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Experimental
investigation of an
actively controlled
automotive cooling
fan using steady air
injection in the
leakage gap

Tarik Azzam1,2, Richard Paridaens1, Florent Ravelet1, Sofiane
Khelladi1, Hamid Oualli2, Farid Bakir1

Abstract

In an axial fan, a leakage flow driven by a pressure gradient between the pressure

side and the suction side occurs in the gap between the shroud and the casing.

This leakage flow is in opposite direction to the main flow and is responsible for

important energy dissipations. Therefore, many authors have worked to understand

this phenomenon in order to reduce these inherent energy losses. Up till now,

most of the studies reported in literature are passive solutions. In this paper, an

experimental controlling strategy is suggested to reduce the leakage flow rate.

To this aim, a fan with hollow blades and a specific drive system were designed

and built for air injection. Air is injected in the leakage gap at the fan periphery.

The experiment was performed for 3 rotation speeds, 5 injection rates and 2

configurations: 16 and 32 injection holes at the fan periphery. The experimental

results of this investigation are presented in this article.
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Nomenclature

D diameter radius (m)
Gain power gain added by the control
P power delived by the fan (W)
P0 power delived by the fan forqinj = 0(W)
qinj injection rate (m3.s−1)
qmax maximum fan flow rate (m3.s−1)
qv fan flow rate (m3.s−1)
Re fan Reynolds number
R int hub radius (m)
Rmax tip radius (m)
xfan relative position between the fan and the carter (m)
xholes position of the injection holes on the casing (m)
W relative velocity of the fan (m/s)
∆P pressure difference generated by the fan (Pa)
µ air dynamic viscosity (Pa.s)
φ flow coefficient
ψ static pressure coefficient
ρ mass density (kg.m−3)

Introduction

The leakage flow occurring at the blade tip has a strong impact on turbomachinery. This
flow driven by the pressure difference between the pressure side and the suction side
is responsible for important energy dissipations and sound generation. This is certainly

the reason why a huge number of authors are involved in such a problem investigation
and sought mainly to enlight the underlying mechanisms behind this phenomenology.

Boudet et al. (1) investigated experimentally and numerically the tip leakage flow in
an axial fan. They focused on the tip leakage vortex wandering. This vortex appears

to be of major contribution in noise radiation. Fischer et al. (2) measured the flow in
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the tip gap of a turbine using an optimized non-intrusive measurement concept based

on frequency modulated Doppler global velocimetry. They succeeded to resolve the
vortex structure of the tip leakage flow the By with high temporal resolution. Pogorelov
et al. (3) numerically investigated the vortical structures around the tip-gap region of

an axial fan. The authors showed that the reduction of the tip-gap size totally changes
the flow field. It decreases the amplitude of the tip-gap wandering vortex resulting in a

significant sound power reduction. The effects of tip-gap size on the tip-leakage vortical
structures are investigated by You et al. (4) using large-eddy simulation. Their results

suggest that the tip gap size has a strong impact on the tip-leakage cavitation leading to
noise and vibration enhancement and thus degenerative performances. Sang Woo Lee
and Seong Eun Lee (5) investigated the impact of the squealer rims in a turbine cascade.

By modifying the height-to-span ratio, the total-pressure loss coefficient mass-averaged
could be reduced by a rate of 11.6%.

To reduce the leakage flows, different geometrical solutions have been investigated.
Many of them deal with the optimization of the labyrinth seal (6; 7; 8; 9; 10).

Wallis (11) tried to control the leakage flow in a turbine by using turning devices.
Corsini et al. (12; 13) investigated the use of profiled endplates at the blade tip and

succeeded to change the orientation of the leakage flow structure. AktÃijrk et al. (14)
studied the impact of five different tip platform extensions on the blade pressure side.
Pardowitz et al. (15) used a rotating shroud band to suppress the tip clearance vortex

system. Longhouse (16) showed that rotating shroud band is a practical solution for
controlling tip clearance noise. In electric motor, the cooling airflow is generated by

a radial flow rotor. Vad et al. (17) redesigned the existing fan rotor to a shrouded
axial one. For the same cooling performance, they reduced the fan noise and the

power consumption. Gourdain et al. (18) considered rotor-stator interactions and tip
leakage flow effects on overall performance and aerodynamic stability. The authors
investigated 3 configurations. The configuration 2 has a larger clearance gap compared

to the configuration 1. The configuration 3 is identical to the configuration 1 with a
special casing treatment based on a honeycomb design. Comparing the configuration

2 to 1, the authors showed that with a larger clearance gap the stable operating range
could be reduced by 40% and the efficiency by 2%. When comparing the configuration

3 to the configurations 1 and 2, the authors succeeded to obviate the losses with the
special casing treatment.

