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Acoustic streaming generated by a plane standing wave between two infinite plates
or inside a cylindrical tube is considered, under the isentropic flow assumption.
A two-dimensional analysis is performed in the linear case of slow streaming motion,
based on analytical formal solutions of separate problems, each associated with
a specific source term (Reynolds stress term). In order to obtain these analytical
solutions, a necessary geometrical hypothesis is that (R/L)2 � 1, where R and L
are the guide half-width (or radius) and length. The effect of the two source terms
classically taken into account is quantified in order to derive the dependence of the
maximum axial streaming velocity on the axis as a function of the ratio R/δν , where
δν is the acoustic boundary layer thickness. The effect of two other source terms
that are usually neglected, is then analysed. It is found that one of these terms can
generate a counter-rotating streaming flow. While negligible for very narrow guides,
this term can become important for some values of the aspect ratio L/R.

Key words: acoustics, boundary layers, low-Reynolds-number flows

1. Introduction
Rayleigh streaming generated by a plane standing wave between two infinite plates

or inside a cylindrical tube is considered in the present paper. This acoustic wind is a
mean flow generated by Reynolds stresses in the Stokes boundary layer formed along
the solid walls of an acoustic guide (with no other mean flow and a no-slip boundary
condition on the guide walls). It is usually referred to as Rayleigh streaming because
Lord Rayleigh (1884) was the first to develop an analytical solution that describes the
steady vortices generated in the core of the fluid in a wide channel formed by two
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infinite parallel adiabatic plates. These vortices, also called outer cells, are the main
object of the present study.

Rayleigh–Nyborg–Westervelt (RNW) classical approach. Consider a standing plane
acoustic wave of wavelength λ and angular frequency ω propagating in a wide channel
formed by two infinite parallel plates. Assuming that the viscous penetration depth is
small compared to the channel width and that they are both small compared to the
wavelength, Rayleigh (1884) established the equations that govern the second-order
velocity (responsible for the streaming motion), based on successive approximations.
These second-order equations were obtained in the case of slow streaming motion
(associated with low acoustic amplitudes) and therefore they are linear. The source
terms that create the streaming motion are provided by the solution of the first-order
problem (linear acoustics). In Rayleigh’s solution the first-order motion is assumed
to be divergence free in the viscous boundary layer. The resulting reference solution
for the second-order velocity, far away from the guide wall is

ūRayleigh =−
3U2

ac

16c0
sin(2kx)

[
1− 3

( y
R

)2
]
, (1.1)

v̄Rayleigh =−
3U2

ac

8c0
kR cos(2kx)

[
y
R
−

( y
R

)3
]
, (1.2)

with ūRayleigh (respectively v̄Rayleigh) the axial (respectively vertical) component of
the streaming velocity i.e. the time average over an acoustic period of the velocity
component, Uac the acoustic velocity amplitude at its antinode, c0 the speed of sound,
R the channel half-width, x the axial coordinate, k the complex wavenumber and y the
distance from the guide axis. Rayleigh’s analysis was applied to the case of a large
cylindrical guide by Schuster & Matz (1940) yielding the following second-order
velocity components:

ūRayleigh =−
3U2

ac

8c0
sin(2kx)

[
1− 2

( y
R

)2
]
, (1.3)

v̄Rayleigh =−
3U2

ac

8c0
kR cos(2kx)

[
y
R
−

( y
R

)3
]
, (1.4)

where here R is the cylinder radius. In order to obtain these solutions, terms in
e−(R−y)/δν were neglected in the complete Rayleigh solution, with δν =

√
2ν/ω the

acoustic viscous boundary layer thickness. Here ν is the gas kinematic viscosity,
related to the gas dynamic viscosity µ by the classical relation ν=µ/ρ0, where ρ0 is
the reference gas density. This is valid far enough from the wall. These expressions
show the main characteristics of Rayleigh streaming: velocities are of second order
in powers of acoustic Mach number M = Uac/c0, with counter-rotating vortices that
span λ/4 in the axial direction. The transverse streaming velocity is much smaller
and has a λ/4 spatial phase shift with the axial streaming velocity.

Later Westervelt (1953) and Nyborg (1953) improved this analytical model by
proposing a complete solution to the problem considered by Rayleigh. This solution
is based on a vorticity equation and there is no assumption on the divergence of
the acoustic velocity. The theoretical description issued from the works of Rayleigh,
Westervelt and Nyborg is usually associated with the so-called RNW streaming theory
Lighthill (1978).
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Acoustic streaming 987

Sources of streaming. The analytical studies mentioned above (and most of the
subsequent ones) are based on the same process of derivation of the streaming
velocity: write fundamental laws of fluid motion, use a perturbation method with
asymptotic expansions and then time average. As discussed by Lighthill (1978), this
process leads to an equation of the form

µ∇2ū=−F̄+∇p̄, (1.5)

where p̄ is the second-order pressure and F̄ is a product of first-order quantities and
their derivatives. The source terms composing F̄ are based on acoustic quantities. They
are also referred to as Reynolds stresses.

