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Transitional turbulence in shear flows is supported by a network of unstable exact
invariant solutions of the Navier–Stokes equations. The network is interconnected
by heteroclinic connections along which the turbulent trajectories evolve between
invariant solutions. While many invariant solutions in the form of equilibria,
travelling waves and periodic orbits have been identified, computing heteroclinic
connections remains a challenge. We propose a variational method for computing
orbits dynamically connecting small neighbourhoods around equilibrium solutions.
Using local information on the dynamics linearized around these equilibria, we
demonstrate that we can choose neighbourhoods such that the connecting orbits
shadow heteroclinic connections. The proposed method allows one to approximate
heteroclinic connections originating from states with multi-dimensional unstable
manifold and thereby provides access to heteroclinic connections that cannot easily be
identified using alternative shooting methods. For plane Couette flow, we demonstrate
the method by recomputing three known connections and identifying six additional
previously unknown orbits.

Key words: mathematical foundations, variational methods, nonlinear dynamical systems

1. Introduction

The understanding of the dynamics of turbulence has been recently boosted by
the adoption of a dynamical-system representation of the problem, inspired by the
early work of Hopf (1948) and extended during the last 20 years to the case of
turbulent shear flows. According to this dynamical view point, the time evolution
of the flow corresponds to a trajectory in state space, which recurrently approaches
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the exact invariant solutions populating the state space. Turbulence is linked to
the existence of a multitude of such invariant solutions of the Navier–Stokes (NS)
equations (Budanur et al. 2017), in the form of equilibria, travelling waves, periodic
orbits and relative periodic orbits (Kawahara, Uhlmann & Van Veen 2012). The
transiently visited solutions capture organized flow structures, such as streaks in
turbulent boundary layers, as well as puffs in pipe flows (Hof et al. 2004), and are
thus also termed exact coherent states (ECSs). Due to their dynamical relevance there
has been a strong recent effort to compute invariant solutions, especially for pipe
(Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Duguet, Willis & Kerswell 2008;
Willis, Cvitanović & Avila 2013; Budanur et al. 2017) and Couette flow (Nagata
1990; Kawahara & Kida 2001; Viswanath 2007; Gibson, Halcrow & Cvitanović 2008;
Schneider et al. 2008; Gibson, Halcrow & Cvitanović 2009; Halcrow et al. 2009). In
these two reference flow cases, the state space contains a linearly stable equilibrium
solution corresponding to the laminar flow state, as well as a chaotic set supporting
turbulent dynamics. Embedded in the chaotic saddle are ECSs dynamically connected
by their entangled stable and unstable manifolds. The ECSs are all unstable so that a
turbulent trajectory is believed to be transiently attracted to an individual ECS along
its stable manifold before it leaves along the unstable manifold and is captured by
another ECS. Within the emerging dynamical systems picture, turbulence can thus
be understood as a walk along dynamical connections between various ECSs (Suri
et al. 2017). To characterize the turbulence-supporting saddle we not only need to
compute the invariant states but also identify homo- and heteroclinic connections
between them. These connections form the network along which turbulent trajectories
evolve between the ECSs and are thus key for understanding the turbulent dynamics.
Unfortunately, finding heteroclinic connections is a very difficult task and there is
no general and robust algorithm to compute them. In fact, the first heteroclinic
connection between two equilibria of the three-dimensional (3D) Navier–Stokes
equations for a shear flow has been reported only recently. Gibson et al. (2008)
identified a connection in Couette flow at Reynolds number Re= 400. For the same
flow and parameters, two additional heteroclinic connections have been reported by
the same research group (Halcrow et al. 2009). A homoclinic connection from and
to the edge state in plane Couette flow was identified by Van Veen & Kawahara
(2011), who showed that this connection underlies strongly dissipative bursting
events. Evidence for a likely heteroclinic connection between two relative periodic
orbits for the case of pipe flow has been recently found by Hof & Budanur (2017). A
periodic-like solution (Toh & Itano 2003) in plane Poiseuille flow suggests heteroclinic
connection between a single-streak and a double-streak state. Likewise a connection
between two symmetry-related travelling waves on the laminar-turbulent boundary
for the asymptotic suction boundary layer is strongly suggested by Kreilos et al.
(2013). These studies suggest that connections between exact invariant solutions are
dynamically relevant and may underlie both bursts and puff formation. Despite their
obvious importance, for full 3D shear flows the only currently available algorithms
for computing heteroclinic connections are the shooting method of Halcrow et al.
(2009) and the boundary-value problem approach by Van Veen, Kawahara & Atsushi
(2011).

