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Nonlinear Regenerative Dynamics Analysis of the

Multicutter Turning Process

A.M.Gouskov, M.A.Guskov, D.D.Tung, G.Y.Panovko

This work presents nonlinear dynamics modeling results for an investigation of continu-
ous cut stability in multicutter turning. The dynamics modeling of the multicutter turning
process is carried out through the complete mathematical model of nonlinear dynamics. The
dynamic stability of the system is estimated through the possibility of self-oscillations generation
(Poincaré –Andronov –Hopf bifurcation) of the cutters with lobes of the stability diagram. This
paper analyzes the relationship of the axial offset and the cutter angular position for compen-
sation of the system parameters. As a result, the analysis of the influence of the technological
system parameters on the chip thickness, their cross-sectional shape and the stability of the
system is carried out.
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1. Introduction and problem formulation

One of the methods of increasing the productivity of the turning process is the use of multiple
cutter systems, in which the effective depth of cut in one pass can be increased, the cutting forces
can be partially balanced (especially in the transversal direction, which is particularly important
for thin-walled workpieces), cutting operations can be combined (e.g., raw and finishing), and
the processing time can be substantially reduced. Several works have addressed multiple cutter
turning systems in recent years [2, 4, 8, 9, 10, 11, 12, 13, 19, 20].

Under certain conditions, the cutting with constant depth can become dynamically unstable.
The problems of oscillations arising during machining has been discussed in numerous works [6,
15, 17, 18, 21]. One of the reasons for the loss of stability are nonlinear phenomena underlying
the cutting and friction forces (in particular, ploughing on the flank face of the cutter), depending
on the relative motion in the cutting interaction zone, and potentially leading to the interrupted
cut (chip fragmentation) [5, 16, 17]. Another class of important causes of instabilities are the
regeneration of cut surfaces (i.e., cutting the surfaces formed during the previous pass of the
cutter), workpiece flexibility, temperature effects etc. [1, 3, 6, 15]. One of the important problems
in the technological processes of turning is the self-excitation of the cutting tool vibration. In
some cases, tool vibrations can have a positive effect on the machining process: they allow
cutting forces to be reduced. But in most cases, the self-excitation of vibration is an extremely
harmful phenomenon, which reduces the quality and accuracy of vibration-free turning.

2. Multiple cutter turning dynamics model

This paper discusses the longitudinal turning scheme of a round workpiece with several
cutters simultaneously (Fig. 1).

Fig. 1. Multiple cutter process model.

Workpiece (1) is rigidly fixed in the spindle (2) of the lathe (Fig. 1a). Cutters (3) are
located around the circumference of the part at an angle ϕj , j = 1, n (n is the number of
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cutters), moreover,

n∑

j=1

(ϕj) = 2π (Fig. 1b). Each subsequent cutter is installed with a certain

axial displacement of H0j in the machining plane relative to the adjacent (j + 1)th cutter. All
the cutters are mounted on a common support (4), moving at a constant speed V along the
axis of the part. The part rotates around its longitudinal axis with a constant angular velocity
ω. The cutters have coupled dynamics — they interact with each other through the formed
surface. That is, the jth cutter interacts with the surface at time t formed by the “leading
ahead” (j + 1)th cutter at time t− ϕj/ω.

In this work we consider multicutter vibration with axial compliance of the cutters. De-
pending on the stiffness and relative positioning, different oscillation and chip formation patterns
take place. This paper is a development of studies conducted in [8, 9, 10–13]. Unlike our pre-
vious works, the main goal of this study is to identify the effect of technological parameters of
cutting (depth of cut, cutting speed, angular speed of the part) and the installation axial and /
or angular displacement of the cutters on the stability of the continuous (vibration-free) cutting
mode. This paper analyzes the nonlinear dynamics and stability of the process of turning a part
along the axis of rotation. Conditions will be formed for mutual compensation of angular and
axial displacements that do not lead to a change in the boundaries of areas of stability of contin-
uous cutting. Determining the limits of stability, the passage of which leads to a rigid excitation
of vibrations (the subcritical Poincaré –Andronov –Hopf bifurcation [6]) makes it possible to
reasonably designate the cutting tool installation parameters and the technological processing
parameters at which the risk of tool vibration is minimized.

