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a b s t r a c t 

We report on the linear stability of micro-combustion in pipe, where two instabilities manifest at high

and low flow-rates. The combustion of a stoichiometric methane/air premixed mixture has been numer- 

ically investigated within a 3D reduced model. This model reproduces decently the flame dynamics in

the range of speed between 5 –100 cm/s. The flame position, the stability thresholds of the Flame with

Repetitive Extinction and Ignition (FREI) and the flame shape are in accordance with the experiments.

Furthermore, an analysis of the integral values of all mechanisms involved in the flame evolution has

been carried out near the two stability thresholds. The phase shift between the reaction term and the ra- 

dial diffusion has been identified as the source of instability in both cases. The global behavior has been

then investigated with a linear stability analysis. The 2D and 3D temperature and concentration pertur- 

bations have been found by solving the eigenvalue problem obtained by linearizing the model around the

basic state. Only one unstable axisymmetric mode has been found. This is in agreement with the direct

numerical simulation of the model.

1. Introduction

Improvement in fabrication techniques has rapidly affected the 

engineering standards in the last decades. Notably, starting from 

electronics, huge efforts toward the miniaturization of mechanical 

and electro-mechanical devices have been made. This trend also 

has recently included combustion [1,2] . In particular, remarkable 

effort s have been devoted to the design of microcombustors, which 

can enable the development of micro-power generation devices of 

low weight and long life [3] . The potential of such devices re- 

sides in the high energy density of hydrocarbon fuels, which would 

make a miniaturized device strongly competitive with the Lithium 

batteries currently available in the market [4,5] . 

Variousattempts have been already made to design small-scale 

engines [3] . For instance, heat-recirculating combustors, such as 

the double-spiral counter-current Swiss roll [6,7] , have been de- 

veloped to sustain combustion under conditions that would lead 

to extinction without recirculation. Furthermore, several liquid hy- 

drocarbons that supply rotary engines have been also tried [8] . 

Nonetheless, the practical performance of a microcombustor is 

especially constrained by both the low overall efficiency and the 
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narrow range of operational conditions. In particular, the premixed 

flame propagation in such devices may exhibit different combus- 

tion modes, which may render any microcombustor design hard. 

In fact, the decrease of the ratio of the reacting volume to the 

wall surface can lead to higher heat losses, causing instabilities and 

extended flame thermal quenching. These new phenomena pose 

challenging issues to be understood to improve the combustor 

design. 

Numerous numerical and experimental studies have analyzed 

the dynamics of reactive flames in narrow channels [9,10] and 

circular ducts [11–14] . It is worth noting that experiments have 

been performed in pipes. A rich physics is observed with different 

regimes at varying diameter and mass flow-rate. Notably, under 

steady conditions, some studies reported steady mild or flameless 

combustion [15] , while unsteady behaviors are also exhibited, such 

as periodic frequent repetitive ignition/extinction (FREI) [15–18] , 

oscillating flames [10,15,19] and spinning flames [12,20,21] . As 

pointed out in these studies, at some critical configurations with 

regard to the diameter and the mass flow-rate, complex instabili- 

ties grow up. This intriguing feature has motivated the analysis of 

such instabilities, and, in particular, reduced models of engineer- 

ing interest have been used to explore their nature. In fact, there 

is not a consensus on the nature of these instabilities, some stud- 

ies proposing a chemical mechanism [13] , whereas other underline 

the main role of hydrodynamics [14] . It is therefore relevant to get 

insights from a fundamental study of such instabilities. 
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Moreover, while reduced models have been shown to correctly 

capture the main physics of the problem with detailed chemistry 

[10] and even with one-step chemistry [14] , the precise instabil- 

ity dynamics remains to be unfold. In this sense, first numer- 

ical studies have been carried out in a configuration idealizing 

experiments [22] , a planar channel with a step-wise temperature 

and reduced chemistry. The study includes the linear-stability anal- 

ysis of the 1D case [23] . More recently, a more complete 2D stabil- 

ity analysis has been conducted by Kurdyumov [24] and Sánchez- 

Sanz et al. [25] . Their work investigates in detail the same model 

with a step-wise temperature, providing a stability map based 

upon the numerical simulation of the linearized equations; while 

the global stability analysis has been carried out, the eigenspec- 

trum has not been extracted and only the most unstable mode has 

been searched. Moreover the stability analysis has been performed 

so far for the plane channel case. Conversely, in the experimen- 

tal pipe cases, a natural periodicity in the azimuthal direction is 

present, and that surely has influenced the solution symmetries. 

In the present work, we complete these studies, reporting on 

the global linear stability analysis of the 2D and 3D reduced mod- 

els in a pipe flow. It is worth noting that our goal is not to pro- 

pose a new model. The major result of the work is to provide the 

whole spectrum of modes, which allows the most accurate analysis 

of the instabilities. More in details, we compute the basic state of 

the flow through a selective frequency damping (SFD) method and, 

then, we compute numerically the whole spectrum of eigenvalues. 

The results are obtained both for the FREI instability and for the 

transition from the FREI regime to the stable weak one. All results 

are compared with those obtained via the numerical simulations 

of the full equations. 

The paper is organized as follows: in Section 2 , the 3D re- 

duced model is presented, and it is shown how it can represent 

the different behaviors observed in the experiments. Linear stabil- 

ity analysis is then introduced. In this framework the basic state 

and the linearized model are obtained and shown. In Section 3 , 

the numerical tools used to solve the model and the eigenvalue 

problem are described. Then, the unstable dynamics of the flame 

near the two stability thresholds is studied by performing the di- 

rect numerical simulation of the model. Moreover, a first char- 

acterization of the linear stability in term of growth rate and 

pulsation is accomplished always through the direct numerical 

simulation. These first results are then confirmed in Section 4 

where the entire eigenspectrum of the most unstable modes for 

an axisymmetric perturbation is shown. The fluctuation fields of 

the temperature and concentration of CH 4 are displayed and tem- 

porally reconstructed. These are the most important and novel re- 

sults of the present work. In Section 4 the 3D non-axisymmetric 

mode are investigated. Finally, the most important results of this 

work are summarized and new outlooks are highlighted. 

2. Theoretical framework

2.1. Test-case and combustion model 

We consider a premixed stoichiometric mixture of air and 

methane flowing in a pipe with diameter d = 2 mm , as shown 

in Fig. 1 . At the wall, a temperature gradient T w 

(z) is imposed 

( Fig. 1 ) as done in recent experiments [15,18] . Notably, the tem- 

perature profile was reconstructed by acquiring the experimental 

points provided by Tsuboi et al. [18] and accurately interpolated 

with a polynomial of eleventh order. The temperature increases 

from T min = 300 K to T max = 1348 K . 