We propose an alternative method for identifying heteroclinic connections and apply
it to plane Couette flow at Re= 400. The method entails two steps. First, we construct
an orbit that connects small energy shells around two equilibrium states. This step is
based on nonlinear minimization using the Lagrange multiplier method. In a second
step, we use local information on the dynamics linearized around the initial and final
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equilibria to confirm that the constructed orbit shadows a heteroclinic connection
located within the intersection of the unstable manifold of the initial and the stable
manifold of the final equilibria. We first present the numerical approach and validate
the method with respect to the results of Halcrow et al. (2009), obtaining the same
three heteroclinic connections. Then, the proposed method is used to identify six
new heteroclinic connections. Finally, we discuss advantages and limitations of the
proposed method in comparison to alternative approaches for computing heteroclinic
connections.

2. Problem formulation

We consider plane Couette flow at Reynolds number Re = 400, where non-
dimensional variables are chosen to have half of the distance between the plates
equal to h= 1 and half of the difference between the velocity of the two plates equal
to 1. The problem is studied by numerically solving the Navier–Stokes equations
for incompressible flow. Simulations are performed in a computational domain of
streamwise and spanwise size Lx = 2π/1.14 and Lz = 2π/2.5, respectively (Waleffe
2003). x, y, z represent the streamwise, wall-normal and spanwise coordinates, and
u, v, w are the three corresponding Cartesian components of the velocity vector,
u. Dirichlet boundary conditions for the three velocity components are imposed
at the upper and lower wall (uwall = ±1), whereas periodicity is prescribed in the
streamwise and spanwise directions. Computations are performed using Channelflow
(Gibson 2014). For spectral discretization, we use 32 Fourier points in the x and z
directions and 35 Chebyshev points in the y direction. Both domain and discretization
are identical to Halcrow et al. (2009) in order to validate our procedure with their
results.

3. Algorithm for computing heteroclinic connections

The main idea of the present work is to employ a nonlinear variational minimization
algorithm based on an iterative direct-adjoint procedure (Cherubini et al. 2010;
Pringle & Kerswell 2010; Kerswell 2018) to compute connections between finite
neighbourhoods of equilibrium states and show that those orbits approximate
heteroclinic connections. Alternative variational approaches have also been proposed
for computing periodic orbits (Lan & Cvitanović 2004) and heteroclinic connections
in lower-dimensional problems (Dong & Lan 2014) including two-dimensional (2D)
atmospheric flow models (Crommelin 2003).

Along a heteroclinic connection, the trajectory leaves the initial equilibrium (EQout)
to approach the final equilibrium (EQin). Since it takes an infinite time to traverse
the connection we approximate it by a trajectory starting in a small but finite
neighbourhood of the initial equilibrium and reaching the neighbourhood of the final
one. The passage time T is finite and we ensure that results are robust with respect
to the choice of the neighbourhoods.

Technically, we fix energy shells E0out and E0in , around the initial and final
equilibrium. For fixed passage time T we find the initial perturbation u′(0) =
u(0)− uEQout constrained to E0out , such that the distance from the final equilibrium is
minimized at passage time T . By gradually increasing the passage time, we determine
the time T of the first local minimum of the objective function lower than a chosen
threshold E0in .

For minimizing the distance from the final equilibrium E(T) = ‖u′(T) + uEQout −

uEQin‖
2
2, with ‖ • ‖2

2 = 1/V
∫

V •
2 dV , and V the volume of the computational domain,
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FIGURE 1. Sketch describing the CHELA algorithm: the initial condition and the related
trajectory towards the final EQ change after updating the time T (dashed lines). The
algorithm stops when T is sufficiently large to lead the flow field close enough to the
final state (solid line).