In automotive, the leakage phenomenon strongly impacts the global performances
of the cooling fan (19; 20; 21). Thus, due to confinement constraint, the leakage gap
is larger than in other area: the gap to blade height is about 2% (22). This paper deals

specifically with the phenomenon of leakage flow in an axial automotive cooling fan.
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Because of numerical geometry refinement limits, this article investigates the control

by tip injection. Many authors already used this solution to improve turbomachinery
characteristics. Using the injection upstream of the rotor, Weigl et al. (23) succeeded
in stabilizing rotating stall and surge in a transonic compressor which provided an

enlargement of the operating range. Rhee et al. (24) increased the lift of a hydrofoil
by injection control. Eberlinc et al. (25; 26; 27) experimentally increased the pressure

of an axial fan hollow blades by a rate of 6%. This gain was due to a free jet applied
at the trailing edge of the blades. This free jet flow led to flow velocity increasing

and adverse pressure gradient decreasing in the boundary layer. Wang and Zhao (28)
experimentally and numerically investigated a transonic turbine cascade with different
trailing edge ejections. As Eberlinc et al. (25; 26; 27), the authors successfully reduced

the vortex at the trailing edge of the blades.
In this paper the control by tip injection is used to reduce the phenomenon of leakage

flow occurring at the blade tip. Neuhaus and Neise (29) attempted to reduce the leakage
flow of an axial fan applying an active flow control at the tip region of the impeller. Air

is injected in the opposite direction of the flow by slit nozzles flush mounted in the inner
casing wall. With this process, the authors were able to shift the stall point towards

lower flow rates and to enlarge the useful range of the fan characteristics by 62%.
They could also increase the pressure by 28% and the efficiency by about 10%. Morris
and Foss (30) study was devoted to relatively large (2.5 cm) tip clearance required in

automotive cooling fans. A jet of high momentum air was delivered by a fixed shroud
into the leakage gap. Enhancement of both the performance and efficiency could be

ensured at higher flow rates. Using a similar aerodynamic fixed shroud concept, Neal
and Foss (31) investigated the impact of air injection into tip clearances smaller than

those of Morris and Foss. The authors increased the flowrate by 34% and the efficiency
by 17% with the air injection system. Niu and Zhang (32) measured the effect of
an active tip-clearance control method based on tip injection in a high-turning axial

turbine cascade. The authors injected air through a row of 10 equidistant holes, directed
towards the pressure surface at an angle of 45◦relatively to the blade tip surface. They

found that tip injection can effectively reduce tip clearance mass flow, resulting in a
smaller tip clearance vortex and lower losses in the passage. In order to reduce the blade

tip clearance leakage in turbine designs, Wadia et al. (33) numerically investigated the
effects of an active jet-flow injected into the leakage gap for five differently located

injection holes and three jet-flow mass rates. The efficiency could be enhanced by an
amount of 0.35% with loose tip clearance, and by 0.3% with tight tip clearance.Hamik
and Willinger (34) analytically and numerically investigated the concept patented by

Auxier (35) in 1995. The idea consists into connecting the blade leading edge to the
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blade tip by an internal channel. Due to the pressure difference, a jet is injected to the

tip gap and blocks the leakage flow. With an injection mass flow rate of 0.5% of the
mass flow, they predicted a performance improvement which was independent of the
tip gap width. Hu et al. (36) applied the concept proposed by Auxier to an axial fan

and experimentally investigated the interaction between the tip leakage flow and the tip
injection flow using a 2D-PIV technique. As expected, the authors observed a reduction

of the leakage flow. However, the tip injection generated a wake flow phenomenon
similar to the Karman vortex street resulting in more intricate flow with non-stationarity

enhancement.