In this work, we focus on the reduced model discussed in [14] , 

which we refer to for more details. The dynamics is described by 

only two scalar advection–diffusion–reaction equations, one for the 

combustible concentration and one for the temperature, the den- 

Fig. 1. Sketch of the geometry and temperature profile imposed at the wall.

sity of the gas ρ is kept constant: 
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The imposed velocity is 

u r = 0 

u θ = 0 

u z = − 1 

4 η

∂ p 

∂z 
(R 

2 − r 2 ) = −2 U 0 

R 

2 
(R 

2 − r 2 ) ; (2) 

where U 0 is the mean axial speed, R is the radius of the pipe, and 

D is the diffusion coefficient taken to be constant. The production 

terms are as follows: 

S Y = 

νCH 4 W CH 4

ρ
K f = −A 

∗Y exp

(
−T a

T 

)
S T = − Q

C p 
S Y (3) 

where Q is the heat of combustion, C p is the specific heat at con- 

stant pressure, and νCH 4 
is the molecular stoichiometric coefficient 

and is taken equal to −1 . The ratio Q/C p = 35 , 0 0 0 K is required to 

match the flame adiabatic temperature at constant pressure ( p 0 = 

1 bar, T 0 = 300 K). A Lewis number equal to one is assumed. In the 

system (1a) –(1b) only the parameters D and A 

∗ are undetermined 

and they have to be calibrated. Then, Bianco et al. [14] have shown 

that the model is able to correctly reproduce the phase-diagram 

of the flame-position versus the flow rate given by the experi- 

ments [18] , assuming D = 0 . 6 6 67 cm 

2 / s and A 

∗ = 1 . 455 × 10 9 s −1 . 

Notably, the calibration was carried out by Bianco et al. [14] pre- 

cisely to minimize the error on the flame position and on the up- 

per and lower instability thresholds of the FREI regime. 

The boundary conditions imposed on the temperature and con- 

centration are: 

• Inflow condition at z = 0 :

T (r, 0) = T 0 = 300 K , Y CH 4 (r, 0) = Y 0CH 4
= 0 . 055 (4) 

• Outflow condition at z = L :

∂T (r, L ) 

∂z 
= 0 , 

∂Y CH 4 (r, L ) 

∂z 
= 0 (5) 

• Symmetric condition is applied at channel axis r = 0 :

∂T (0 , z) 

∂r 
= 0 , 

∂Y CH 4 (0 , z) 

∂r 
= 0 (6) 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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• At channel wall r = R

T (R, z) = T w 

(z) , 
∂Y CH 4 (R, z) 

∂r 
= 0 (7)

As pointed out by Tsuboi et al. [18] , it is possible to neglect the

influence of the flame temperature on the wall. However, possible 

difference between the diffused temperature near to the wall and 

T w 

represents the heat dissipation. Since radial terms are taken into 

account, the 2D model includes the exact heat balance, whereas it 

is necessary to add a supplementary term to represent the heat 

exchange with walls, in 1D models [13–15,18] . 

2.2. Numerics 

The main purpose of this work is to carry out a complete linear 

stability analysis of the 2D model, Eqs. (1a) and (1b) , which have 

therefore to be linearized around the basic state, that is the solu- 

tion of the steady problem, as explained later. However, the linear 

results will be compared whenever possible with the numerical so- 

lution of the complete set of Eqs. (1a) and (1b) . In this section, we 

briefly present the main numerical tools used. 

The height of the domain is fixed by the experiments [15,18] 

R = 1 mm , and the length of the domain is taken equal to L = 

10 cm . The temperature gradient at the wall is placed at the cen- 

ter of the domain, see Fig. 1 . The numerical domain is discretized 

with a Cartesian grid of N z × N r grid points along the cylin- 

der length and radius, respectively, where z(i ) ∈ [0 , L ] i = 1 , ..., N z 

and r( j) ∈ [0 , R ] j = 1 , ..., N r are the cylindrical coordinates of the 

generic grid point ( i , j ). The mesh must be capable of capturing the 

smallest scales without filtering out the solution. Keeping the mesh 

constant over the entire domain, the solution is not dependent on 

the grid with a discretization size less than 0 . 02 mm in the z direc- 

tion. A minimum mesh size of �z = 1 . 25 × 10 −2 mm was chosen. 

Along the r direction, the gradients are less strong, then a coarse 

grid was used �r = 2 . 5 × 10 −2 mm . Following Bianco et al. [14] , to 

avoid the large number of discretization points a moving mesh has 

been adopted. With this method only the region with strong gra- 

dients is finely discretized. Away from the flame, the mesh size 

becomes larger according to a geometric series. All results were 

obtained with a residual level less than 10 −10 . The quality of the 

stability analysis depends strongly on the quality of the spatial res- 

olution of the basic state [26] . To avoid numerical errors, a sixth- 

order finite difference scheme was used for the spatial gradients. 

The numerical integration in time has been done with an explicit 

Runge–Kutta fourth-order scheme. Nevertheless, to compute the 

basic state a standard Euler upwind scheme is used. 

2.3. Phenomenology 

To better understand the stability analysis, we summarize here 

the basic physical behavior of the system, as obtained solving nu- 

merically the model (1a) –(1b) . The flame position for a range of 

speed between 6 and 100 cm / s is then shown in Fig. 2 , where the 

position of the flame z pos has been detected by calculating the axial 

position at which the average of the production term of tempera- 

ture is maximum: 

z pos = max 
z

[
1 

R 

∫ R

0

S T dr 

]
.

Between 37.4 and 100 cm / s , the flame appears to be steady. 