we consider the Lagrangian

L(u′, p′, u†, p†, u′(T), u′(0), λ)= ‖u′(T)+ uEQout − uEQin‖
2
2

−

∫ T

0
〈u†,NS(u′, uEQout , p′)〉 dt−

∫ T

0
〈p†,∇ · u′〉 dt− λ(‖u′(0)‖2

2 − E0out),

(3.1)

where 〈a, b〉 indicates the scalar product 1/V
∫

V(a · b) dV . Setting the variation of
L with respect to the fields u′, p′ to zero yields adjoint equations for the Lagrange
multipliers u†,p† that enforce the NS equations. The vanishing gradient with respect to
u′(T) yields the compatibility conditions at t=T , namely, u†(T)=u′(T)+uEQout −uEQin .
Integrating the NS equations from t = 0 to t = T , using the compatibility condition
to initialize the adjoint equations and integrating them backwards in time from t= T
to t = 0 yields the gradient with respect to the initial condition (δL/δu′(0))= u(0)†.
Iterative gradient descent using the gradient-rotation method (Foures, Caulfield &
Schmid 2013; Farano et al. 2015) to exactly enforce the initial energy shell constraint
yields the optimal initial condition.

Technically, the algorithm consists of a double nested loop: an inner direct-adjoint
loop for a fixed passage time, and an outer one increasing the passage time. Finding
the minimal passage time by sequentially increasing T is a key element of the
proposed CHELA (Computing HEteroclinic connections by using a Lagrange
multiplier Algorithm) schematically presented in figure 1 and summarized in
Algorithm 1. For a fixed passage time, the inner direct-adjoint loop is carried out
until the relative difference of the value of E(T) between successive iterations
ε= ((E(T)n+1

−E(T)n)/E(T)n is lower than a given threshold εcr, where superscript n
indicates the number of loop iterations. For short T the trajectory will remain close to
the initial equilibrium and not reach the neighbourhood of the final equilibrium, see
dashed lines in figure 1. We therefore carry out the full optimization procedure for
gradually increasing passage times T (outer loop) until E(T) < E0in and the trajectory
reaches the neighbourhood of the final equilibrium, as indicated by the solid line
in figure 1. By starting from a short passage time and increasing it, one avoids
convergence problems of the direct-adjoint looping procedure stemming from chaotic
dynamics that can lead to a non-smooth optimization problem at large passage times.

We identify orbits connecting finite neighbourhoods of two equilibria in finite
time, while a heteroclinic connection is traversed in infinite time. Especially in view
of transient growth effects discussed below, considering finite neighbourhoods may
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Data: E0out , E0in , εcr, 1T
Input: u′(0), T ; /* Initial guess */
begin

while E(T) > E0in do
T←− T +1T ; /* Increment T */
while ε > εcr do

u′(T)←−NS (u′(0));
Evaluate E(T) and ε;
if ε > εcr then

u†(T)= u′(T)+ uEQout − uEQin ; /* Compatibility condition */
u†(0)←−NS†

(
u†(T)

)
;

Update u′(0) ; /* Gradient rotation to enforce E0out */
end

end
end
return u′(0), T ; /* Heteroclinic connection found */

end

Algorithm 1: Schematic synthesis of the CHELA algorithm.

lead to spurious results and the misidentification of heteroclinic connections. By
analysing the dynamics in the neighbourhood of the initial and final equilibria we
thus a posteriori confirm that every connection between finite neighbourhoods leaves
the initial equilibrium shadowing its unstable manifold and approaches the final
equilibrium along the stable one. Together, the variational method for constructing
orbits connecting neighbourhoods of equilibria and the a posteriori check that those
orbits shadow the unstable (stable) manifold of the initial (final) equilibrium allows
one to approximate heteroclinic connections.

4. Results

In this section we present approximations to nine heteroclinic connections linking
seven unstable equilibrium states originally found by Halcrow et al. (2009) and
available in the Channelflow database (Gibson 2014). Seven connections are found
for parameters E0out = 10−8, E0in = 10−6 and εcr = 10−4. In terms of L2-distance
this corresponds to shells of radius rout = 10−4 and rin = 10−3. For two connections
larger shells with rout = 10−3 and rin = 2.26 × 10−3, corresponding to the values in
Halcrow et al. (2009) are used. The larger shells reduce the passage time along the
connections (underlined in table 1) and thereby avoid convergence problems of the
optimization algorithm. As detailed below, we verify for all presented orbits that these
shadow heteroclinic connections. First, we validated the algorithm by computing the
three heteroclinic connections already found for plane Couette flow at Re = 400 by
Halcrow et al. (2009). Then, we found, for the same value of Re, six previously
unknown heteroclinic connections.