The present work is focused on the dynamics and stability of multicutter turning as a
function of cutters’ positions and of process parameters (cut velocity), with the regenerative
effect considered. Thus, the conditions of auto-excitation of oscillations and of steady cut are
analyzed.

The paper is organized as follows. First, a model for the dynamics of a multiple cutter
turning system is elaborated for an arbitrary number of cutters, in the form of a system of
delayed differential-algebraic equations (DAE). Then a specific case of two cutters is examined
in detail, and the steady continuous cut stability conditions are analyzed; a methodology for
SLD construction is proposed. Finally, a time domain simulation approach is developed for this
problem, based on ε-embedding.

Every cutter is considered as a rigid body, fixed on the carrier via a holder with finite
axial stiffness. We thus have a dynamical system with one degree of freedom (DOF) per cutter,
corresponding to its axial displacement, and the cutting forces will be taken to be axial. It can
be observed that the analysis that follows below can also be applied to the case of a rotating
tool carrier and of the axial feed motion of the part. The mathematical model of nonlinear
dynamics of the process under study can be described by a system comprising three groups of
relationships [6, 7, 8, 12]:

• equation of motion;

• cutting law;

• generation of new surfaces.

The equations of motion for the axial vibrations of the cutters can be written as follows [11, 12]:

mjüj = −dju̇j − kjuj + Fj(t, hj); j = 1, n, (2.1)

where mj is the mass of the jth cutter, dj and kj are, respectively, the damping and stiffness
coefficients of the jth tool holder, uj(t) is the axial displacement (vibrations) of the jth cutter
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with respect to its nominal (quasi-steady) state, and hj(t) is the current value of the thickness
being removed by the jth cutter.

Cutting forces in the axial direction acting on the jth cutter are governed by a fractional
rational function [8, 11]:

Fj(t) = K0hj(t)
c+ rhj(t)

c+ hj(t)
; j = 1, n, (2.2)

where K0 = γσLB is the apparent statical stiffness coefficient, σL is the characteristic stress
value for the workpiece material, B is the cut width, and γ, r, c are the coefficients determined
by experiment ([γ] = 1, [r] = 1, [c] = m). Other existing models of cutting forces that take into
account various technological parameters of the process (for example, the effect of cutting speed,
application of coolant, etc.) are actually taken into account in the values of the experimental
coefficients used in this work. It should be emphasized that the law (2.2) used here, unlike

those used traditionally, for example, the exponential cutting law — F (h) = ahb (see, for
example, [2, 3, 6]) — with two experimental constants a, b < 1, has a finite derivative at zero:
static cutting rigidity at zero dF/dh |h=0 must be finite. For power dependence dF/dh |h=0=

= abhb−1 |h↓0−→ ∞. For the law used in this work (2.2) dF/dh |h=0= K0 < ∞. This is
important for the numerical implementation of intermittent cutting, where the thickness of the
removed layer is zeroed during the cutting process. The removed material thickness hj(t) under
the jth cutter depends on the state of the surface after the passage of the previous, (j–1)th
cutter. The location of the surface generated by the jth cutter is a function of time and can be
defined by the distance to the free end of the part. Thus, the amount of matter removed during
this surface generation is comprised between the actual jth cutter position at current time t and
the position of the previous cutter at time t− tj−1 , where tj−1 = ϕj−1/ω is the delay between
cutters (j and (j–1)). These features can be described by the following relationships, based on
[7, 8, 9, 15]:

⎧
⎪⎪⎨

⎪⎪⎩

Dj(t) = V t− uj(t)− Lj−1(t− tj−1) +A−H0j,

hj(t) = max[0,Dj(t)],

Lj(t) = Lj−1(t− tj−1)

(2.3)

where (see Fig. 1a) Dj(t) is the distance from the jth cutting edges to the surface it is processing
(the surface left after the passage of the previous, (j − 1)th, cutter at time t − tj−1; Lj(t) is
the distance from the free end of the workpiece to the surface being left by the jth cutter; uj(t)
are the oscillations of the jth cutter (in the axial direction) as the deviation from the nominal
(quasi-static) state; A is the distance from the initial position of the cutting edge of the first
cutter to the free end of the workpiece; H0j is the axial offset of the jth cutter with respect to
the first one.