Decreasing the speed just at 36 . 8 cm / s , the flame starts to os- 

cillate and its average position is reported in Fig 2 . Between 

36.8 and 9.9 cm/s a flame with repetitive extinction and ignition 

appears (FREI). In Fig. 2 the ignition and the extinction zone are 

represented. In the last range of speed, under 9.9 cm/s, a new sta- 

ble flame appears according to the experiments [18] . This second 
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Fig. 2. Positions obtained with a moving mesh that can be compared with [14]

( D = 0 . 6667 cm 

2 / s , A ∗ = 1 . 455 × 10 9 s −1 ). The two horizontal dashed lines mark 

the unstable region. ( � ) Position at which stabilization of flame occurs. ( �) Posi- 

tion at which ignition occurs. ( � ) Position at which extinction occurs. ( ©) Average 

position of the unsteady flame.
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Fig. 3. Superposition of temperature production S T field in time. From top to bot- 

tom temperature production field of the steady flame ( 60 cm / s ), oscillating flame

( 37 cm / s ), FREI condition ( 35 cm / s ) and weak flame ( 9 cm / s ) are represented.

steady regime is called weak flame . It is possible to observe that, 

decreasing U 0 , the average position of the flame in the FREI condi- 

tion moves from the extinction point to ignition one. That means 

that near the upper bifurcation point, the flame moves fast toward 

the extinction point, once ignited. On the other hand, near the bot- 

tom stability threshold, the flame stays long time near the ignition 

point before moving to the extinction point. For a visual represen- 

tation of the different behaviors encountered, in Fig. 3 , the super- 

position of the production term of the same flame S T at different 

times is shown, for the different regimes found. 

The numerical shapes for the two stable configurations are 

shown in Fig. 4 . The temperature fields are obtained for U 0 = 

40 cm/s, Fig. 4 (a), and for U 0 = 9 . 3 cm/s, Fig. 4 (b). In the first case, 

Fig. 4 (a), the maximum of temperature is T = 2730 K . Strong gradi- 

ents of temperature and concentration are present due to the flat 

flame front. On the other hand, for the weak stable flame, Fig. 4 (b), 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 4. (a) Strong stable flame: temperature fields at U 0 = 40 cm/s and the maximum temperature level is equal to T = 2730 K . (b) Weak stable flame: temperature field at 

U 0 = 9 . 3 cm/s and maximum temperature level T = 1465 K . 

the maximum of temperature is slightly higher than the maximum 

of T w 

. In this second case the flame appears to be diffused and 

it occupies such a large region that temperature and mass frac- 

tion gradients become weak. In both cases, the general character 

of the flame in the two steady conditions match the experiments 

[18] . The solutions in these two stable regions are fixed points in 

the phase diagram of the system. To understand the change of 

the state, near the two stability thresholds, the stationary solution 

has to be found for the mixture velocity U 0 at which the unsta- 

ble behavior appears. This stationary solution is called basic state . 

In order to perform the stability analysis we linearize the system 

(1a) –(1b) around the basic state; the asymptotic behavior due to 

an infinitesimal perturbation then can be studied. Even if the sys- 

tem (1a) –(1b) is 3D, it is possible to make the hypothesis of ho- 

mogeneity along the azimuthal direction because the basic state is 

invariant in the θ-direction. Moreover this basic state is the solu- 

tion that maximizes the symmetries, by definition. In this way the 

basic field is axisymmetric and inhomogeneous in r and z direc- 

tions. 

2.4. Basic state 

The basic state is the solution of the steady problem. The sta- 

bility analysis is performed around this state. When the dynamics 

is stable, the full system converges naturally to a steady solution 

which is also the basic state, as shown in the previous section. 

However, to characterize the instability bifurcations, we must in- 

vestigate the unstable region. In this case, given that the full sys- 

tem does not converge to a steady state, its standard numerical 

simulation is not sufficient. Therefore, to compute the basic state 

outside the stable region, we have used the selective frequencies 

damping (SFD) method [27,28] . The objective of this method is to 

eliminate the characteristic frequencies of the instability and thus 

prolonging the steady state within a supercritical regime (when 

this solution is linearly unstable). This method has the great ad- 

vantage of being easily implemented regardless of the equation or 

problem to solve. If q is the vector of variables q = (Y, T ) t and 

˙ q 

is the temporal derivative, the system (1) can be written 

˙ q = f (q ) 

and the filtered system is as follows: {
˙ q = f (q ) − χ(q − q̄ ) 

˙ q̄ = 

q − q̄

�

(8) 

where χ is a control parameter and � is the cut-off frequency. 

To avoid instabilities due to numerical noise, [26] , the solution 

of the filtering operation is considered to be converged when a 

residual level of 10 −10 is obtained. The basic states or the phase- 

space fixed points are shown in Fig. 5 (a) and (b), respectively for 

the temperature and for the concentration for a flow with velocity 

U 0 = 37 cm/s. The fixed points for a flow velocity U 0 = 9 . 955 cm/s 

are shown in Fig. 6 (a) and (b), near the bifurcation point corre- 

sponding to a weak flame. 

2.5. Linearized dynamics and stability analysis 

In this section the linear stability of this basic state Q b = 

( Y b , T b ) 
t is studied. The proposed global linear stability analysis is 

based on the classical perturbation technique where the instanta- 

neous flow q is the composition of the basic state and an unknown 

perturbation q 

′ = (Y ′ , T ′ ) t : 

q (r, θ, z, t) = Q b (r, z) + εq 

′ (r, θ, z, t) (9) 

with ε � 1. Decomposition (9) is introduced into Eqs. (1a) and 

(1b) . The resulting equations are then simplified, first by taking 

into account that the basic quantities satisfy the governing equa- 

tions and secondly by assuming that the fluctuating quantities are 

small, so that these equations can be linearized with respect to the 

disturbance. The equations for the perturbation can be eventually 

written as 

∂Y ′
∂t 

+ U z 
∂Y ′
∂z 

= D 

[
1 

r 

∂Y ′
∂r 

+ 

∂ 2 Y ′
∂r 2 

+ 

1

r 2 
∂ 2 Y ′
∂θ2 

+ 

∂ 2 Y ′
∂z 2 

]
+ 

−Ae 

( 

−
T a 

T b 

) 

Y ′ − AY b e

( 

−
T a 

T b 

) [
T a 

T 2 
b 

]
T ′ (10a) 
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+ U z 
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∂z 

= D 

[
1 

r 

∂T ′
∂r 

+ 

∂ 2 T ′
∂r 2 

+ 

1

r 2 
∂ 2 T ′
∂θ2 

+ 

∂ 2 T ′
∂z 2 

]
+ 

+ 

Q

C p 
Ae 

( 

−
T a 

T b 

) 

Y ′ + 

Q

C p 
AY b e 

( 

−
T a 

T b 

) [
T a 

T 2 
b 

]
T ′ (10b) 

Since the basic state is stationary, the solutions of the linearized 

equation are autonomous, so it is possible to write the perturba- 

tion as a normal mode form (Fourier–Laplace transform): 

q 

′ (r, θ, z, t) = 

ˆ q (r, z; m, λ) e imθ+ λt + c.c. (11) 

The circular frequency λ is a complex number: its real part λr 

represents a temporal growth rate and its imaginary part λi the 

frequency of the perturbation. The physical meaning of λr is in ac- 

cordance with the classical definition of stability: for λr > 0, the 

basic state is unstable whereas for λr < 0 the basic state is stable. 

m ∈ Z is the azimuthal wave number and 

ˆ q (r, z) = 

(
ˆ Y (r, z) , ̂  T (r, z) 

)t 

is the complex eigenfunction vector associated with the eigenvalue 

λ. c . c . represents the complex conjugate. Mathematical form (11) is 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 5. Basic state for the temperature field (a) and for the concentration field (b) obtained by the SFD method. Average speed of fluid is equal to 37 cm / s .

