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Influence of the shape on the roughness-induced
transition

J.-Ch. Loiseau, S. Cherubini, J.-Ch. Robinet, E. Leriche

Abstract Global instability analysis of the three-dimensional flow past two rough-
ness elements of different shape, namely a cylinder and a bump, is presented. In both
cases, the eigenspectrum is made of modes characterised by avaricose symmetry
and localised mostly in the zones of large base flow shear. Theprimary instabil-
ity exhibited is the same in both cases and consists in an isolated unstable mode
closely related to streaks local instability. For the cylinder however, a whole branch
of modes is in addition destabilised as the Reynolds number is further increased.

1 Introduction

Delaying transition in spatially developing boundary layer flows has been a long
time challenge. For small amplitude disturbances and supercritical Reynolds num-
bers, the linear stability theory predicts the slow transition process due to the genera-
tion, amplification and secondary instability of Tollmien-Schlichting (TS) waves. It
has been shown recently in Ref.[1] that those TS waves can be stabilised by stream-
wise streaks. In this experimental work, sub-optimal streaks have been created using
a periodic array of cylindrical roughness elements. Despite the stabilising effect of
the streaks on the TS waves, the flow may undergo transition toturbulence right
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downstream the roughness elements provided the streaks arestrong enough. This
roughness-induced transition has been extensively investigated experimentally by
different authors [2, 3, 4]. For cylindrical roughness elements, in the early 60’s,
most of the results available back then have been reviewed inRef.[5] into one tran-
sition diagram, thus giving an empirical criterion for transition. However, fewer
studies have been carried out on smooth roughness elements,and the influence of
the shape of the roughness on the destabilisation process has not yet been investi-
gated in detail. Though the mechanism responsible for transition to turbulence in
the flow past a 3D roughness element is not yet fully understood, it is believed that
it is due to an instability of the streaks induced by the roughness elements. Thus,
in order to investigate the origin of unsteadiness, a globalinstability analysis on
the three-dimensional flow past a sharp-edged and a smooth roughness element is
performed.

2 Problem formulation

The aim of the present work is to investigate the influence of the shape of the rough-
ness element on the streaks generation further downstream along with their possible
global instability. Two different kinds of roughness elements having aspect ratio
d/k = 2 (whered is the diameter andk is the maximum height of the roughness),
both mounted on a flat plate, have thus been considered: a cylindrical roughness el-
ement, and a smoother one defined by a cubic cosine function,h(r) = kcos3(πr/d),
r being the distance from the centre of the bump on thex− zplane.
The flow past these roughness elements is studied using the 3Dincompressible
Navier-Stokes (NS) equations, non-dimensionalised with respect to the maximum
heightk of the roughness and the free-stream velocityU∞; therefore, the Reynolds
number is defined asRe= U∞k/ν, ν being the kinematic viscosity. The computa-
tional domain extends fromx = −15 to x = 90 in the streamwise direction, has a
spanwise extent ofLz = 16 and wall-normal dimensionLy = 50 such that the global
stability results are almost independent of the domain size. The Blasius velocity
profile prescribed at the inlet (x = −15) is chosen such that, in the absence of the
roughness element, one would have a theoretical Blasius boundary layer thickness
of δ99 = 2 atx= 0.
The behaviour of an infinitesimal perturbationq = (u, p)T superposed to a 3D
steady stateQ = (U,P)T has been studied using a global stability analysis. The
steady base flows have been computed using the selective frequency damping (SFD)
approach introduced in Ref.[6]. The following boundary conditions have been ap-
plied: at the inlet, the Blasius boundary layer velocity profile is imposed for the
streamwise and wall-normal components of the velocity, whereas its spanwise com-
ponent is set to zero. At the outlet, a standard outflow boundary condition is used. In
the spanwise direction, periodic boundary conditions are imposed for the three com-
ponents of the velocity. At the upper boundary, the streamwise component has been
set equal toU∞, and a Neumann condition on the wall-normal direction has been
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imposed for the wall-normal and spanwise components of the velocity. Finally, a
no-slip condition is imposed on the flat plate and the roughness element’s walls.
Once the base flow has been computed, the NS equations are linearised around such
a steady state, leading to a problem of the following type:

∂u
∂ t

= Au, (1)

which is subject to the same boundary conditions as previously except regarding
the inflow and the upper boundaries where a zero-velocity condition is prescribed.
To perform a global stability analysis, one has to compute the eigenvalues of the
Jacobian matrixA, which is a hard computational task due to the large number of
degrees of freedom involved. Thus, a time-stepper approachas introduced in Ref.[7]
and Ref.[8] has been used, which avoids the explicit storageof A and direct compu-
tation of its eigenvalues.
All of the calculations were performed using the code Nek5000 [9]. Spatial discreti-
sation is done by a spectral elements method with Lagrange polynomials of order
N = 8. The convective terms are advanced in time using an extrapolation of order 3,
whereas the viscous terms use a backward differentiation oforder 3 as well.

3 Results and discussion

Figure 1 shows base flows obtained atRe= 1000 for both roughness elements con-
sidered. An upstream and a downstream reversed flow region are shown in the right
frames of figure 1 by theU = 0 isosurface (blue). In the left frames, the streaks
induced by the roughness elements, being defined as the deviation of the base flows
from the Blasius velocity profileUB as in Ref.[4], are plotted. These flows share
similar features: five streaks can be observed, two positive(red) and three nega-
tive (green) ones. These are induced by the presence of strong horseshoe vortices
wrapped around the roughness elements, whose legs transport the low and high-
momentum flow upwards and downwards in the boundary layer. These counter-
rotating vortices induce the two outer pairs of streaks, whereas the central low-speed
one is due to the streamwise velocity deficit induced by the roughness element.
Though their main structure is similar, some differences are found between the two
flow fields. Indeed, for the case of the bump: (i) the separation zone is smaller than
for the cylinder; (ii) the horseshoe vortex wrapping aroundthe roughness element
is much more spanwise-localised, its legs being weaker and closer one to the other;
(iii) the streaks are weaker and quickly fade away downstream of the roughness el-
ement, whereas for the cylinder they appear to sustain on a much longer streamwise
extent.