Equations (2.1)–(2.3) enable one to take into account the regenerative vibration excitation
mechanism in the system. The surface being currently generated at time t results from the
preceding evolution of the cutter’s position. These equations form a system of differential-
algebraic equations with multiple delays and describe the dynamics of the multiple cutter turning
with surface regeneration.

The system (2.1)–(2.3) can be nondimensionalized using the distance scale factor X∗ equal

to the feed per turn h0 , time scale factor T∗ =

√√√√
n∑

i=1

(T 2
i /n), Ti = 2π

√
mj/kj , Ti is the free
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oscillation period for the jth cutter, force scale factor F∗ = K0h0. Then, when all the cutters are
identical and the conditions under which the cutters are fastened are the same (mi = m,ki =
= k, di = d, Ti = T∗), Eqs. (2.1)–(2.3) in dimensionless form become⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δj(τ) = τ/ρ− ξj(τ)− Λj−1(τ − τj−1) +A−H0j ,
n∑

j=1

(τj) = ρ,

ηj(τ) = max[0,Δj(τ)],

0 = −Λj(τ) + Λj−1(τ − τj−1),

ξ′′j = −4πςξ′j − 4π2ξj + 4π2κΠj , j = 1, n.

(2.4)

Here the dimensionless parameters are defined as follows:

ξj =
uj
h0

, ς =
d

2
√
mk

, κ =
K0

k
, ηj =

hj
h0

, η∗ =
c

h0
, Λj =

Lj

h0
,

Δj =
Dj

h0
, ρ =

2π

ωT∗
, A =

A

h0
, H0j =

H0j

h0j
, Πj =

Fj

K0h0
.

(2.5)

Here ρ is the ratio of the cutters’ eigenfrequency to the workpiece rotation frequency (thus
1/ρ would represent the dimensionless cutting speed); κ is the relative static apparent stiffness
of cutting, in this case identical for every cutter-workpiece interaction; Πj is the dimensionless
axial component of the cutting force. The system of equations (2.4) is a complete dynamical
model of multiple cutter turning which includes the possibility of discontinuous cutting and takes
into account the initial tool entry into the part. In this system the unknowns are dimensionless
displacements and cut thickness values for each cutter: {Δj , ηj ,Λj , ξj ; j = 1, n}.

Functions Λj depend on delayed argument. Thus, their definition requires an initial set:

{ξj(τ) |τ=0= ξj0, ξ
′
j(τ) |τ=0= ξ

′
j0,Λj(τ) |τ∈[−τj−1,0)= Λj0(τ)}.

In this work we will assume Λj(τ) = 0, τ < 0, which would correspond to a perfectly flat
surface of the part before machining. The initial functions Λj in (2.4) should fulfill the closure
of the surface: {Λj0(0) = Λ(j−1)0(−τj−1),Λ(j−1)0(0) = Λj0(−τj)}. These conditions provide a
connection between the nth and the first cutter, due to the processed surface.

3. Two-cutter turning

In the particular case of two-cutter turning, the circumference of the workpiece cross-section
is divided into two unequal parts (Fig. 2), defined by angles ϕ1 = π − Δϕ and ϕ2 = π + Δϕ,
with Δϕ the difference of each angle with π (Fig. 2b). The delay for each cutter reads

τ1 = (ρ/2π)ϕ1, τ2 = (ρ/2π)ϕ2, (3.1)

where ρ = τ1 + τ2 = 2π/(ωT∗) is the dimensionless period of revolution of the part, inversely
proportional to the cutting speed.

Then Eqs. (2.4) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1(τ) = τ/ρ− ξ1(τ)− Λ2(τ − τ2) +A,

Δ2(τ) = τ/ρ− ξ2(τ)− Λ1(τ − τ1) +A−H0,

ηj(τ) = max[0,Δj(τ)]; Πj = ηj
η∗+rηj
η∗+ηj

,

Λ1(τ) = Λ2(τ − τ2) + η1(τ); Λ2(τ) = Λ1(τ − τ1) + η2(τ),

ξ
′′
j = −4πςξ

′
j − 4π2ξj + 4π2κΠj ; j = 1, 2

(3.2)

with the initial conditions {Λ10(0) = Λ20(−τ2),Λ20(0) = Λ10(−τ1)}.
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Fig. 2. Schematic of the two-cutter turning.