Fig. 6. Basic state for the temperature field (a) and for the concentration field (b) near the weak flame threshold. Average speed of fluid is equal to 9 . 955 cm/s .

then introduced into Eqs. (10a) and (10b) , the linearized equations 

become an eigenvalue problem: ([
L Y (T b , m ) −P T (Y b , T b ) 

QP Y (T b ) /C p L T (Y b , T b , m ) 

]
− λI 

)[
ˆ Y 
ˆ T 

]
= 0 , (12) 

where L Y is the linear operator acting on 

ˆ Y in Eq. (10a) , P T the 

production operator acting on 

ˆ T in Eq. (10a) , L T is the linear oper- 

ator acting on 

ˆ T in Eq. (10b) and P Y the production operator acting 

on 

ˆ Y in Eq. (10b) . L Y , P T , L T and P Y are given in Appendix A . The 

resulting linear operator depends on the basic state Q b and the az- 

imuthal wave number m . The matrix in Eq. (12) must respect the 

following boundary conditions for the perturbed problem: 

• Inflow condition at z = 0 :

ˆ T (r, 0) = 0 , ˆ Y (r, 0) = 0 (13) 

• Outflow condition at z = L :

∂ ̂  T (r, L ) 

∂z 
= 0 , 

∂ ̂  Y (r, L ) 

∂z 
= 0 (14) 

• Symmetric condition is applied at channel axis at r = 0 :

∂ ̂  T (0 , z) 

∂r 
= 0 , 

∂ ̂  Y (0 , z) 

∂r 
= 0 (15) 

• At channel wall r = R

ˆ T (R, z) = 0 , 
∂ ̂  Y (R, z) 

∂r 
= 0 (16)

The boundary conditions are consistent with the time evolution

of the system (1) , since the solution of the direct numerical simu- 

lation can be approximated with the sum of the basic state and a 

perturbation. 

From a numerical point of view, the discretized operator of 

linear system (12) has been built by blocks. This has been done 

involving the Kroneker product between the discretized operator 

and the identity matrix D ⊗I and vice versa I ⊗D depending on 

the direction in which the operator is applied [29,30] . The eigen- 

value problem has been then solved using Arnoldi’s method, hav- 

ing imposed boundary conditions. We have looked for the first 100 

modes with the largest real part, taking a residual level of Arnoldi’s 

algorithm equal to 10 −7 . More information about the numerical 

convergence is provided in Appendix B . 

3. Numerical simulations of the model

3.1. Flame dynamics 

As shown in Fig. 2 , the FREI regime exists between two stable 

zones. The first stability threshold is at 37.4 cm/s and the second 

is at about 10 cm/s. Moreover, in correspondence with the first 

threshold the flame becomes unsteady. This is noticed looking at 

the average position in Fig. 2 . This state modification is character- 

ized by a bifurcation when the equilibrium solution becomes un- 

stable. In this section, the two bifurcation points are studied by 

letting evolve in time the system (1a) –(1b) . We want to point out 

the physical mechanisms underlying the unsteady dynamics of the 

model. For the first stability threshold, starting with a fluid veloc- 

ity for which the flame is steady, the flow rate of methane is grad- 

ually reduced, and the flame position is observed. Decreasing the 

flow rate of mixture, the flame starts oscillating and the oscilla- 

tion amplitude is linked to the flow speed value U 0 . In Fig. 7 , z pos 

is showed as a function of time. The flame position was interpo- 

lated with a 7th-order polynomial to avoid spurious effects due to 

the z -discretization. From the pulsating behavior of the flame, it 

is possible to infer the amplitude | A | (17) of the limit-cycle in the 

region between the stable condition and the FREI one, 

| A | = 

∣∣z max 
pos − z min 

pos 

∣∣ (17) 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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As shown in Fig. 8 , for all the speeds in this range the flame 

oscillates and the amplitude increases with decreasing the flow 

speed U 0 . Figure 8 shows a continuous growth of the amplitude, 

without jumps in the transition from stable to unstable condi- 

tions. Moreover, the amplitude appears to increase linearly | A | ∼
0 . 5 × (U c − U 0 ) where U c is the critical speed at which the system 

become unstable. U c is set equal to 37.4 cm/s, see Fig. 7 . The dia- 

gram in Fig. 8 excludes the presence of any subcritical bifurcation 

but it cannot explain the kind of bifurcation as z pos is not a state 

variable. For this reason, temperature and concentration have been 

recorded in a point within the range of position where the flame 

oscillates. The resulting limit cycle is reported in Fig. 9 . It is pos- 

sible to note that decreasing the mixture velocity from 37.4 cm/s 

to 36.8 cm/s the limit cycle increases its dimension. Projecting the 

limit cycle on the x and y axes it is possible to obtain the ampli- 

tude of the temperature | T | and concentration | Y |, see Fig. 10 . It 

is possible to observe that decreasing the speed, both amplitudes 

increase proportionally to 3 
√ 

U 0 . Hence, it turns out that the tran- 

sition is given by a supercritical Hopf bifurcation, as no jump and 

no hysteretic behavior are present. 

Let us now analyze the integral values of all terms in Eqs. 

(1a) and (1b) , in the whole domain. Specifically, the integral of 

advection, radial diffusion, axial diffusion and the production terms 
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are evaluated and plotted as a function of time in Fig. 11 (a) and 

(c), for a speed flow U 0 = 37 cm/s . The integral values of Eq. (1a) 

are linked to the trend of the mass fraction contained in the nu- 

merical domain, instead the integral value of the terms in Eq. 