In all studies mentioned above, the source terms that appear in the transverse
momentum equation are neglected, as discussed by Lighthill (1978). The averaged
acoustic velocity source term F̄ (Reynolds stresses) is approximated as the sum of
the two largest source terms, that are associated with the axial momentum equation.
The variation of these two source terms with the radius was analysed analytically in
annular resonators, in the case of a pure travelling wave by Amari, Gusev & Joly
(2003). An investigation of the streaming flow generation through the analysis of
the contribution of each source term was conducted recently by Paridaens, Kouidri
& Jebali Jerbi (2013), in the case of a thermoacoustic system. Again, only the two
dominant Reynolds stress terms were considered.

One of the goals of the present study is to show that one of the terms that
compose F̄ and that is classically neglected in the analysis of Rayleigh streaming
can be responsible for drastic change of acoustic streaming patterns within a given
range of guide geometry. It will be shown that it can be the case even in the linear
regime. A modified analytical expression for the streaming velocity is proposed, that
takes into account the other two acoustic source terms associated with the transverse
component of the momentum equation. This represents an improved approximation
for the Rayleigh problem. This enriched solution exhibits an unexpected balance
between outer Rayleigh streaming sources.

Beyond RNW streaming. As stated above, RNW analysis concerns streaming in wide
channels outside the viscous boundary layers that results in large counter-rotating
vortices usually referred to as outer vortices. These vortices are actually generated
by a driving mean flow taking place inside the viscous boundary layers, associated
with slender counter-rotating vortices usually referred to as inner streaming vortices.
A sketch of inner and outer streaming cells, as well as transverse and axial profiles
of the axial streaming velocity are shown in figure 1, in the case of a λ/2 resonator.
Schlichting (1932) first described the inner streaming vortices, under the hypothesis
of incompressible flow. Reviews of theoretical investigations for inner and outer
streaming were proposed by Nyborg (1965) and Zarembo (1971). As shown by
figure 1, the limit between inner and outer streaming cells is generally considered to
be equal to 3δν from the wall. In the present study the evolution of this limit with
the dimensions of the channel will be briefly addressed.

Rott (1974) improved the description of outer streaming by taking into account
thermal effects and Qi (1993) included the fluid compressibility and temperature
effects to improve the description of inner streaming. Investigations of streaming in
channels of arbitrary width with a mean temperature gradient were performed by
Waxler (2001) and Bailliet et al. (2001) in the context of thermoacoustic applications
where heat transport associated with the streaming flow is an important mechanism
that may limit the efficiency of the systems. Sugimoto (2016) obtained a nonlinear
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FIGURE 1. (Colour online) RNW theory. (II) sketch of inner and outer streaming cells in
the case of two infinite parallel plates, showing lines (c) and (d). (I) axial acoustic velocity
u′ profile along line (c). (III) axial streaming velocity ū profile along line (d). (IV) axial
streaming velocity ū profile along line (c).

thermoacoustic wave equation inside narrow channels and the associated streaming
flow results can be applied to pore modelling in thermoacoustic engines.

Also in thermoacoustics the overall mass transport velocity is usually considered
instead of the time-averaged velocity:

uM
=
ρu
ρ̄
. (1.6)

Here the previously considered ū velocity is called Eulerian streaming velocity.
Hamilton, Ilinskii & Zabolotskaya (2003a), Olson & Swift (1997) adopted a
Lagrangian approach, considering the density weighted average velocity uM, also
referred to as the Favre average (Favre 1965), because it is responsible for effective
mass and heat transport. Hamilton et al. (2003a), Hamilton, Ilinskii & Zabolotskaya
(2003b) proposed an analytical solution for the average mass transport velocity with
or without temperature effects. They studied the influence of the channel width on
the relative size of the inner and outer streaming vortices. Most of the present study
is conducted following an Eulerian approach but the consequences of the results
presented thereafter will also be briefly discussed following a Lagrangian approach.

Thermoacoustic applications which require large amplitude acoustic waves also led
the authors to reconsider the hypothesis of slow streaming that is one of the bases of
RNW streaming, as discussed in the extensive review proposed by Boluriaan & Morris
(2003). In the last decades experimental studies (Thompson, Atchley & Maccarone
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2004; Moreau, Bailliet & Valière 2008) and numerical studies (Menguy & Gilbert
2000a; Daru et al. 2013; Reyt et al. 2013) on acoustic streaming from slow to fast
regimes were performed (the fast regime is associated with high amplitude acoustics).
These studies exhibited streaming behaviour departing from the RNW theory: in the
fast regime the dependence of the streaming velocity on the acoustic velocity is no
longer parabolic and new streaming cells can emerge near the guide axis. In the slow
regime, it was found that the axial streaming velocity along the axis, when normalized
by Rayleigh’s solution, is a linear function of the ratio δν/R (Daru et al. 2017a).
Another goal of the present study is to quantify further this linear function, and also
to show a dependency on the aspect ratio (length over width or length over radius)
of the wave guide.