Two parameters can be high-lighted as specifically relevant to the two-cutter aspect of the
analyzed system: the axial offset H and delay ratio α = ϕ1/ϕ2 = τ1/τ2. These parameters will
be used in the following analyses.

3.1. Steady continuous cut conditions

In the case of steady continuous cutting process, the cut thickness is equal for both cutters,
i.e., ηj = Δj � 0; j = 1, 2, as one can infer from (3.2)

⎧
⎨

⎩
η1(τ) = Δ1(τ) = τ2/ρ− ξ1(τ) + ξ2(τ − τ2) + H,

η2(τ) = Δ2(τ) = τ1/ρ− ξ2(τ) + ξ1(τ − τ1)−H.
(3.3)

After substituting (3.3) into the general system (3.2), we obtain the equations of motion in their
classical form:

ξ
′′
j = −4πςξ

′
j − 4π2ξj + 4π2κΠj , Πj = ηj

η∗ + rηj
η∗ + ηj

, j = 1, 2. (3.4)

Equations (3.4) can be used for the stability analysis of the steady continuous cut at constant
cut thickness ηj0 = constj . According to Eqs. (3.3) and (3.4), the continuous cut with constant
thickness is only possible when the cutter positions are constant: ξj0 = constj. Thus, from (3.3)
and (3.4), it follows:

⎧
⎨

⎩
η10 = τ2/ρ− ξ10 + ξ20 +H, η20 = τ1/ρ− ξ20 + ξ10 −H,

Πj0 = ηj0
η∗+rηj0
η∗+ηj0

, ξj0 = κΠj0, j = 1, 2.
(3.5)

And one can notice that

Pj =
dΠj

dηj
|ηj=ηj0= r +

η2∗(1− r)

(η∗ + ηj0)2
, j = 1, 2 (3.6)

represent the effective cutting stiffness coefficients, depending on η0j , in particular, pjη0j=0 =

= 1, pj |η0j→∞= r; r � pj � 1.
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3.2. Stability analysis for steady continuous cut

For a given set of parameters of nominal process τ1, τ2, ρ, η∗, r, κ,H the system (3.5) provides
a steady solution η10, η20,Π10,Π20, ξ10, ξ20 with stiffness coeffitients p1, p2.

One can analyze the perturbed motion in the vicinity of the nominal solution by means of
the equations in variations:

⎧
⎨

⎩
δξ

′′
1 + 4πςδξ

′
1 + 4π2δξ1 = 4π2κp1(−δξ1(τ) + δξ2(τ − τ2)),

δξ
′′
2 + 4πςδξ

′
2 + 4π2δξ2 = 4π2κp2(−δξ2(τ) + δξ1(τ − τ1)).

(3.7)

For fixed values τ1, τ2, η∗, r,H the coefficients p1, p2 are determined from relations (3.6).
The solution of the linear system (3.7) is sought in the form δξj = Cj exp(λτ), which after

being substituted into (3.7) yields the following characteristic equation:

P (λ; ς, ρ, κ) =
[
λ2 + 4πςλ+ 4π2(1 + κp1

] [
λ2 + 4πςλ+ 4π2(1 + κp2

]
− . . .

. . .− 16π4κ2p1p2 exp(−λρ) = 0.
(3.8)

The characteristic equation (3.8) allows one to find, for each value of λ, the critical value of the
static stiffness coefficient as a function of the revolution period ρ. It is worth noting that in the
dynamical system for (3.8) — P (0; ς, ρ, κ) = 16π4(1 + κp1 + κp2) �= 0, the divergence cannot
occur. Thus, the only bifurcations possible would be dynamic, inducing auto-excited oscilla-
tions (Poincaré –Andronov –Hopf bifurcations). On the boundaries of the stability domains,
the characteristic exponents are purely imaginary and can be written as λ = 2πis, with real-
valued s. One can notice that for integer values of the frequency parameter sρ = ±1,±2,±3, . . .
this equation has no solutions. Then, from Eq. (3.8) we can write the real and imaginary parts
on the stability boundaries:
⎧
⎪⎪⎨

⎪⎪⎩

Re [P (is, ς, ρ, κ] = . . .