The eigenspectra obtained for the cylinder case atRe= 800 andRe= 1000
are provided in Figure 2 (a) and (b), respectively. AtRe= 800, one can observe
a single isolated eigenvalue lying almost on the neutral axis. Slightly increasing the
Reynolds number drives the most unstable mode to move towards the upper-half
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Fig. 1 Base flows computed atRe= 1000 in the presence of a cylinder (top) and a bump (bottom).
The left frames show positive (red) and negative (green) surfaces ofUst =U −UB, withUst =±0.1
(top) andUst = ±0.05 (bottom); the right frames show isosurfaces of theU = 0 contour (blue),
highlighting the separation zone, and the Q-criterion (green, forQ= 0.1).

complex plane, so that the flow becomes globally unstable atRecr ≈ 805. Further
increasing the Reynolds number yields a whole branch of eigenvalues to move in
the upper-half complex plane, as shown in Figure 2 (b) forRe= 1000.
Regarding the bump, a similar behaviour has been found. Figure 2 (c) shows the
eigenspectrum obtained forRe= 800. As previously, a single isolated mode is
observed within the lower-half complex plane. When the Reynolds number is in-
creased this eigenvalue moves upwards, reaching the upper-half of the complex
plane atRecr ≈ 891 as shown on figure 2 (d).
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Fig. 2 Eigenspectra obtained for the flow past a cylinder withRe= 800 (a) andRe= 1000 (b), and
for the flow past a bump withRe= 800 (c) andRe= 1000 (d).

As to get some insights on the instability mechanisms, the shape of the two unsta-
ble global modes is closely looked at. Figure 3 provides the streamwise component
of the velocity for the most unstable eigenmode obtained atRe= 1000 for the cylin-
der case (left) and the bump one (right). These global modes are both characterised
by streamwise alternated patches of positive/negative velocity developing mostly
along the central low-speed streak, showing a symmetry withrespect to thez= 0
plane. For the cylindrical element, the wave packet is placed well downstream of
the roughness element, in a region where the streaks are well-developed and quasi-
parallel. On the other hand, in the bump case, the most unstable eigenmode is placed
closer to the roughness element which is concordant with theweaker streaks and
gradients induced by the bump as well as their smaller streamwise extent.
The location and structure of the spatial support of the mostunstable modes with
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respect to the base flow streaks atRe= 1000 are shown in figure 4 (a) and (b) for
both cases, respectively. For the cylinder case, the streamwise velocity contours of
the eigenvector (shaded contours) and of the base flow (solidlines) are provided in
the x = 25 plane. The strong deformation of theU = constcontours indicates the
large amplitude of the streaks. The zones of maximum amplitude of the eigenvec-
tor are localised on the flanks and the top of the streaks, where the spanwise and
wall-normal shears are the largest. A similar behaviour is observed for the bump
case, as shown in figure 4 (b). As indicated by the deformationof theU = const
contours in thex = 15 plane, the streaks are weaker and much more localised in
the spanwise direction. The spatial structure of the eigenvector is similar to the one
recovered for the cylinder, showing a mushroom-shaped disturbance on top of the
central low-speed streak, with maximum velocity values located in the zones of
maximum base-flow shear. However, the spatial support of themode is much more
compact in the spanwise direction.
These locations seem to indicate that these unstable globalmodes might be linked
to a streak instability similar to the one recovered for parallel optimal streaks in
Ref.[10] and that the instability mechanism might be related to the transport of the
base flow shear by the perturbation. It is noteworthy that, for parallel streaks, the
primary instability is of sinuous type, whereas in the present case it is of varicose
type. However, one must note that for thinner roughness elements (not presented
here) similar sinuous instabilities have also been recovered. The present results also
confirm that, for large roughness elements, varicose perturbations are the most dan-
gerous ones, as also highlighted by a global transient growth analysis in Ref.[11].

(a) (b)

Fig. 3 Streamwise velocity component of the eigenvector of the most unstable mode obtained at
Re= 1000 for the cylindrical roughness element (a) and the smooth one (b).

4 Conclusion

The flows past two roughness elements, a cylindrical and a cubic-cosine one, have
been investigated. The cylindrical roughness element induces strong streaks which
appear to be well sustained in the streamwise direction, whereas in the bump case
the streaks are weaker and eventually fade away. In both cases, a global stability
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Fig. 4 Shaded contours of the streamwise component the most unstable mode for the cylindrical
roughness element in the planex = 25 (a) and the cubic-cosine-shaped one atx = 15 (b) with
Re= 1000. The solid lines are the base-flow streamwise velocity contours in the range[0.1,0.9].

analysis of the three-dimensional steady base flow has been carried out. In all of the
cases considered, the spectra are composed by modes characterised by a varicose
symmetry, mostly localised in the zones of large base flow shear and related to an
instability of the quasi-parallel streaks. Finally, the critical Reynolds number being
higher for the smooth bump than for the cylindrical roughness element might be
related to the weaker amplitude of the induced streaks in theformer case.
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