In this study, an active control by air injection into the clearance gap between the
shroud and the casing of an axial automotive cooling fan is experimentally investigated.

The air is injected in the gap between the rotating shroud and the fixed casing. It
is sought to to reduce the leakage flow. The fan with hollow blades is built using a
rotomolding process. The air is injected through the fan axis and excited at the shroud

ring in order to counter the leakage flow. Interesting results are obtained by this air
injection controlling technique.

Experimental setup

The axial-flow fan with hollow blades

The fan (Figure 1) used in this study is an automotive cooling fan. It is a controlled
vortex designed axial-flow fan with thick and hollow blades (37). The hub-to-tip radii

ratio (R int/R max) of the six blades is equal to 0.337. The tip radius ( Rmax) is equal to
179 mm. This fan is in polyethylene material and obtained using rotomolding process.
A suited mold is loaded with polyethylene powder (500g) and heated to 250◦C. System

rotation disperses the softened material sticking to the walls. A hollow and circular
shroud ring of 31-mm axial length and 9-mm thick is added to the fan. Adjunction

of this shroud ring at the blade tips significantly impacts on the loss mechanisms
as reported in (33; 38; 39). For brevity, the effect of such a shroud used to ensure

stronger mechanical properties is alleviated but details can be found in references
(33; 38; 39). Naturally, the hollow character of the fan is dictated by the need of inside
fluid circulation.

With this internal flow circulation, different applications can be met. It is already
intended to investigate the impact of injected air at the trailing edges (Figure 2a) as
extension of the present work. In fact, it is reported in literature that injecting air at this

position locally increases the flow velocity with tendency to reduce the boundary layer
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a) b) c) 

Figure 1. The hollow fan: the whole fan (a) and the fan cut in two parts (b,c).

stalling, Eberlinc et al. (25). It is also planned to experiment injection at the side of the
shroud as shown on figure 2b. This is expectedly to reduce leakage flow. In this study,

air is injected into the fan and exits at the periphery of the shroud (Figure 2c) in a 4-
mm leakage gap. Two configurations are explored: the shroud is composed of 16 or 32

injection holes of 4 mm regularly spaced on the circumference. The holes are oriented
in the direction (r, θ, z) = (1, −1, 1)in such a way to counter the leakage flow. The

direction has a component in θ to compensate the fan rotation.

a) b) c)

Figure 2. Actual and further investigations: injection at the trailling edge of the blade (a),
injection at the side of the shroud (b) and injection at the periphery of the shroud (c).
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The carter used in this study is of the same thickness as the fan: 46 mm. Thus, many

positions between the fan and the carter are possible. The figure 3 (a) represents 3
relative positions: the output position with an offset of -30 mm between the fan and
the carter, the standard position with no offset and the retracted position with an offset

of +30 mm. This relative position has a strong influence on the fan characteristics
especially when the injection control is operating. In a similar way, the position of the

injection holes on the casing also has a strong influence on the control. The figure 3 (b)
represents 3 different positions of the holes on the casing:xholes = 1/4L, xholes = 1/2L

and xholes = 3/4L. The impacts of those positions are not investigated in this article.
The results presented here are obtained for a standard position between the fan and
the carter ( xfan = 0) and for the injection holes located at the middle of the casing

(xholes = 1/2L).

xfan=-30 mm xfan=0 xfan=+30 mm

Position -30 mm Position 0 mm Position +30 mm

Carter

Axial fan

xholes=3/4 L

Position 1/4 L Position 1/2 L Position 3/4 L

xholes=1/2 Lxholes=1/4 L

L

b)

a)

Figure 3. The relative position between the fan and the carter (a) and the position of the
injection holes on the casing (b).
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The drive system