. . . = s4 − (2 + κ(p1 + p2) + 4ς2)s2 + (1 + κ(p1 + p2)) + κ2p1p2(1− cos(2πρs)) = 0,

Im [P (is, ς, ρ, κ] = −4ςs3 + 2(2 + κ(p1 + p2))ςs + κ2p1p2 sin(2πρs) = 0.

(3.9)

Equations (3.9) are determined in parametric form by the boundary of the stability regions for
the parameters of relative stiffness constant κ and of rotation rate ρ.

In the present work Eqs. (3.5) and (3.9) are solved for ξ1, ξ2, η1, η2, s, κ simultaneously, via
commonly available routines, such as MATLAB’s fsolve. The solution of Eqs. (3.5) and (3.9)
leads to the construction of the boundaries of stability regions for the steady continuous cutting
regime with respect to parameters κ and ρ, i.e., respectively, static stiffness cutting and period
of rotation. The resulting diagram on the (κ − ρ) plane is a stability lobe diagram (SLD). The
particularity of the present case is the nonlinear definition of the nominal state, leading to a
variation of the effective stiffness coefficients p1,2 along the stability boundaries, due to a change
in the static deflection magnitude of the cutters ξ1,2. Thus, on these boundaries, one can also
plot, as a function of dimensionless cutting velocity 1/ρ, the respective steady values of axial
displacement ξj0 , cutting forces Πj0 , and cut thickness ηj0.

4. Balanced cut thickness distribution case

An analysis of Eqs. (3.8) shows that at every angular position of cutters (α = τ1/τ2) there
exists a value of axial offset Hα leading to equal work of cutters, i.e., η10 = η20. In this case of
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balanced cut thickness, we have equal cutting forces Π10 = Π20, and therefore, in our system
with equal cutter suspension stiffness k1 = k2, the deflections are also equal, i. e., ξ10 = ξ20, and
finally

Hα =
1− α

2(1 + α)
. (4.1)

It can be observed that this expression, also plotted in Fig. 3, reflects reasonable asymptotic
behavior: for symmetric cutters position (α = 1) no offset is required (H = 0), whereas for very
asymmetric cases (α → 0 or α → ∞) half-feed offsets are required (H → ±1/2).

Fig. 3. Angular position vs axial offset for the balanced cut thickness case: Hα(α).

5. Numerical example

To illustrate qualitatively the influence of the system configuration on the stability bound-
aries, we present the four cases summarized in Table 1.

Table 1. Analyzed case

Case # α H κ

1 1 0 0.722

2 1 0.1 0.361

3 2 0 0.361

4 1.182 0.4 0.361

The other parameters defining the systems are identical for all the cases: ς = 0.036, η =
= 0.1, r = 0.55. For each case SLD is computed along with the response magnitude in terms of
deflections ξ and cut thicknesses η for each cutter.

Figure 4 shows the stability data for cases 1 and 2, featuring the symmetrical angular
position of cutters. One can see that in the trivial situation (case 1: no angular or axial offset,
Figs. 4a–4c) both cutters work in the same manner. The SLD plots (Figs. 4a, 4d) are composed
in a quite classical manner: a set of lobe-shaped stability boundaries with instabilities present
above each lobe. Thus, the stable region is situated below all these lines. When comparing
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Fig. 4. Stability investigation for symmetrical cutter position (α = 1) with zero offset, i.e., H = 0 (a)–(c)
and nonzero offset, i. e. H = 0.1 (d)–(f) for the case η∗ = 0.1, r = 0.55, ς = 0.05: stability lobe diagram
(a), (d) and the steady cutter deflection (b), (e), steady chip thickness (c), (f).

cases 1 and 2, although the SLD are identical, the first cutter is subject to a much stronger
deflection ξ1 > ξ2 (see Fig. 4e) accompanying higher matter removal η1 > η2 (see Fig. 4f).

From Fig. 5, comparing two cases of unsymmetrical circumferential arrangement of cutters
(cases 3 and 4), one can observe that the SLD features a very weak variation (within 5% in the
rotation rate range considered). On the other hand, response magnitudes are subject to stronger
variation between cases 3 and 4.

6. Time marching solution involving ε-embedding

To observe the postcritical behavior of the system in the domain of instability of the steady
static cut, we carry out time marching simulation.