The hypotheses are listed in § 2, along with a description of the geometries
under study. Section 3 then focuses on the rectangular case. The classical Rayleigh
solution of the (first order) acoustic problem is described (§ 3.1) and the source
terms for the streaming flow are deduced (§ 3.2). An analysis of the influence of
each of the source terms is conducted and their effect on streaming flow patterns
is highlighted (§§ 3.2.1–3.2.6). The effect of both Reynolds stress source terms,
classically considered, is shown first, and then the effects of the third and fourth
source terms, classically neglected, are also discussed.

The influence of the aspect ratio of the channel geometry on the streaming
velocity is quantified. The results show that for specific values of the aspect ratio
new streaming counter-rotating cells appear next to the guide axis. Then other
characteristics of the streaming flow are examined in §§ 3.2.7–3.2.9: slip velocity,
mass transport velocity, transverse component of streaming velocity. The axisymmetric
case is briefly addressed in § 4.

2. Position of the problem

In the present approach, the discussed geometry is valid for both a cylindrical
acoustic guide and acoustic flow between two infinite parallel plates. We consider a
rectangular (or cylindrical) channel, of length L, and half-width (or radius) R, filled
with a perfect gas of density ρ0 and pressure p0. The sound velocity in the ideal gas
is c0=

√
γ p0/ρ0, γ being the specific heat ratio (γ = 1.4 for air). We use a coordinate

system (x, y) (or (x, r)) with the origin located at the centre of the channel, that is
−L/2 6 x 6 L/2, −R 6 y 6 R (or 0 6 r 6 R).

By exploiting the symmetry of the problem, only the upper half-channel 0 6 y 6 R
is considered in the plane case. The symbolic computational software Mathematica
(Wolfram 2018) is used to solve the equations throughout this study.

Throughout this work, the angular frequency is always considered to be equal to
ω0, the angular frequency corresponding to the acoustic standing wave resonating
at its first mode along x (so-called λ/2 mode), in the case of a non-viscous gas
(ω0 =πc0/L).

It is assumed that an acoustic wave propagates laminarly along the x axis of the
guide. There is no mean flow apart from acoustic streaming. A main hypothesis is that
the wave is plane. More precisely the condition that only plane modes propagate is
that the working frequency is lower than the first mode cutoff frequency. In cylindrical
guides the cutoff frequency is fc(1,0)= 1.84c0/2πR (e.g. Pierce 1989) and the condition
of a plane wave is equivalent to λ> 2π/1.84R. In the case of a half-wavelength guide,
the plane wave condition becomes L/R > 1.7. For rectangular channels the cutoff
frequency is c0/2R or equivalently L/R> 1.
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Another important hypothesis is that the effect of viscosity is assumed to be
concentrated in the near wall region, that is, volume viscosity is neglected because
the real part of the wavenumber associated with volume viscosity is negligible
compared to the one associated with the viscous boundary layer. This hypothesis is
valid if 1/(ReSh)� 1, where Re = ρ0c2

0/(µω) is the acoustic Reynolds number and
Sh= δν/R is the Shear number (Menguy & Gilbert 2000b).

We also make the assumption of an isentropic flow, in order to exclude thermal
effects on streaming that are not within the scope of this work. Under these
hypotheses, acoustic pressure is independent of y, and, as a consequence of isentropy,
so is acoustic density.

Finally, several hypotheses on streaming flow are imposed. Only channels with
moderate to large width values (R/δν & 6 ) are considered here in which outer
streaming vortices do exist (Bailliet et al. 2001; Hamilton et al. 2003a). Another
hypothesis is that (R/L)2 � 1 which means that momentum diffusion in the axial
direction is negligible with respect to momentum diffusion in the transverse direction.
Moreover the present study concerns the slow streaming regime, in which the
streaming flow equations are linear. This hypothesis is valid if inertial effects are
negligible, which is usually related to small values of the nonlinear Reynolds number
ReNL = (M/Sh)2� 1 (Menguy & Gilbert 2000b).

3. Flow between two parallel plates
3.1. Acoustics

Let us note u′ and v′ the axial and vertical components of the acoustic velocity, and
ρ ′ = ρ − ρ0, p′ = p − p0 the associated density and pressure fluctuations. Using the
hypothesis ∂2u′/∂x2

� ∂2u′/∂y2, the linearized equations governing acoustics are

∂ρ ′

∂t
+ ρ0

(
∂u′

∂x
+
∂v′

∂y

)
= 0 (3.1a)

ρ0
∂u′

∂t
+
∂p′

∂x
=µ

∂2u′

∂y2
(3.1b)

∂p′

∂y
= 0. (3.1c)

Using the assumption of isentropic flow, we have p′ = c2
0ρ
′.