4.1. Connections identified and their properties
Details, specifically the dimension of the unstable manifold of the initial equilibrium,
and the passage time T , about the heteroclinic connections are given in table 1, where
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Heteroclinic Symmetry d(Wu(EQout)) d(Wu
S (EQout)) d(Wu

S (EQin)) T
connections

EQ5→ EQ1 (s1, s2, s3) 11 4 1 363
EQ4→ EQ1 (s1, s2, s3) 6 3 1 318
EQ3→ EQ1 (s1, s2, s3) 4 2 1 332
EQ4→ EQ3 (s1, s2, s3) 6 3 2 447
EQ9→ EQ3 (s3) 5 3 2 405
EQ4→ EQ9 (s3) 6 4 3 363
EQ10→ EQ1 (s3) 10 7 1 476
EQ9→ EQ1 (s3) 5 3 1 550
EQ11→ EQ1 (s3) 15 10 1 500

TABLE 1. Computed heteroclinic connections for Re = 400 and corresponding symmetry
subspaces. The dimension of the unstable manifold of the initial equilibrium (EQout) is
d(Wu), while d(Wu

S ) is the dimension of the intersection of the unstable manifold with
the symmetry-invariant subspace reported here for the initial and final equilibrium (EQin).
The last column provides the passage time for the different orbits with shell around the
initial state of radius rout = 10−4 (rout = 10−3 for underlined ones).

the equilibria are indicated following the same nomenclature employed by Gibson
et al. (2009). The considered initial and final equilibria possess discrete symmetries
which are part of the equivariance under a symmetry group. To construct a connecting
trajectory within the symmetry subspace shared between initial and final equilibria, we
explicitly constrain the time evolution to the shared symmetry subspace. The symmetry
group considered here is S = {1, s1, s2, s3} and coincides with that of Gibson et al.
(2008); s1 and s2 indicate the ‘shift-reflect’ and ‘shift-rotate’ symmetries, respectively,
and s3= s1s2. Four of the considered equilibria have all the symmetries in S, and the
remaining ones have only s3. The first three connections coincide with those described
by Halcrow et al. (2009).

Two manifolds generically intersect if the sum of their dimensions is higher than or
equal to the dimension of the state space they are embedded in (Halcrow et al. 2009).
An intersection between the unstable manifold of the initial state and the stable one
of the final state can thus generically exist if the codimension of the stable manifold
in the S-invariant space of the final state d(Wu

S (EQin)) is smaller than or equal to the
dimension of the unstable manifold of the initial state d(Wu

S (EQout)). This geometric
condition is satisfied for all the computed heteroclinic connections (compare the fourth
and fifth columns in table 1) and indicates the structural stability of all presented
connections.

The convergence histories of the computed heteroclinic connections are shown in
figure 2. For validation, panel (a) provides the distance of the velocity field u(t) to the
target equilibrium uEQin (continuous line) and to the initial equilibrium uEQout (dashed
line) for the three connections already obtained by Halcrow et al. (2009). For a fixed
passage time T and time increments, 1T , chosen between 1 and 5 time units, the
optimization algorithm typically requires 5 to 20 forward/backward time integrations
to converge. The convergence curves are in good agreement with those obtained in the
literature, with the convergence threshold achieved by Halcrow et al. (2009) indicated
by a dashed line in figure 2(b).

Figure 2(b) shows the new six heteroclinic connections computed here. Three of the
new connections lead to the edge state (Nagata 1990; Schneider et al. 2008), two of
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FIGURE 2. (a) Distances of the velocity field u(t) to the final equilibrium uEQin

(continuous line) and to the initial one uEQout (dashed line) along three heteroclinic
connections found by Halcrow et al. (2009) versus time. (b) Distances to the final
equilibrium uEQin for the new computed heteroclinic connections (continuous lines). The
dashed line represents the highest residual value for the heteroclinic connections computed
in Halcrow et al. (2009). The L2-norm of the considered equilibria ranges from 0.1259
to 0.4049. (Gibson et al. 2009).

them to EQ3, and one to EQ9. All connections reported by Halcrow et al. (2009) land
on the codimension-1 stable manifold of the edge state, which simplifies identifying
those connections using a one-dimensional search algorithm. The variational method
proposed here yields additional connections not involving the edge state.