(1b) are linked to the energy within the domain, proportional to 

the multiplicative constant of the specific heat. In Fig. 11 for the 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 11. For an average speed of the mixture equal to 37 cm/s , the integrals of all terms in Eqs. (1a) and (1b) are shown. (a) Integral terms of the methane transport equation,

(b) their time derivative, (c) integral terms of the energy equation, and (d) their time derivative. The time evolution of these terms is then related to the flame position (e)

and the flame speed (f). In (a–d), advection ( ©), axial diffusion ( × ), radial diffusion ( � ), production ( �). t 1 is the time of the maximum counter flow speed of the flame, 

t 2 time of minimum flame position, t 3 time of maximum flame speed and t 4 time of maximum flame position.
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Fig. 12. For an average speed of the mixture equal to 9.  955 cm/s,  the integrals of all terms in Eqs. (1a) and (1b) are shown. (a) Integral terms of the methane transport 
equation, (b) their time derivative, (c) integral terms of the energy equation, and (d) their time derivative. The time evolution of these terms is then related to the flame 
position (e) and the flame speed (f). In (a–d) the line with ( ©) is related to the advection term, the one with ( ×) to the axial diffusion term, the one with ( �)  to the radial 

diffusion term and in the end the one with ( �) to the production term. t1  is the time of the maximum counter flow speed of the flame, t2  time of minimum flame position, 

t3  time of maximum flame speed and t4  time of maximum flame position.
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Fig. 14. Growth rate of temperature (a) and concentration (b). The evolution is linear up to the non-linear saturation. The slope of the curve is λr = 4 . 2 s −1 . 

integral values of all terms of Eqs. (1a) and (1b) and for the po- 

sition of the flame there are also their time derivative. The time 

evolution of the production terms ( Fig. 11 (a) and (c)) are in phase 

opposition, as it can be inferred directly from Eqs. (1a) and (1b) . 

From Fig. 11 (a), we can see that the instability dynamics is not 

driven by the mass fraction equation, since the advection is able 

to compensate the fuel-consumption. The evolution of energy pro- 

vides the necessary information for the understanding of the os- 

cillating behavior. Figure 11 (c) shows that the radial diffusion is in 

opposition with the reaction. To explain this behavior we can re- 

fer to the time-scales of the two phenomena at play. The reaction 

time scale is proportional to A 

−1 , whereas the diffusion is propor- 

tional to h 2 / D where h is a characteristic length. Therefore, the typ- 

ical chemical time-scale is much smaller than the diffusive one. We 

explain the resulting dynamics in the following way: if the speed 

flame is high-enough then the diffusion is able to equilibrate the 

reactive term, otherwise the oscillating behavior appears. Since the 

compressibility effects are not taken into account, the flame speed 

turns out to be an approximation of the vectorial sum between 

the reaction speed (counterflow direction) and the mixture one U 0 . 

The reaction speed is equal to the speed the flame would have if 

U 0 = 0 cm/s and the channel was completely filled with fresh mix- 

ture at t = 0 s . With this in mind, we can give the following pic- 

ture: when the reaction term reaches its peak ( t 1 in Fig. 11 (c), and 

(d)) the flame attains the maximum speed in the counterflow di- 

rection, Fig. 11 (f). After this point, the reaction term decreases as 

the radial diffusivity increases. The flame stops ( t 2 in Fig. 11 (e)) be- 

cause it is in a region where the wall temperature is low, and at 

this point ( t 2 ) the diffusion growth is maximum, Fig. 11 (d). The 

sustainability of the combustion is ensured by the fact that the 

flame moves itself in the flow direction where the wall temper- 

ature is higher and the diffusion growth slows down. Again the 

maximum value of the flame speed is linked to a zero derivative 

of the reaction ( Fig. 11 (d) in t 3 time value). After the minimum 

value of the reaction, the flame speed increases again, because of 

the higher temperature at wall. The flame stops at t 4 , Fig. 11 (e), 

where there is the maximum reaction growth and the radial dif- 

fusion strongly decreases, see Fig. 11 (c) and (d). At this point, the 

flame reverses its velocity to enter the zone richer of combustible 

and the loop starts again. 

The same analysis can be carried out for the weak flame. Start- 

ing from a steady solution in the weak flame region, for instance 

at 9.95 cm/s, and then increasing the velocity crossing the FREI 

threshold, for example at 9.955 cm/s , the solution evolves to- 

wards the FREI condition passing through an oscillating behav- 

ior that grows exponentially. The integral values of advection, ra- 

dial diffusion, axial diffusion and production for both tempera- 

ture and concentration fields have been investigated during the 

transient regime. The results are shown in Fig. 12 . The mecha- 

nism underlying the FREI regime is still the counter phase shift 

between the production and the radial diffusion. As before, in 

Fig. 12 , t 1 , t 2 , t 3 and t 4 denote respectively the maximum inte- 

gral value of production, the maximum growth of the radial diffu- 

sion, the minimum integral value of the production and the maxi- 

mum growth of the production. When the FREI regime is reached, 

other mechanisms are involved and the integral values are not suf- 

ficient to describe the dynamics. Near the weak flame threshold, 

FREI regime might be affected by local dynamics or non-linear 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 15. (a) Fourier transform of the temperature signal. The temperature show a principal mode at a frequency of 37.1 Hz. (b) Fourier transform of the linear part of the

temperature signal. Concentration and temperature show only a mode at a frequency of 41 Hz.
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Fig. 16. Growth rate of temperature (a) and concentration (b). The evolution is perfectly linear up to non-linear saturation.
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Fig. 17. (a) Fourier transform of the temperature signal. (b) Fourier transform of the linear part of the temperature signal. Concentration and temperature show only a mode

at a frequency of 13 Hz.

interaction between the three mechanisms, convection , diffusion 

and reaction . Nonetheless, the source of the instability is global, 

and it depends on the contrast between loss and production of 

heat. 

The transition is not only global but even linear. The instan- 

taneous internal energy is provided by the sum of the internal 

energy of each chemical species assuming the specific heat C v con- 

stant with the temperature, see Fig. 13 (a). First, the solution moves 

itself in the basin of attraction of the steady solution at 9.955 cm/s, 

then starts moving around it, see Fig. 13 (b). At the same time, 

the energy of the perturbation starts growing exponentially, sub- 

tracting energy from the basic state. This behavior ensures that 

the evolution can be correctly described by a linear approxima- 

tion at small times. This will be verified later by the linear stability 

analysis. 

Figure 13 (a) suggests another information. Moving from 

9.95 cm/s to 9.955 cm/s, the stable solution is not prolonged in 

the FREI region but it becomes unstable, no hysteric behavior is 

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 18. Spectrum of the 100 most unstable modes. Speed flow is equal to 37 cm/s.

In the inset, the unstable mode is highlighted.

observed. Therefore, this second transition also turns out to be a 

supercritical Hopf bifurcation. 