The following change of variables is introduced

ŷ= y/δν, x̂= x/L, t̂= t/T, R̂= R/δν, L̂= L/δν, (3.2a−e)

T being the acoustic time period so that L/T = (1/2)c0. The half-channel is then
described by −1/2 6 x̂ 6 1/2, 0 6 ŷ 6 R̂ and the dependency on x̂ is of eiπx̂ form.
Let us note that this is only a convenient change of variables that allows us to work
with non-dimensional parameters R̂ and L̂ instead of dimensional values of R and L.
Velocity, pressure and density are left in dimensional units.

The boundary and symmetry conditions for u′ and v′ with respect to ŷ are

u′ = 0 at ŷ= R̂;
∂u′

∂ ŷ
= 0 at ŷ= 0, (3.3a,b)

v′ = 0 at ŷ= 0 and ŷ= R̂. (3.3c)
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Following Rayleigh (1884), the axial acoustic velocity is expressed as

u′(x̂, ŷ, t̂) = Uac cos(πx̂) [(−1+ eŷ−R̂ cos(R̂− ŷ)) cos(2πt̂)

+ eŷ−R̂ sin(R̂− ŷ) sin(2πt̂)], (3.4)

where Uac is the acoustic amplitude at the velocity antinode.
Using the hypothesis that ρ ′ depends on x̂ and t̂ only, together with the boundary

conditions, equation (3.1a) is integrated with respect to ŷ to obtain the vertical
acoustic velocity component

v′(x̂, ŷ, t̂) = −
πUac

2R̂

1

L̂
sin(πx̂) [ŷ(cos(2πt̂)+ sin(2πt̂))+ R̂eŷ−R̂ (sin(R̂− ŷ− 2πt̂)

− cos(R̂− ŷ− 2πt̂))+e−R̂(R̂− ŷ)(cos(R̂− 2πt̂)− sin(R̂− 2πt̂))] . (3.5)

Finally the density fluctuation ρ ′ is obtained by integrating (3.1a) with respect to
time

ρ ′(x̂, t̂) =
ρ0Uac

2c0R̂
sin(πx̂) [(1− 2R̂) sin(2πt̂)− cos(2πt̂)

+ e−R̂(cos(R̂− 2πt̂)+ sin(R̂− 2πt̂))] . (3.6)

3.2. Streaming flow
The averaged equations are derived from the Navier–Stokes equations with each
variable f divided into a fluctuating, periodic, component f ′, and a steady component
f (corresponding to the streaming flow) according to

f = f + f ′. (3.7)

where the overline denotes the average operator in time over one period. For any two
variables f and g

fg= f g+ f ′g′. (3.8)

Using the hypotheses that ∂2/∂x2
� ∂2/∂y2 and ReNL = (M/Sh)2 � 1, the Navier–

Stokes equations are averaged in time over one period, linearized and simplified as

ρ0

(
∂u
∂x
+
∂v

∂y

)
=−

∂

∂x
(ρ ′u′)−

∂

∂y
(ρ ′v′)

µ
∂2u
∂y2
=
∂p
∂x
+ ρ0

∂

∂x
(u′u′)+ ρ0

∂

∂y
(u′v′)

µ
∂2v

∂y2
=
∂p
∂y
+ ρ0

∂

∂x
(u′v′)+ ρ0

∂

∂y
(v′v′).

(3.9)

where u, v and p are the averaged velocity components and pressure.
Making the same change of variables as in § 3.1, equations (3.9) above are rewritten

as 

ρ0

(
∂u
∂ x̂
+ L̂

∂v

∂ ŷ

)
=−

∂

∂ x̂
(ρ ′u′)− L̂

∂

∂ ŷ
(ρ ′v′)

ρ0
π

2
c0
∂2u
∂ ŷ2
=
∂p
∂ x̂
+ ρ0

∂

∂ x̂
(u′u′)+ ρ0L̂

∂

∂ ŷ
(u′v′).

ρ0
π

2
c0
∂2v

∂ ŷ2
= L̂

∂p
∂ ŷ
+ ρ0

∂

∂ x̂
(u′v′)+ ρ0L̂

∂

∂ ŷ
(v′v′).

(3.10)
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The boundary conditions for u and v are

u= 0 at ŷ= R̂;
∂u
∂ ŷ
= 0 at ŷ= 0, (3.11a,b)

v = 0 at ŷ= 0 and ŷ= R̂, (3.11c)

∫ R̂

0
u dŷ= 0. (3.11d)

The third condition in (3.11) is obtained by integrating the continuity equation in
(3.10) over the half-width of the channel.