4.2. Confirming that computed orbits shadow heteroclinic connections
Heteroclinic connections lie in the intersection of the unstable manifold of the
initial equilibrium and the stable manifold of the final equilibrium. The use of finite
energy shells renders the passage time along the orbit finite but may potentially
lead to spurious results. A specific problem is due to transient growth effects
that may allow a trajectory to leave the neighbourhood of an equilibrium along
an algebraically amplified direction bypassing the unstable manifold (Farano et al.
2018). We thus analyse the dynamics close to the equilibria where curved stable
and unstable manifolds can be approximated by their respective tangent spaces, the
stable and unstable subspaces spanned by the stable or unstable eigenvectors of the
Navier–Stokes equations linearized around the equilibrium. The analysis of the orbits
connecting finite energy shells technically involves two steps: first, along the orbit
we determine the range in the vicinity of both equilibria, where the dynamics is
well approximated by the Navier–Stokes equations linearized around EQout or EQin,
respectively. This is achieved by explicitly comparing the nonlinear and the linear
time evolution. Within the validity range of the linearization, we then project onto
an orthonormal basis of the unstable tangent spaces to the invariant manifolds of
both equilibria and thereby separate the energetic contributions in the stable and
unstable subspaces approximating the respective manifolds. (Note that we technically
only use projections on the unstable subspace spanned by the orthogonalized unstable
eigenvectors. These leading eigenvectors can be accurately constructed by our iterative
Arnoldi method, while most of the stable eigenvectors are challenging to compute
accurately using matrix-free techniques.)
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FIGURE 3. Time evolution of contributions in the stable and unstable subspaces of
EQout during the initial part of the trajectory EQ5 → EQ1. (a) L2-norms ‖u′ s/u‖2
of the projections onto the unstable (u′ u, solid line) and stable (u′ s, dashed line)
subspace. The difference between the linearized and the full nonlinear evolution η =
(‖u′lin(t)− u′(t)‖2

2/‖u′lin(t)‖2
2) (dotted line, right axis) characterizes the deviation of the

invariant manifolds from the approximating linear subspaces due to manifold curvature
in the direction of the trajectory. (b) Relative contribution measured in terms of relative
energy in the unstable (solid line) and stable (dashed line) subspace. Vertical red dotted
lines indicates when the relative contribution of the stable subspace Es(t)/E(t) drops below
1 %. Vertical blue dotted line indicates when the difference between the linearized and the
full nonlinear evolution η reaches 1 %.

For all identified orbits connecting finite energy shells of radius rout = 10−4, rin =

10−3, the identified initial condition lies predominantly in the stable subspace of EQout,
with relative energy in the stable versus unstable space ranging from 82 % to 98 %.
To follow the evolution of the contributions we decompose u′(t)= u′ u(t)+ u′ s(t) into
components in the stable/unstable subspace. Figure 3(a) shows the time evolution of
the L2-norm of the contributions within the stable/unstable subspace of the orbit while
leaving EQout for the connection EQ5→EQ1. Data for other connections is provided
in the supplementary material available at https://doi.org/10.1017/jfm.2018.860. Both
‖u′ u‖2(t) and ‖u′ s‖2(t) initially increase. The growth of the stable contribution slows
down and starts to decay, while in the unstable subspace sustained approximately
exponential growth continues. If the dynamics were linear, we would expect the
stable contribution to decay to zero. However, due to the curvature of the invariant
manifolds, the projection on the stable subspace may grow again, when the stable
subspace no longer well approximates the attracting curved stable manifold. This
is evidenced by the subsequent growth of ‖u′ s‖2(t) starting at t ≈ 30 when the
deviation between linear and nonlinear evolution η = (‖u′lin(t)− u′(t)‖2

2/‖u′lin(t)‖2
2)

starts to increase. We thus observe transient growth in the stable subspace which
is superseded by exponential growth along the unstable subspace. Consequently,
the trajectory shows a transient excursion along the stable subspace, but eventually
the orbit approaches the unstable subspace, as evidenced by the decaying relative
contribution of the stable subspace (see figure 3b). This decay is observed during the
initial part of the orbit and while the unstable subspace remains a good approximation
of the unstable manifold describing the nonlinear dynamics (see vertical blue dotted
line in figure 3b, and dotted line in figure 3a). For all connections found for a shell
of radius rout= 10−4 the contribution of u′ in terms of energy in the unstable subspace
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reaches more than 99 % while the relative difference between the linear and nonlinear
evolution η remains bounded by 0.858 %. (Alternatively, when the ratio of L2-norms
reaches ‖u′ u‖2 > 0.99‖u′‖2,

√
η remains bounded by 7.23 %.) The analysis consisting

of projecting onto the stable subspace and monitoring the deviation between linear and
nonlinear time evolution thus strongly supports the following interpretation: during
the initial part, the orbit identified by the optimization algorithm does not follow
the unstable manifold of EQout, but rather exploits algebraic growth along transiently
amplified directions predominantly in the stable manifold. However, after a short
excursion along the stable manifold, the orbit approaches the unstable manifold and
shadows a heteroclinic connection.