To supply air to the fan and the casing, the 3-bar compressed air system of the
laboratory is used. A flowmeter and a valve are installed upstream the fan and the casing

in order to control the injection. For fan security reasons, the injection is made at the
maximum injection flow rate equal to 700 L/min at an unknown low pressure. Yet, it

is planned to strengthen the fan by using another material rather than polyethylene. A
specific drive system shown on Figure 4 was built to connect the compressed air system
to the hollow fan. The drive system has two functions. It transmits the rotation from the

motor to the fan and allows the injection from the compressed air system into the fan.
To fulfill its functions, the drive system is composed of two shafts connected through

a pulley and belt system. The first shaft connects a 4-kW motor to the pulley and belt
system. On this shaft a HBM strain gauge transducer is installed. It measures the torque

with an uncertainty corresponding to 0.1% of the full scale. In this case the full scale is
equal to 5 N.m. The second shaft connects the pulley and belt system to the fan. It also
connects the compressed air system to the fan. This connection is possible because the

shaft has the particularity to be hollow. Into the shaft, a rotary joint is used to inject air

from a stationary source to a rotating piece. The rotary joint is brand Deublin and has
the reference 1115-000-200. The fan angular velocity is measured with a tachymeter
of relative precision ±0.2%.

4-kWCmotor HBLCstrainCgauge
transducer

PulleyCandC
beltCsystem

AxialCfan

EjectedCholes

CompressedCairCsystem

PressureC
régulator

Flowmeter Rotary
joint

HollowC
shaft

Figure 4. The fan drive system.
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In this article, air injection by a compressed air system is used as convenience. The

investigation does not focus on how the air injection is made. It rather focuses on the
potential contribution of the control by air injection in an axial fan. Yet, in a further
study the authors project to fix an internal fan to the main one in order to generate the

air injection in a passive way. This system described on Figure 5 is composed of the
main axial fan and an internal centrifugal fan. The internal centrifugal fan is fixed to

the axial fan and has the same rotational speed.

+ =

Main axial fan
Internal

centrifugal fan Passive control axial fan

Figure 5. A passive control axial fan.

The test bench

To determine the global performances of the fan, an air suction test bench was used.

This experimental facility shown on Figure 6 was designed and built at the laboratory
according to the ISO 5801 standard [10]. It consists of a cuboid of size 1.3 x 1.3 x
1.8 m. A pierced plate inside it prevents flow prerotation. The air flow rate is set and

measured according to the ISO-5167 norm [11] by setting the aeraulic resistance of the
bench through diaphragms of various sizes. The elevation pressures are measured with

an absolute precision of ±0.1Pa.

Results

The experiment was carried out for 3 rotational speeds, 5 injection rates and 2
configurations with a different number of injection holes at the fan periphery. The
results are presented on Figure 7. The figure represents the fan characteristics for a

rotational speed equal to 1000 rpm (a, d), 1500 rpm (b, e) and 2000 rpm (c, f), and for a
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Axial fan 

Diaphragms 

Anti-gyration device

Figure 6. ISO-5801 test bench. The dimensions are 1.3 x 1.3 x 1.8 m. The fans suck the
flow through the test bench.

number of injection holes equal to 16 (a, b, c) and 32 (d, e, f).ψ and φ are respectively

the static pressure and the flow coefficient:

ψ =
2∆p
ρu2 (1)

φ =
4qv

πD2u
(2)

In order to quantify the impact of the control by air injection, the fan characteristics
are plotted for 5 different injection rates. These are normalized and reported to the

maximum fan flow rate. The maximum fan flow rate depends on the rotation speed and
it is equal to the rate when the static pressure difference is zero for the configuration

with no injection. The maximum fan flow rate is respectively equal to 0.39m3/s , 0.67
m3/s and 0.97 m3/s for corresponding rotation speeds equal to 1000 rpm, 1500 rpm
and 2000 rmp. The black curves represent the fan characteristics with no injection.

These are identical for 1500 rpm and 2000 rpm and different for 1000 rpm. This
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difference probably comes from additional losses appearring at low Reynolds number

(40). The Reynolds numbers are respectively about 1.20105, 1.80 105 and 2.40 105 for
a rotation speed equal to 1000, 1500 and 2000 rmp at the design flow rate, φ = 0.17.
The Reynolds numbers are defined as follow :

Re =
ρWRmax

µ
(3)

At low flow rate, the injection does not modify the fan characteristics regardless of the
rotational speed and the number of holes. When increasing the flow rate, however,
the pressure coefficient increases as well. This is well observable when flow rates

become sufficiently high (29). As expected, the pressure coefficient increases with the

injection rate. Nevertheless, a saturation phenomenon can be observed. For example,
on Figure 7 (a), an injection rate equal to 6% does not seem to affect the pressure
coefficient comparatively to an injection rate equal to 5.1%. It can be conjectured

that this phenomenon appears when the leakage flow is drastically reduced; so that
an additional injection rate is useless. At high rotation speed, the control by injection

seems to be less significant. However, this result is to be linked with the value of the
normalized injection rate which decreases with the rotation speed. At 1000 rpm, the

injection rate is equal to 6% of the maximum fan flow rate while at 2000 rpm the ratio
is only 4.6%.