The expression of the five averaged products (Reynolds stresses) on the right-hand
side of (3.10) are obtained from (3.4), (3.5) and (3.6):

ρ ′u′ =
ρ0U2

ac

8c0R̂
sin(2πx̂){1− eŷ−R̂(cos(R̂− ŷ)+ (2R̂− 1) sin(R̂− ŷ))

+ eŷ−2R̂(cos ŷ+ sin(ŷ))− e−R̂(cos(R̂)+ sin(R̂))}, (3.12)

ρ ′v′ =
πρ0U2

ac

4c0R̂

1

L̂
sin2(πx̂){ŷ+ eŷ−R̂(−R̂ cos(R̂− ŷ)+ sin(R̂− ŷ)(1− R̂))

+ eŷ−2R̂ sin ŷ+ e−R̂((R̂− ŷ) cos R̂+ (R̂− ŷ− 1) sin R̂)}, (3.13)

u′u′ = 1
2 U2

ac cos2(πx̂)(1+ e2(ŷ−R̂)
− 2eŷ−R̂ cos(R̂− ŷ)), (3.14)

u′v′ =
πU2

ac

8R̂L̂
sin(2πx̂) {ŷ+ eŷ−R̂(−(R̂+ ŷ) cos(R̂− ŷ)+ (R̂− ŷ) sin(R̂− ŷ))

+ R̂e2(ŷ−R̂)
+ eŷ−2R̂((ŷ− R̂) cos ŷ+ (R̂− ŷ) sin ŷ)

+ e−R̂((R̂− ŷ) cos R̂− (R̂− ŷ) sin R̂)}, (3.15)

v′v′ =
πU2

ac

L̂2

1

4R̂2
sin2(πx̂) {ŷ2

− 2eŷ−R̂ŷR̂ cos(R̂− ŷ)+ e2(ŷ−R̂)R̂2

+ 2R̂eŷ−2R̂(ŷ− R̂) cos ŷ+ 2e−R̂ŷ(ŷ+ R̂) cos R̂+ e−2R̂(R̂− ŷ)2} . (3.16)

Under the hypothesis R̂ & 6, terms of the same magnitude as e−R̂ or smaller can
be neglected in the previous expressions of the averaged products. Nevertheless, all
symbolic calculations were performed using the full expressions.

Following Westervelt (1953), we take the curl of the momentum equations, which
eliminates pressure, and use the assumption ∂v/L∂ x̂� ∂u/δν∂ ŷ, to obtain

−
π

2
c0L̂

∂3u
∂ ŷ3
=−L̂

∂2(u′u′)
∂ x̂∂ ŷ

− L̂2 ∂
2(u′v′)
∂ ŷ2

+
∂2(u′v′)
∂ x̂2

+ L̂
∂2(v′v′)

∂ x̂∂ ŷ
. (3.17)

Classical studies (e.g. Rayleigh 1884, Westervelt 1953, Bailliet et al. 2001, Hamilton
et al. 2003a) always consider an added approximation in which the last two source
terms on the right-hand side of (3.17) are negligible. Neglecting these two terms was
justified by an analysis of the orders of magnitude, based on the variations in the
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viscous boundary layer. The usual assumptions are ∂/∂x∝ 1/λ∝ 1/L and ∂/∂y∝ 1/δν
so that ∂/∂ x̂∝ 1 and ∂/∂ ŷ∝ 1. Therefore equations (3.14), (3.15), (3.16) yield

L̂
∂2(u′u′)
∂ x̂∂ ŷ

∝ L̂U2
ac, L̂2 ∂

2(u′v′)
∂ ŷ2

∝ L̂U2
ac,

∂2(u′v′)
∂ x̂2

∝
U2

ac

L̂
, L̂

∂2(v′v′)

∂ x̂∂ ŷ
∝

U2
ac

L̂
.

(3.18a−d)

It follows that the third and fourth terms are respectively 1/L̂2 smaller than the first
two terms.

In his analysis, Lighthill (1978) states that making a decision to keep or neglect
a term should be based on an order of magnitude analysis and not a perturbation
expansion alone. In the present work it will be shown that even an order of magnitude
analysis on the acoustic source terms is not sufficient to neglect a term. This is
because the different terms in (3.17) do not have the same ŷ dependence; some are
proportional to ŷ, others to ŷ2 and others do not have any ŷ dependence so that
the successive integrations over ŷ needed to obtain ū from (3.17) together with the
boundary conditions will change the balance between the effects of these different
source terms. Even though they do not have the same order of magnitude, the
source terms can have effects of the same order on the streaming velocity. Therefore,
they will all be considered. (The change in balance between the source terms can
take place independently of the fact that ∂v̄/L∂ x̂ � ∂ ū/δν∂ ŷ, which is given by
the fundamental equations for streaming (3.9). Thus the process of keeping all the
terms on the right-hand side of (3.17) is consistent with neglecting the v̄ term on its
left-hand side.)

In order to analyse in detail the effect of each of the source terms, we will
consider separately the four problems linked to each source term. We will normalize
the solutions with Rayleigh’s solution on the axis uR =−(3/16)U2

ac/c0 sin(2πx̂). The
solution of problem i, associated with the ith source term, will be denoted by ui,
i = 1, 2, 3, 4. In the following, for the sake of simplicity, the expressions for each
solution ui will be presented in an approximated form, in which terms of the same
magnitude as e−R̂ or smaller will be neglected with respect to terms of order 1/R̂n,
for n ∈ N. However the symbolic computations are still performed using the full
expressions.