3.2. Stability analysis by numerical simulation 

In order to characterize the instability, we initialize the sim- 

ulation of the model with the basic state. Until the non-linear 

terms remain small, the time evolution can be described by a lin- 

ear approximation of the model. The numerical simulation initial- 

ized with the basic state is perturbed by adding a noise in the 

temperature and concentration field. This is generated by summing 

a random field of values between 0 and 1 and multiplied by 10 −7 . 

This noise is sufficient to destabilize the basic state. In this way 

the behavior is driven by the most unstable mode that is hence 

triggered. The solution of the direct simulation moves away from 

the basic state. Plotting in a semi-logarithmic plane the amplitude 

of the temperature and concentration oscillations registered in a 

point close to the flame of the basic state, we can observe the 

growth rate of the unstable mode. In Fig. 14 , the temporal evo- 

lution of the concentration and temperature amplitude are shown. 

For small times, the evolution is linear. After the linear regime, the 

non-linear terms are no longer negligible and amplitude saturates. 

Computed through a linear regression, the temporal growth rate 

is equal to λr = 4 . 2 s −1 . The Fourier transform of the temperature 

signal can be used to compute the exact frequency. Figure 15 (a) 

shows the Fourier spectrum of the temperature. The spectrum of 

the concentration reveals the same modes and thus it is not shown 

here. The spectrum exhibits one main frequency (the other peaks 

correspond to the harmonics) of 37.1 Hz. However, it is worth un- 

derlining that Fig. 15 (a) shows the spectrum of the signal with 

both the linear and non-linear perturbations, when the limit-cycle 

is reached. Considering only the linear growth range, the spectrum 

is markedly different, Fig. 15 (b), with only one mode present. Its 

frequency is equal to 41 Hz. 

The same procedure has been carried out for the instability at 

low speed. The basic state, that was subsequently perturbed, has 

been found for a mixture velocity equal to U 0 = 9 . 955 cm/s. A 

Fig. 19. Temperature fluctuation: (a) real part; and (b) imaginary part.

Fig. 20. Concentration fluctuation: (a) real part; and (b) imaginary part.

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 21. Threshold of transition from stable area to FREI. λr greater than zero are unstable while those less than zero are stable. λr (a) and λi (b) are linearly dependent by
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speed so close to the instability threshold was chosen to be certain 

that the transition from stable to unstable condition was driven 

primarily by the linear unstable mode. The temperature and con- 

centration signal obtained at a point close to the ignition is regis- 

tered. The FREI regime can be observed, with the instability grow- 

ing exponentially in time, see Fig. 16 . The growth rate has been 

computed to be λr = 0 . 43 . The Fourier transform of the registered 

signal does not show a clear principal mode and its harmonics but 

a richer dynamics, see Fig. 17 (a). Therefore, with respect to the 

stable/FREI transition at high velocity, the dynamics related to the 

transition FREI/weak flame is more complex. Yet, for small ampli- 

tudes the linear approximation is fulfilled. In fact, considering just 

the portion of the signal before the appearance of non-linear ef- 

fects, the Fourier transform displays one mode, Fig. 17 (b). Its fre- 

quency turns out to be equal to 13 Hz. 

In summary, once computed the basic state, the numerical sim- 

ulation of the linearized set of equations has allowed to compute 

boththe growth rate and the pulsation for the two instabilities en- 

countered in the phase diagram. 

4. Linear stability analysis

4.1. First axisymmetric bifurcation point 

Now we present the results obtained by solving the full eigen- 

value problem given by Eq. (12) . For U 0 = 37 cm/s, the resulting 

eigenspectrum is shown in Fig. 18 . For this speed régime, the ba- 

sic state turns out to be globally unstable to a small perturbation, 

furthermore only one mode is found unstable: λ = 4 . 189 + i 256 . 8 . 

This result is in very good agreement with the numerical results 

obtained heuristically through numerical simulation, as described 

in the previous section, λ 
 4 . 2 + i 257 . The eigenfunctions associ- 

ated with this eigenvalue are presented in Figs. 19 and 20 for tem- 

perature and concentration fluctuation, respectively. 

The temporal oscillation of the physical fluctuation is given 

by: 

q 

′ (r, z, t) = C 1 � 

[
ˆ q (r, z) e λt 

]
= C 1 [ ̂  q r (r, z) cos (γ ) − ˆ q i (r, z) sin (γ )] e λr t . (18) 

Fig. 23. (a) Real part and (b) the imaginary part of the temperature fluctuation.

http://dx.doi.org/10.1016/j.combustflame.2016.02.018
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Fig. 24. (a) Real part and (b) the imaginary part of the concentration fluctuation.
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Fig. 25. Threshold of transition from stable area to FREI. λr greater than zero are unstable while those less than zero are stable. λr (a) and λi (b) are non-linearly dependent

on U 0 .

Table 1

σ and ω comparison obtained by different meth- 

ods: DNS, LNS and stability analysis.

First bifurcation Second bifurcation

U 0 = 37 cm/s U 0 = 9 . 955 cm/s 

σ ω σ ω

DNS 4.2 257 0.43 81.68

LNS 4.19 256.2 0.428 82.8

SA 4.189 256.8 0.427 82.64

where γ = λi t and C 1 = Ce iϕ is a complex constant. Using (18) it is 

possible to reconstruct the time evolution of the fluctuation. It is 

important to remark that the fluctuations evolve mainly in the ra- 

dial direction because of the dominating contribution of the radial 

diffusion. 

Then, we have sought for the values of λr and λi as a function 

of the mixture speed U 0 . Figure 21 shows that the threshold for the 

transition between the strong stable and the unstable FREI regime, 

lies between 37.5 /s ( λr = 0 . 744 ) and 37.4 cm/s ( λr = −0 . 3981 ). 

Both λr and λi are found to be linearly dependent on U 0 . 

