equal tdJ,, and a Neumann condition on the wall-normal direction hanbe
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imposed for the wall-normal and spanwise components of #hecity. Finally, a
no-slip condition is imposed on the flat plate and the rougheéement’s walls.
Once the base flow has been computed, the NS equations aedatearound such
a steady state, leading to a problem of the following type:

Jdu
T Au, Q)
which is subject to the same boundary conditions as preljia@xcept regarding
the inflow and the upper boundaries where a zero-velocitgition is prescribed.
To perform a global stability analysis, one has to compugedigenvalues of the
Jacobian matriXd, which is a hard computational task due to the large number of
degrees of freedom involved. Thus, a time-stepper apprasutiroduced in Ref.[7]
and Ref.[8] has been used, which avoids the explicit stoodgeand direct compu-
tation of its eigenvalues.

All of the calculations were performed using the code NekB@). Spatial discreti-
sation is done by a spectral elements method with Lagranlyag@mials of order
N = 8. The convective terms are advanced in time using an extatipoof order 3,
whereas the viscous terms use a backward differentiationdsfr 3 as well.

3 Results and discussion

Figure 1 shows base flows obtained=a= 1000 for both roughness elements con-
sidered. An upstream and a downstream reversed flow regéaghamvn in the right
frames of figure 1 by th& = 0 isosurface (blue). In the left frames, the streaks
induced by the roughness elements, being defined as thdidewéthe base flows
from the Blasius velocity profiléJg as in Ref.[4], are plotted. These flows share
similar features: five streaks can be observed, two podjied) and three nega-
tive (green) ones. These are induced by the presence ofyghanseshoe vortices
wrapped around the roughness elements, whose legs tramtispdow and high-
momentum flow upwards and downwards in the boundary layegsd@tounter-
rotating vortices induce the two outer pairs of streaks,r@agthe central low-speed
one is due to the streamwise velocity deficit induced by tlughmess element.
Though their main structure is similar, some differencesfaund between the two
flow fields. Indeed, for the case of the bump: (i) the sepanatane is smaller than
for the cylinder; (ii) the horseshoe vortex wrapping arotimel roughness element
is much more spanwise-localised, its legs being weaker lséicone to the other;
(iii) the streaks are weaker and quickly fade away downstregthe roughness el-
ement, whereas for the cylinder they appear to sustain orch longer streamwise
extent.

The eigenspectra obtained for the cylinder cas®at= 800 andRe= 1000
are provided in Figure 2 (a) and (b), respectively.R¢= 800, one can observe
a single isolated eigenvalue lying almost on the neutra.&ightly increasing the
Reynolds number drives the most unstable mode to move tevthedupper-half
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Fig. 1 Base flows computed &e= 1000 in the presence of a cylinder (top) and a bump (bottom).
The left frames show positive (red) and negative (greeriqses olUs; =U —Ug, with Ug; = +0.1
(top) andUg; = +£0.05 (bottom); the right frames show isosurfaces oflthe- O contour (blue),
highlighting the separation zone, and the Q-criteriondgrdorQ = 0.1).

complex plane, so that the flow becomes globally unstabReat~ 805. Further
increasing the Reynolds number yields a whole branch ofngajaes to move in
the upper-half complex plane, as shown in Figure 2 (bRex= 1000.

Regarding the bump, a similar behaviour has been foundr&iguyc) shows the
eigenspectrum obtained fdte= 800. As previously, a single isolated mode is
observed within the lower-half complex plane. When the Ré&y® number is in-
creased this eigenvalue moves upwards, reaching the tjaifeof the complex
plane atRe; =~ 891 as shown on figure 2 (d).
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Fig. 2 Eigenspectra obtained for the flow past a cylinder \Reh= 800 (a) andRe= 1000 (b), and
for the flow past a bump witRe= 800 (c) andRe= 1000 (d).

As to get some insights on the instability mechanisms, thpsiof the two unsta-
ble global modes is closely looked at. Figure 3 provides treamwise component
of the velocity for the most unstable eigenmode obtainétkat 1000 for the cylin-
der case (left) and the bump one (right). These global moeelsath characterised
by streamwise alternated patches of positive/negativecitgl developing mostly
along the central low-speed streak, showing a symmetry nggpect to the =0
plane. For the cylindrical element, the wave packet is mlagell downstream of
the roughness element, in a region where the streaks arelexdloped and quasi-
parallel. On the other hand, in the bump case, the most uastegenmode is placed
closer to the roughness element which is concordant withwiseker streaks and
gradients induced by the bump as well as their smaller stréserextent.

The location and structure of the spatial support of the raastable modes with
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respect to the base flow streaksRe= 1000 are shown in figure 4 (a) and (b) for
both cases, respectively. For the cylinder case, the swesmvelocity contours of
the eigenvector (shaded contours) and of the base flow (#udis) are provided in
thex = 25 plane. The strong deformation of tbe= constcontours indicates the
large amplitude of the streaks. The zones of maximum angdibf the eigenvec-
tor are localised on the flanks and the top of the streaks, evtner spanwise and
wall-normal shears are the largest. A similar behaviourbiseoved for the bump
case, as shown in figure 4 (b). As indicated by the deformatfdhe U = const
contours in thex = 15 plane, the streaks are weaker and much more localised in
the spanwise direction. The spatial structure of the eigetor is similar to the one
recovered for the cylinder, showing a mushroom-shapedrthiahce on top of the
central low-speed streak, with maximum velocity valuesated in the zones of
maximum base-flow shear. However, the spatial support afnibée is much more
compact in the spanwise direction.

These locations seem to indicate that these unstable gioiidés might be linked
to a streak instability similar to the one recovered for par@ptimal streaks in
Ref.[10] and that the instability mechanism might be reldtethe transport of the
base flow shear by the perturbation. It is noteworthy thatprallel streaks, the
primary instability is of sinuous type, whereas in the presmse it is of varicose
type. However, one must note that for thinner roughnessaisnnot presented
here) similar sinuous instabilities have also been re@uiérhe present results also
confirm that, for large roughness elements, varicose getions are the most dan-
gerous ones, as also highlighted by a global transient grandlysis in Ref.[11].

(@ (b)

Fig. 3 Streamwise velocity component of the eigenvector of thetmpstable mode obtained at
Re= 1000 for the cylindrical roughness element (a) and the simooé (b).

4 Conclusion

The flows past two roughness elements, a cylindrical and E-@adsine one, have
been investigated. The cylindrical roughness elementdesigtrong streaks which
appear to be well sustained in the streamwise directionyeesein the bump case
the streaks are weaker and eventually fade away. In botfs,casgobal stability
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Fig. 4 Shaded contours of the streamwise component the most ismstalle for the cylindrical
roughness element in the plare= 25 (a) and the cubic-cosine-shaped one at 15 (b) with
Re= 1000. The solid lines are the base-flow streamwise velooityaurs in the rang@.1,0.9].

analysis of the three-dimensional steady base flow has l@@gadout. In all of the

cases considered, the spectra are composed by modes ehaeatcby a varicose
symmetry, mostly localised in the zones of large base flovarshrd related to an
instability of the quasi-parallel streaks. Finally, thé&ical Reynolds number being
higher for the smooth bump than for the cylindrical rouglnelement might be
related to the weaker amplitude of the induced streaks ifottmeer case.
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