3.2.1. Problem 1: first source term
When reducing equation (3.17) by taking into account the first source term only,

the equation to be solved is

π

2
c0
∂3u1

∂ ŷ3
=
∂2(u′u′)
∂ x̂∂ ŷ

, (3.19)

with boundary conditions (3.11a,b)–(3.11d), for u1. Integrating equation (3.19) and
using the boundary conditions yields the following simplified solution:

u1(x̂, ŷ) = −
U2

ac

16c0
sin(2πx̂)

{
15

ŷ2

R̂3
−

15

R̂
− 6

ŷ2

R̂2

+ 2(1+ 2e2(ŷ−R̂)
+ 8eŷ−R̂ sin(R̂− ŷ))

}
. (3.20)
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Along the axis, by normalizing with Rayleigh’s solution and neglecting smaller terms,
we obtain at O(1/R̂):

u1(x̂, 0)
uR

=
2
3
−

5

R̂
. (3.21)

The second-order pressure gradient can also be obtained, and as expected is
independent of ŷ. It is given by

dp1

dx̂
=
ρ0πU2

ac

16
sin(2πx̂)

(
8+

6

R̂2
−

15

R̂3

)
. (3.22)

3.2.2. Problem 2: second source term
The equation to be solved for the acoustic streaming issued from the second source

term in equation (3.17) is

π

2
c0
∂3u2

∂ ŷ3
= L̂

∂2(u′v′)
∂ ŷ2

, (3.23)

with boundary conditions (3.11a,b)–(3.11d) for u2. Integrating (3.23) gives the
following simplified expression for u2

u2(x̂, ŷ) = −
U2

ac

32c0
sin(2πx̂)

{
1

R̂
+ 3

ŷ2

R̂3
(1− 2R̂)+ 2(1− 2e2(ŷ−R̂))

+
4

R̂
eŷ−R̂
[(−1+ 2ŷ) cos(R̂− ŷ)+ (1− 2R̂) sin(R̂− ŷ)]

}
. (3.24)

Along the axis, we obtain at the order O(1/R̂):

u2(x̂, 0)
uR

=
1
3
+

1

6R̂
, (3.25)

and the corresponding pressure gradient is

dp2

dx̂
=−

ρ0πU2
ac

32
sin(2πx̂)

(
4

R̂
−

6

R̂2
+

3

R̂3

)
. (3.26)

3.2.3. Analysis of the effect of the first two source terms
It is interesting to analyse the right-hand side of the axial component of

the momentum equation in (3.10). For the first problem, the right-hand side is
RHS1 = ∂p1/∂ x̂ + ρ0(∂/∂ x̂)(u′u′). For the second problem, the right hand side is
RHS2 = ∂p2/∂ x̂+ ρ0L̂(∂/∂ ŷ)(u′v′).

The right-hand sides are therefore composed of two terms, a pressure gradient term
and a Reynolds stress term. Figure 2 shows, for R̂= 20, at x̂=−1/4, the transverse
profile of both terms composing RHS1 figures 2(a) and RHS2 2(b), normalized by
ρ0U2

ac. Comparing figure 2(a,b) shows that the terms in RHS2 are much smaller
than in RHS1, and also that the pressure gradient and Reynolds stress terms almost
compensate each other in the core of the guide, for both problems 1 and 2. The
pressure gradients of problems 1 and 2 have opposite signs, and also dp2/dx̂ is much
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FIGURE 2. (Colour online) Variation with ŷ, for x̂ =−1/4 and R̂ = 20 of (a) Reynolds
stresses term (red solid line) and normalized pressure gradient term (red dashed line) in
RHS1, (b) Reynolds stresses term (blue solid line) and normalized pressure gradient term
(blue dashed line) in RHS2, (c) total normalized RHS1 (red solid line) and RHS2 (blue
dashed line), (d) normalized axial streaming velocity u1/uR (red solid line) and u2/uR
(blue dashed line).

smaller than dp1/dx̂, with dp2/dx̂→ 0 when R̂ becomes large (refer to equations (3.22)
and (3.26)).

Figure 2(c) shows the transverse profile of the complete right-hand sides RHS1 and
RHS2, normalized by ρ0U2

ac, again for R̂= 20, at x̂=−1/4. This figure shows that the
two complete right-hand sides are of the same order, with significant values only near
the wall. This stresses the fact that streaming is generated only by viscous boundary
layer effects. The outer streaming is created from momentum diffusion of the velocity
created near the guide wall, and not from pressure gradient effects. As stated by
Menguy & Gilbert (2000a) (p. 253): pressure is created directly by the acoustic wave,
and not by the mean flow. Outer streaming flow can thus be considered as a driven
flow, similar to a Couette flow (see the driven cavity analogy developed in Daru et al.
(2017b)).