The other modes in Fig. 18 are exponentially dumped as their 

growth rate is negative λr < 0. These modes are irrelevant for the 

asymptotic behavior, but they may contribute to the transient evo- 

lution. At variance with the mode shown in Figs. 19 and 20 , these 

modes are not spatially localized, but they are modulated and grow 
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Fig. 26. Eigenspectrum of temporal stability analysis for the azimuthal weave num- 

ber m = 1 ( ©) and m = 2 ( � ) compared with those found by imposing the wave 

number m = 0 ( �). Mixture speed U 0 = 37 cm/s. 

exponentially downstream the flame. Denoting the wavelength k , 

for the stable modes, the phase velocity v p = ω/k turns out to be 

v p ∼ U 0 . All those modes are therefore generated in the burning 

region and then simply advected by the flow field. 
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Table 2

Unstable mode evolution with m . U 0 = 

37 cm/s.

m λr λi

0 4.189 256.8

1 −273.6 707.7

2 −822.1 906.4

4.2. Second axisymmetric bifurcation point 

Eigenvalue problem (12) has been then solved for the transition 

between the FREI and the weak flame. Figure 22 shows the eigen- 

spectrum for U 0 = 9 . 955 cm/s. Also in this case only one mode is 

unstable: λ = 0 . 427 + i 82 . 64 . Again, there is a quite good agree- 

ment between the full result and the direct numerical simula- 

tion of the linear system, which gave λ 
 0 . 43 + i 81 . 68 . The eigen- 

functions associated with the unstable eigenvalue are presented in 

Figs. 23 and 24 , for the temperature and concentration fluctuation, 

respectively. 

The values of λr and λi as a function of the mixture speed U 0 

have been computed. They are shown in Fig. 25 . It is possible to 

see that the threshold lies between 9.95 cm/s ( λr = −0 . 361 ) and 

9.955 cm/s ( λr = 0 . 427 ). Furthermore, both λr and λi turn out to 

depend exponentially on U 0 , Fig. 25 , at variance with the transition 

stable/FREI, which was linear. Also in this case, a continuous stable 

branch is present. These modes are just advected by the flow field. 

In Table 1 the main results are reported. The growth rates σ
and the pulsations ω are compared between the direct numeri- 

cal simulation (DNS) of the system (1a) –(1b) , the numerical sim- 

ulation of the linearized model (LNS) described in the system 

(10a) –(10b) and the results of the stability analysis obtained by 

solving the eigenproblem (12) . 

4.3. Non-axisymmetric modes 

Imposing the azimuthal wave number m different to zero it is 

possible to evaluate the contribution of the 3D component in the 

linear stability framework. That seems to be relevant, since non- 

axisymmetric modes are found in some numerical works [12,31] . 

As already said, because of the periodicity of the azimuthal di- 

rection, m can assume only integer value m ∈ Z . The eigenspectrum 

for the main wave numbers m = 1 , 2 is than compared with those 
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Fig. 28. Eigenspectrum of temporal stability analysis for the azimuthal weave num- 

ber m = 1 ( ©) and m = 2 ( � ) compared with those found by imposing the wave 

number m = 0 ( �). Mixture speed U 0 = 9 . 955 cm/s. 

found with the wave number m = 0 . For the first instability thresh- 

old the results are reported in Fig. 26 . 

It appears that increasing the value of the azimuthal wave num- 

ber m , the unstable mode becomes stable. The value of the growth- 

rate and the pulsation for the three values of m are reported in 

Table 2 . 

The 2D eigenvectors corresponding to the modes in Table 2 are 

modulated in the θ-direction in order to reconstruct the whole 3D 

shape of the fluctuation. The result is shown in Fig. 27 . Increasing 

the m value, the perturbation appears to be more localized in the 

z -direction. 

For the second stability threshold the eigenspectra for different 

azimuthal wave number m is shown in Fig. 28 . In this case, the 

stable branch moves toward a more stable region, and the unstable 

mode disappears. Therefore the model (10) appears to be always 

stable for m � = 0. At variance with Sánchez-Sanz et al. [25] , the 

first unstable mode turns out to be axisymmetric. This is due to 

the fact that the pipe shape imposes more constraints, namely the 

azimuthal periodicity. However, we cannot exclude that changing 

Fig. 27. Flame shape for m = 0 (a), m = 1 (b) and m = 2 (c). In the three subfigures the isosurface is ± 20% of the maximum value of the temperature real part. 
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the Lewis number or for higher flow-rate the most unstable mode 

is non-axisymmetric or spinning. 

5. Conclusion

In this work, we have studied the unstable behavior of a flame 

arising in the combustion dynamics in a small pipe. In particular, 

experiments have unfolded the existence of two instability tran- 

sitions: one from a strong stable flame to a periodic oscillating 

one (FREI regime); and other from the FREI regime to a weak 

stable flame at low flow-rate. The problem has been analyzed in 

the framework of a reduced model. Certainly, with this model the 

whole dynamic of the flame cannot be represented completely, but 

it has been recently shown that it is able to reproduce correctly the 

instabilities in term of flame position, stability threshold and flame 

shape for both cases. For this reason, we believe that the mecha- 

nisms that give rise to the instabilities are properly represented 

within the proposed model. 

Then, once calibrated the present model to reproduce the ex- 

perimental flame dynamics [18] , we have characterized the unsta- 

ble behavior near the two instability thresholds. For this purpose, 

we have evaluated the dynamics of the perturbation with respect 

to the basic state solution, solving the linearized model, which is 

predictive of the unsteady dynamics near the stability threshold. 

Our simulations point out that the main source of the unstable 

behavior is a phase shift between the production term and the dif- 

fusion one. Starting from a stable position and moving in the FREI 

region, temperature production and radial diffusion show an oscil- 

lating behavior in phase opposition. Since integral values provide 

sufficient information to understand the evolution of the flame, the 

dynamics is global and does not depend on local behavior. This 

global feature has been verified through the global stability analy- 

sis. 

To address this issue, we have computed the whole eigenspec- 

trum with the corresponding eigenvectors. This is our main result. 

In particular one sole unstable mode has been found. The others 

are convective modes that enrich the flame dynamics in the tran- 

sition from the steady solution to the asymptotic one. The growth- 

rate and the circular frequency are in agreement with those com- 

puted from direct numerical simulation of the model. Finally, we 

have also studied the 3D extension of the model. In this way, we 

have highlighted that only the axisymmetric mode is unstable near 

the instability threshold. However, the non-axisymmetric behavior 

is not excluded. The eigenspectra for the azimuthal wave number 

different from zero show the presence of an isolated global mode 

that may become unstable in different configurations. 

As perspectives, it could be interesting to explain the role of 

non-linearities when the linear approximation is no longer true. In 

this way, more sophisticate analysis might be attempted such as 

linear and non-linear transient growth analysis. These analyses are 

suggested by the presence of the out-diagonal terms in the Jaco- 

bian matrix and also by the presence of convective modes in the 

eigenspectrum. With the aim of controlling the instability, a wave- 

maker analysis could also be tried. Lastly, it would be interesting 

to compare the results of the stability analysis with experiments, 

even in a different setup. 

Acknowledgments 

The authors would like to thank F. Bianco and G. Legros for 

fruitful discussions. 