For two orbits EQ9→EQ1 and EQ11→EQ1 the passage time is too large for the
optimization to converge if a small energy shell of radius rout = 10−4 is chosen. For
the connection EQ9→ EQ1 and shell of radius rout = 10−3, the contributions of u′ in
terms of relative energy in the unstable subspace reach 99 % while η remains bounded
by 0.763 %. For the orbit EQ11→ EQ1 a strongly curved unstable manifold renders
the linearization invalid after a short time and before the relative contribution in terms
of energy (L2-norm) of the unstable manifold has reached 61 % (78 %). However, the
contraction rate along the stable subspace is similar to that observed for all other
orbits. This suggests that despite the importance of nonlinear effects the orbit follows
the strongly curved unstable manifold when leaving EQout.

An analogous analysis of the dynamics linearized around EQin confirms that all
orbits approach the final equilibria along their stable manifold. Consequently, the
orbits connecting finite shells around two equilibria follow the unstable manifold of
EQout and the stable one of EQin. The initial part of the orbit is affected by transient
amplification in the stable manifold, but the excursion decays before an L2-distance
from EQout of order 10−2–10−3 is reached. More importantly, this distance is small
compared to the typical L2-norm of the distance between both connected equilibria.
The ratio of the distance affected by transient amplification to distance between
both equilibria ranges from 0.016 to 0.100. Consequently, the orbit shadows the
heteroclinic connections along at least 90 % of the distance between equilibria. Data
for the individual connections are given in the supplementary material.

We verify that the computed orbits are robust to changes of the size of the
initial energy shell. All orbits available for rout = 10−4 were successfully recomputed
for a larger shell of radius rout = 10−3. For connections where the dimension of
the intersection of the unstable manifold of the initial equilibrium with the stable
manifold of the final state is greater than one, e.g. EQ4→EQ1, there is a continuous
family of connections between these two states. Consequently, varying the energy
shell may yield slightly different connections within the continuum. Likewise, the
constrained search in Halcrow et al. (2009) yields a specific connection, while the
variational algorithm may find a different connection within the continuum. For all
connections with one-dimensional intersection, independently of the energy shell, the
algorithm always converges to the only existing connection. This is demonstrated in
figure 4 for the orbit EQ4→ EQ3.

4.3. Connectivity of equilibrium states
When visualizing the computed heteroclinic connections in the energy input (I) versus
dissipation rate (D) plane (Kawahara & Kida 2001) (figure 5a) one observes that most
orbits are located in the vicinity of the edge state equilibrium EQ1. With the exception
of EQ10 and EQ11 all other connected equilibria have a lower dissipation than the
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FIGURE 4. State-space projection (Gibson et al. 2008) of the orbit connecting EQ5→EQ1
(blue) and EQ4→ EQ1 (green), for which the dimension of the intersection is three and
two, respectively. For a specific connection, changing the energy shell around the initial
equilibrium from E0out = 10−6 (solid line) to E0out = 10−8 (dashed line) results in finding
different orbits. For those connections for which the dimension of the intersection is one,
g.e. EQ4→ EQ3 (cyan), the algorithm finds the only existing connection.

average value D= I≈ 2.5 for long turbulent transients (Cherubini & De Palma 2014).
Along the majority of all connections – with exceptions EQ3→ EQ1, EQ9→ EQ1
– the friction Reynolds number Reτ decreases, indicating that turbulent fluctuations
are reduced along the orbit. This suggests that the presented heteroclinic connections
are more relevant for relaminarization processes than the turbulent dynamics itself. Of
special interest is the trajectory EQ11→ EQ1, involving EQ11 with dissipation well
above the turbulent mean. This trajectory captures features of turbulent bursting.