The resulting normalized axial streaming velocity transverse profiles are plotted on
figure 2(d). The following observation can be made: the first problem is responsible
for the inner streaming (Schlichting streaming), while the second problem only
contributes to the outer streaming (Rayleigh streaming), as also noticed in Paridaens
et al. (2013). This is related to the fact that RHS2 vanishes for ŷ = R̂, while RHS1

does not, as can be seen in figure 2(c).
Let us now consider the superposition of problems 1 and 2 considered above, which

is usually assumed in the literature to give the total axial streaming velocity u1+2 =

u1 + u2. Figure 3 shows the normalized axial streaming velocity transverse profiles
u1, u2 and u1+2. This figure also illustrates that the first problem is responsible for
the inner streaming, while the second problem only contributes to the outer streaming:
only u1 takes a positive value near the wall, while u2 remains negative.
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FIGURE 3. (Colour online) Axial streaming velocities u1(−1/4, ŷ)/uR (red solid line),
u2(−1/4, ŷ)/uR (blue dashed line) and u1+2(−1/4, ŷ)/uR (black dot-dashed line). R̂= 50.

The expression for u1+2 obtained on the axis is approximated as:

u1+2(x̂, 0)
uR

= 1−
29
6

1

R̂
. (3.27)

For large guides (R̂� 1, but still (R̂/L̂)2 � 1), we thus recover Rayleigh’s solution.
As noticed by Lighthill (1978) and as shown by equations (3.21) and (3.25),
the contributions of the first and second source terms in Rayleigh’s solution are
respectively 2/3 and 1/3. Equation (3.27) also shows a linear variation with 1/R̂,
which is not negligible for moderate values of R̂. The first source term is the main
contributor to this dependency: −5 in (3.21) versus 1/6 in (3.25).

The total axial pressure gradient is

dp1+2

dx̂
=
ρ0πU2

ac

2
sin(2πx̂)

(
1−

1

8R̂
+

3

16R̂2
−

27

32R̂3

)
. (3.28)

It follows that, for large values of R̂

dp1+2

dx̂
'

dp1

dx̂
=
ρ0πU2

ac

2
sin(2πx̂). (3.29)

Integrating equation (3.29) with respect to x̂ yields

p1+2 ' p1 = p0 −
ρ0U2

ac

4
cos(2πx̂). (3.30)

When scaling p1+2 − p0 by (γ /4)p0(Uac/c0)
2, we recover the theoretical result

for the dimensionless hydrodynamic streaming pressure known in the literature
P2s =−cos(2πx̂) (e.g. Menguy & Gilbert 2000a).
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3.2.4. Problem 3: third source term
We now consider the third source term, yielding the following equation

π

2
c0L̂

∂3u3

∂ ŷ3
=−

∂2(u′v′)
∂ x̂2

, (3.31)

with boundary conditions (3.11a,b)–(3.11d) for u3. Integrating (3.31) gives the
simplified solution

u3(x̂, ŷ) =
π2U2

ac

480c0

1

L̂2
sin(2πx̂)

{
4R̂3
+ 150−

585

R̂
+

720

R̂2

− 3ŷ2

(
240

R̂4
−

315

R̂3
+

150

R̂2
+ 8R̂

)
+ 60e2(ŷ−R̂)

+ 20
ŷ4

R̂

+ 20eŷ−R̂

((
12−

18

R̂

)
cos(R̂− ŷ)−

18

R̂
sin(R̂− ŷ)+ 12

ŷ

R̂
sin(R̂− ŷ)

)}
.

(3.32)

Along the axis we obtain, neglecting terms of order O(e−R̂) and smaller

u3(x̂, 0)
uR

=−
2π2

45

(
R̂

L̂

)2 [
R̂+

75
2
−

585

4R̂
+

180

R̂2

]
. (3.33)

Since the term in brackets is always positive, velocity u3 is of the opposite sign to
Rayleigh’s solution. Thus the associated vortices are reversed.

Note that in this equation the dominant term R̂(R̂/L̂)2 could increase significantly
for large values of R̂. However, our working hypotheses are that the linear regime of
streaming is respected, that is ReNL = (MR̂)2 � 1, and also that (R̂/L̂)2 � 1. These
relations imply that the product R̂(R̂/L̂)2 and consequently the velocity component ū3

will both remain bounded for large values of R̂.
The second-order pressure gradient in the x direction can be calculated from

∂p3

∂ x̂
= ρ0

π

2
c0
∂2u3

∂ ŷ2
, (3.34)

yielding

∂p3

∂ x̂
= −

ρ0π
3U2

ac

2L̂2
sin(2πx̂)

{
3

R̂4
−

63

16R̂3
+

15

8R̂2
+

R̂
10
−

ŷ2

2R̂
−

1
20

e2(ŷ−R̂)

+
1
2

eŷ−R̂

(
−1+ 2ŷ

R̂
cos(R̂− ŷ)+

(
1

R̂
− 2
)

sin(R̂− ŷ)
)}

. (3.35)

For this source term the axial pressure gradient (which is very small) does depend
on ŷ.
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3.2.5. Problem 4: fourth source term
Considering the fourth source term yields