Numerical solution of the delayed DDAE system (3.2) is carried out in MATLAB. For
this purpose a system of delay differential equations (DDE) was derived from (3.2), via the
ε-embedding approach: the algebraic part of the system (3.2) is transformed into differential via
an additional perturbation term (ε-embedding) with a small parameter ε:

εΛ
′
j(τ) = −Λj(τ) + Λj−1(τ − τj−1) + ηj(τ), 0 < ε � 1. (6.1)

As a result, one obtains a DDE system:
⎧
⎪⎪⎨

⎪⎪⎩

εΛ
′
1(τ) = −Λ1(τ) + Λ2(τ − τ2) + η1(τ),

εΛ
′
2(τ) = −Λ2(τ) + Λ1(τ − τ1) + η2(τ),

ξ
′′
j = −4πςξ

′
j − 4π2ξj + 4π2κΠj ; j = 1, 2.

(6.2)
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Fig. 5. Stability investigation for nonsymmetrical cutter position and zero axial shift, i.e., α = 2, H = 0
(a)–(c) and nonzero shift, i. e., α = 1.18, H = 0.4 (d)–(f) for the case η∗ = 0.1, r = 0.55, ς = 0.05 stability
lobe diagram (a), (d) and the steady cutter deflection (b), (e), steady chip thickness (c), (f).

with

⎧
⎪⎪⎨

⎪⎪⎩

Δ1(τ) = τ/ρ− ξ1(τ)− Λ2(τ − τ2) +A,

Δ2(τ) = τ/ρ− ξ2(τ)− Λ1(τ − τ1) +A−H0,

ηj(τ) = max[0,Δj(τ)]; Πj = ηj
η∗+rηj
η∗+ηj

, j = 1, 2.

(6.3)

The system (3.9) is suitable for processing with MATLAB-based utilities, such as dde23 solver.

Numerical simulations based on the above-mentioned framework have enabled the com-
putation of axial vibrations of the cutters ξj (Fig. 3) and cut thickness profiles (Fig. 4) as a
function of dimensionless time τ/ρ for cases 1–4 (see Table 1) ρ = 5.94. All the simulations
feature instability of steady cut, with a limit cycle oscillatory response. When an axial offset
H = 0.4 or an angular asymmetry is present, the vibrations of cutters show slight differences,
while important dissimilarity in chip shape and thickness arises (Figs. 6 and 7). On can notice
that the cutters engage simultaneously (case 1 –– self-synchronization) or alternating (cases 2,
3 and 4). Figures 6a and 7a show the case of a symmetrical arrangement of the cutting edges of
both cutters ϕ1 = ϕ2 = 180◦, H = 0. In the steady state, both cutters move symmetrically and
generate intermittent chips of the same shapes. In the presence of axial shear (Figs. 6c and 7c)
the cutters oscillate in antiphase and intermittent chips are generated. Figures 6c, 6d and 7c, 7d
demonstrate the possibilities of controlling the process of vibrations by choosing different values
of axial and angular shift.
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Fig. 6. Axial oscillations of symmetrical (a), (b) and nonsymmetrical (c), (d) angular position of cutters
and for various cases of axial offset H as a function of nondimensional time τ/ρ.

7. Conlusion

A mathematical model of the dynamics of multiple cutter turning has been developed with
the regenerative effect taken into account. For numerical realization in MATLAB environment,
the delayed DDAE are transformed into DDE by an ε-embedding approach. The analysis of the
dynamics of the multicutter turning has revealed the impact of the angular and axial positions
of cutting edges on the shape and thickness of the chip removed by each cutter.

It has been shown that the stability boundaries of the steady cutting regime depend on the
workpiece revolution period and are independent of the angular positions of the cutters, when
the latter are all aligned in the axial direction.

The results obtained make it possible to avoid the occurrence of interrupted cutting when
technological machining modes are assigned or, on the contrary, when the use of high-intensity
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Fig. 7. Thickness (left) and shape (right) of chips cut by each cutter; (a) symmetric angular position of
cutters without axial shift, (b) symmetric angular position of cutters with axial shift, (c) nonsymmetric
angular position without axial shift, (d) nonsymmetric angular position with axial shift.
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cutting modes associated with breached chips (for example, during roughing) is necessary, an
intermittent cutting mode can be used. This is easily achieved by analyzing the results of
nonlinear dynamics and the stability diagrams presented above.
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