To analyze the influence of the number of holes, the figure 8 is plotted. On this figure,

the power gain added by the control versus the normalized injection rate are presented
for rotation speeds, 1000 rpm (a, d, g, j, m), 1500 rpm (b, e, h, k, n) and 2000 rpm (c,
f, i, l, o) and for the 5 throttles. This gain is defined as follow:

Gain =
P − P0

P0
(4)

P = qv∆P is the power delivered by the fan and P0 is the power delivered by the
fan for qinj = 0. Each throttle corresponds to a different diaphragm of the test bench

(Figure 6) and so it corresponds to a different aeraulic resistance of the circuit. The
resistance increases with the number of throttle. For each figure, the results obtained

for the 2 configurations are represented. The results for 16 and 32 injection holes are
respectively plotted with circle and cross markers. In this study, the active control by

air injection adds an increase up to nearly 40% in the delivered power. For an identical
normalized injection rate ( qinj/qmax) the most important gains were obtained for the
lowest rotation speed (1000 rpm) and the lowest aeraulic resistance (throttle 1). As

expected, the delivered power does not change between the 2 configurations when there
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Figure 7. Comparison of aerodynamic characteristic of the axial fan for 5 different injection
rates and for 3 rotation speeds: 1000 (a, d) 1500 (b, e) and 2000 (c, f) rpm and for 16 (a, b,
c) and 32 holes (d, e, f) at the fan periphery.

is no injection. However, for the same injection rate, the delivered power is higher for
the configuration with 16 holes than for the configuration with 32 holes. This result
may be understood by referring to the velocity injection at the periphery of the fan. By

mass conservation, for the same injection rate, the configuration with 16 holes has a
velocity injection twice higher than the configuration with 32 holes. Thus in this case,

a higher velocity injection spread across 16 holes seems to better reduce the leakage
flow than a lower velocity injection spread across 32 holes. Regardless the number of

holes, an increase of the injection rate increases the power gain. However, the saturation
phenomenon could also be observed in this Figure especially at high power gain (a, d)

and at low working flow rate (k, l, m, n, o). When this phenomenon appears, an increase
of the injection rate and the modification of the number of holes have no influence on
the control. The authors think that this phenomenon appears when the leakage flow

becomes nonsignificant.
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Figure 8. The power gain added by the control for 3 rotation speeds: 1000 (a, d, g, j, m),
1500 (b, e, h, k, n) and 2000 rpm (c, f, i, l, o) and 5 throttles. +: results for 16 injection holes.
o: results for 32 injection holes.

Conclusion

A rotomolding process was used to build a hollow fan in order to study the leakage flow
control by air injection at the fan periphery. To drive the fan and simultaneously control
the air injection, a specific drive system was designed and built. Experiments were

carried out and conducted for 5 injection rates, 3 rotation speeds and 2 configurations,
16 and 32 holes at the fan periphery. This control leads to an improvement of the fan

characteristics. An increase up to nearly 40 % in the delivered power was registered.
In fact, by reducing the leakage flow, the blades could work better especially at the

periphery. The experimental results show the control is particularly efficient at high
flow rate. An increase of the injection rate generates higher pressure coefficients. In

this case, for the same injection rate, better results are obtained for the configuration
with 16 holes at the fan periphery than the configuration with 32 holes. A saturation
phenomenon is also observed and is likely due to weak leakage flow. As perspectives,

the authors plan to consider the impact of air injection at the trailing edges. Injecting air
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at the trailing edges increases locally the velocity flow and tends to reduce the boundary

layer stalls. Instead of flow injection, it would also be interesting to experiment suction
flows for fan control.
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