Appendix A. Linear operator and eigenvalue problem 

In this appendix the definition of the linear operators used in 

Section 2.5 is given. In order to obtain the fluctuation problem, 

each physical quantity is divided in the sum of a basic state plus a 

fluctuation (A.1) . 

Y (r, θ, z, t) = Y b (r, z) + Y ′ (r, θ, z, t)

T (r, θ, z, t) = T b (r, z) + T ′ (r, θ, z, t) (A.1) 

This decomposition is then applied in (1) . Since the basic state 

is stationary, the terms which depend exclusively on the basic state 

disappear as they are solution of the linearized equations. The fluc- 

tuation problem is then described by (A.2a) and (A.2b) . 

∂Y ′
∂t 

+ U z 
∂Y ′
∂z 

= D 

[
1 

r 

∂Y ′
∂r 

+ 

∂ 2 Y ′
∂r 2 

+ 

1 

r 2 
∂ 2 Y 

∂θ2 
+ 

∂ 2 Y ′
∂z 2 

]
+ 

−Ae 

( 

−
T a 

T b 

) 

Y ′ − AY b e

( 

−
T a 

T b 

) {
T a 

T 2 
b 

}
T ′ (A.2a) 

∂T ′
∂t 

+ U z 
∂T ′
∂z 

= D 

[
1 

r 

∂T ′
∂r 

+ 

∂ 2 T ′
∂r 2 

+ 

1 

r 2 
∂ 2 T 

∂θ2 
+ 

∂ 2 T ′
∂z 2 

]
+ 

+ 

Q

C p 
Ae 

( 

−
T a 

T b 

) 

Y ′ + 

Q

C p 
AY b e 

( 

−
T a 

T b 

) {
T a 

T 2 
b 

}
T ′ (A.2b) 

In order to simplify the notation, the following operators have 

been defined: 

• Advection operator

A = U z 
∂ 

∂z 
(A.3) 

• Diffusion operator

D = D 

[
1 

r 

∂ 

∂r 
+ 

∂ 2

∂r 2 
+ 

1

r 2 
∂ 2 

∂θ2 
+ 

∂ 2

∂z 2 

]
(A.4) 

• Production operator for Y

P Y (T b ) = Ae 

( 

T a 

T b 

) 

(A.5) 

• Production operator for T

P T (Y b , T b ) = AY b e 

( 

T a 

T b 

) {
T a 

T 2 
b 

}
(A.6) 

The symbolic linearized equation for the fluctuation can be 

written as 

∂Y ′
∂t 

= (−A + D − P Y (Y b )) Y 
′ − P T (Y b , T b ) T 

′ (A.7a) 

∂T ′
∂t 

= 

(
−A + D + 

Q 

C p 
P T (Y b , T b ) 

)
T ′ + 

Q

C p 
P Y (Y b ) Y 

′ (A.7b) 

Following Eq. (11) for the global instability, Fourier–Laplace 

transform is made 

q 

′ (r, θ, z, t) = 

ˆ q (r, z) e imθ+ λt

Then the obtained equations are: 

λ ˆ Y = L Y (T b , m ) ̂  Y − P T (Y b , T b ) ̂  T (A.8a) 

λ ˆ T = L T (Y b , T b , m ) ̂  T + 

Q 

C p 
P Y (T b ) ̂  Y (A.8b) 

where L Y (T b , m ) = (−A + D(m ) − P Y (T b )) and L T (Y b , T b , m ) = 

(−A + D(m ) + QP T (Y b , T b ) /C p are the linear operators for the mass 
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Fig. B.29. Domain discretization on the temperature field in presence of the flame.

fraction and temperature. So the eigenvalue problem can be for- 

mulated as (A.9) . ([
L Y (T b , m ) −P T (Y b , T b ) 

QP Y (T b ) /C p L T (Y b , T b , m ) 

]
− λI 

)[
ˆ Y 
ˆ T 

]
= 0 (A.9) 

In (A.9) the terms off-diagonal, P T and − Q 
C p 

P Y , could be induce 

a non-normality in the linear operator. This can be the cause a 

transient grow of the energy in the system that have to be veri- 

fied. 

Appendix B. Convergence of the eigenvalue problem 

In this appendix, we highlight the influence of the domain size 

and the mesh setting. A study of the convergence of the mesh has 

already done by Bianco et al. [14] in his work but we check here 

the impact of the grid about the well resolution of the unstable 

eigenvalue. The eigenspectrum of the linear operator in the fluc- 

tuation problem strictly depends on the quality of the basic state 

and the ability of the grid to well discretize the spatial waves. As 

explained in Section 2.2 , to have a reasonably dimension of the lin- 

ear operator a moving mesh has been adopted. The strategy is the 

same as that adopted by Bianco et al. [14] . The numerical domain 

is divided in three parts: burn region (B), fresh air region (F) and 

exhaust gas (E). The discretization setting is shown in Fig. B.29 . 

The B region follows every n steps the position of the flame. 

The grid size in this zone is constant. Out of the burn region the 

refinement of the mesh is gradually decreased in space following 

a geometrical series. In the regions E and F the geometrical series 

is the same. About the spatial resolution of the temperature and 

concentration field there are three parameters that can influence 

the result of the stability analysis. The first is the numerical do- 

main dimension, the second is the dimension of the B region and 

in the end the minimum grid size in the B region. About the do- 

main dimension, as the asymptotic behavior is piloted by a mode 

that is localized in the space, even a small dimension around the 

B region is sufficient to catch the unstable mode. The error on the 

λr and λi values is less than 10 −5 if a domain between 3 and 8 cm

is used instead of 0 and 10 cm . The domain size is rather linked to 

the well representation of the all dynamic of the flame from the 

ignition position to the extinction or stabilized one for the basic 

state. 

The dimension of the B region is the one that is able to well 

discretize the production zone ( P Y and P T ). A B size equal to 

0.9 cm has been used. An error less than 10 −4 is reached if a non- 

adaptative mesh that has a constant discretization from the igni- 

tion point to the stable position of the flame is used. 

In the end the axial discretization dz was tested. In the ta- 

ble given below there is the comparison between three grid 

dimensions for a velocity equal to 37 cm/s. dz size turns out to 

be the most critical parameter because it has to be able to catch 

the production zone that is really tiny as it is possible to see in 

Fig. 3 . 

dz[ cm ] λr λi

1 . 3 × 10 −3 4.1887 256.83

1 . 6 × 10 −3 4.1878 256.79

2 × 10 −3 4.2661 256.53
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