To better visualize how the EQs are mutually connected, the heteroclinic connections
are also plotted using the 3D orthonormal projection of the state space proposed by
Gibson et al. (2008). The time series of the projection coefficients (a1(t), a2(t), a3(t))
are obtained using the inner product ai(t)= 〈u(t), ei〉 defined above, where i= 1, 2, 3
and ei are the orthonormal basis functions based on EQ2 and its half-cell translated
siblings (Gibson et al. 2008). The resulting trajectories projected onto this reduced
basis are reported in figure 5(b). Within the network of heteroclinic connections, the
edge state EQ1 is centrally located. For all other equilibrium states there is a direct
connection landing on EQ1. This indicates that all the considered equilibria are states
on the edge of chaos, characterizing the dynamics on the stable manifold of the
edge state. This is consistent with the edge of chaos and the chaotic saddle being
dynamically linked for the considered domain size and Reynolds number (Chantry
& Schneider 2014). The flow evolution along the newly constructed heteroclinic
connections are discussed in the supplementary material, where we also provide flow
visualizations for all connections (see the supplementary movie).

5. Discussion and outlook

In this work, we develop a variational method based on nonlinear minimization
techniques to identify heteroclinic connections between equilibrium states. The
variational method complements alternative shooting methods employed previously.
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FIGURE 5. (a) Projection of the heteroclinic connections onto the energy input, I, and
the dissipation rate, D, normalized by their value in the laminar flow. (b) State-space
projection onto the 3D orthonormal basis a1,2,3 of all the computed heteroclinic
connections. Colours are the same as in figure 2.

A shooting method aims at finding an initial condition in the unstable manifold of
the initial equilibrium that reaches the final one. This approach is only feasible for
unstable manifolds of very low dimension to limit the search space, and also requires
the manifold curvature to be negligible so that a linear combination of unstable
eigenvectors approximates a perturbation of the initial equilibrium located in the
unstable manifold. Specifically, Halcrow et al. (2009) consider perturbations spanned
by only two specifically chosen unstable eigenvectors, which yields a one-parameter
search problem. The alternative approach by Van Veen et al. (2011), based on work by
Krauskopf et al. (2005), Krauskopf & Osinga (2007), treats the search for heteroclinic
connections as a boundary-value problem (BVP). The BVP is underdetermined, and
a one-parameter family of solutions covering a part of the unstable manifold can be
found by arclength continuation. This method is very accurate and robust, but it is
limited to 2D unstable manifolds.

Compared to these alternative methods, the variational approach proposed here has
several advantages: first, there is no constraint on the dimensionality of unstable
manifolds and no ad hoc assumptions for a suitable reduced search space are
necessary. Rather, the variational approach explores initial conditions within the
full space. The proposed method allows one to approximate heteroclinic connections
originating from states with multi-dimensional unstable manifold and thereby provides
access to connections that cannot easily be identified with alternative methods. Three
computed connections that do not land on the edge state (EQ4→ EQ3, EQ9→ EQ3
and EQ4→EQ9) are examples of connections that are hard to identify using shooting
methods, but can easily be found with the proposed variational method. Second, larger
energy shells can be considered as there is no necessity for the unstable manifold
to be well approximated by the unstable subspace which shooting methods constrain
their search to.

While using a variational method to construct connections between finite energy
shells removes constraints on the dimensionality of the unstable manifold of the initial
equilibrium, the approach has some limitations. To avoid convergence issues the size
of the energy shells should be sufficiently large to limit the transit time along the
connection. Thereby the exponentially amplified dependence on initial conditions in
the chaotic system can be controlled and the optimization problem remains smooth
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enough for the iterative algorithm to converge. However, as a consequence of using
finite energy shells, the algorithm may produce spurious results, since a connection
between finite shells is not guaranteed to shadow a heteroclinic connection located
within the intersection of the unstable manifold of the starting and the stable manifold
of the final equilibrium. Consequently, a careful a posteriori analysis of the dynamics
close to the two equilibria is an integral and unavoidable step to confirm that a
computed orbit shadows a heteroclinic connections. Furthermore, due to transient
growth effects, the initial part of the identified orbit may not shadow the heteroclinic
connection. For all examples presented here, we observed this initial part to be short
(less than 10 % of the distance between equilibria) so that the constructed orbits
between finite shells shadow heteroclinic connections along almost their full length.

In conclusion, the variational method has the disadvantage that a careful analysis
of orbits between energy shell is needed to ensure that those approximate heteroclinic
connections. However, the advantage is that the new method gives access to
heteroclinic connections which cannot be easily computed using alternative techniques.

Supplementary material and movie

Supplementary material and a movie are available at https://doi.org/10.1017/jfm.
2018.860.
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