π

2
c0L̂

∂3u4

∂ ŷ3
=−L̂

∂2(v′v′)

∂ x̂∂ ŷ
, (3.36)

with boundary conditions (3.11a,b)–(3.11d) for u4. Integrating equation (3.36) and
using the boundary conditions, the following simplified solution is found:

u4(x̂, ŷ)=
π2U2

ac

120c0
sin(2πx̂)

(
R̂

L̂

)2 [
1− 6

(
ŷ

R̂

)2

+ 5
(

ŷ

R̂

)4
]
. (3.37)

Along the axis we obtain the following expression for the normalized axial
streaming velocity

u4(x̂, 0)
uR

=
2π2

45

(
R̂

L̂

)2

. (3.38)

Comparing equations (3.38) and (3.33) shows that u4(x̂, 0)/uR is equal to −1/R̂
times the first term of u3(x̂, 0)/uR. The contribution of the fourth source term is thus
negligible for large enough guides.

3.2.6. Superposition of solutions
Gathering together the four components u1, u2, u3 and u4, and neglecting the lower-

order terms, the total streaming velocity along the axis is given by

u(x̂, 0)
uR
=

∑4
i=1 ui(x̂, 0)

uR
= 1−

29
6

1

R̂
−

2π2

45
R̂3

L̂2

[
1+

73

2R̂
−

585

4R̂2
+

180

R̂3

]
. (3.39)

This expression shows that, under certain circumstances, the streaming flow can be
reversed on the axis (u(x̂, 0)/uR < 0). This occurs when

L̂< L̂limit =π

√
2
45

 R̂3

(
1+

73

2R̂
−

585

4R̂2
+

180

R̂3

)
1−

29
6

1

R̂


1/2

. (3.40)

Figure 4 shows the variation with R̂ of the limit value L̂limit/R̂. For geometries that
fall under the curve, there exists a reversed flow on the axis. Minimum values are
R̂ = 13.52, L̂/R̂ = L/R = 5.24. These values are compatible with the hypothesis
(R̂/L̂)2 � 1. For example, for R̂ = 100, reversed outer streaming velocity occurs if
L̂< 789, or L/R< 7.89.

In order to characterize the possible applications, let us consider a practical case
of reverse flow along the guide axis. Let L̂ and R̂ be fixed. For resonance conditions,
λ = 2L and ω = πc0/L. Using δ2

ν = 2ν/ω and L̂ = L/δν , the following equations are
obtained

L=
2ν
πc0

L̂2, R= L
R̂

L̂
. (3.41a,b)
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FIGURE 4. Limit value L̂limit(R̂)/R̂ under which the flow is reversed on the axis.
Minimum values: R̂= 13.52, L̂limit/R̂= 5.24.
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FIGURE 5. (Colour online) Axial streaming velocities u1(x̂, ŷ)/uR (red solid line),
u2(x̂, ŷ)/uR (blue dashed line), u3(x̂, ŷ)/uR (green dotdashed line) and u4(x̂, ŷ)/uR (purple
dotted line). R̂= 50, L̂= 500. (a) ŷ= 0; (b) x̂=−1/4.

Let L̂ = 789 and R̂ = 100, as previously. Taking standard values corresponding
to air, ν = 1.496 × 10−5 m2 s−1 and c0 = 343.82 m s−1, we obtain L = 17.2 mm,
R = 2.15 mm and the resonance frequency f = 10 kHz. These dimensions are small
and could concern microfluidics systems, where Rayleigh streaming is used, for
example within the field of acoustic particle trapping and manipulation or efficient
fluid mixing. It is interesting to remark that some experiments in microfluidics have
shown Rayleigh streaming vortices rotating in the opposite direction to that expected.
Our results could give an explanation to this phenomenon that is a subject of debate
(Wiklund, Green & Ohlin 2012).

Figure 5 shows the four components u1/uR, u2/uR, u3/uR and u4/uR along the axis
(a) and along ŷ for x̂=−1/4 (b). Here we have R̂=50 and L̂=500. We notice that the
fourth contribution is negligible, and that the third contribution is of the same order
of magnitude as the second one. Figure 6 shows the total axial velocity u profile for
R̂= 100 and two values of L̂: L̂= 600 and L̂= 8000. The difference between the two
profiles is important in the core of the guide, whereas in the very near wall region,
both profiles are very close.

This feature was also observed (even though the acoustic regime and the geometric
configuration were different) in experiments as well as numerical simulations, that
revealed situations where the outer streaming flow was greatly modified (up to
occurrence of reverse flow), while the inner streaming flow was nearly unmodified
(Reyt et al. 2013; Reyt, Bailliet & Valière 2014).
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ŷ

FIGURE 6. Total normalized axial streaming velocity transverse profile u(−1/4, ŷ)/uR

for R̂= 100 and L̂= 600 (solid line), L̂= 8000 (dashed line).

At this stage we have shown that the usually neglected third source term of outer
streaming is responsible for drastic change of behaviour of acoustic streaming for
certain (L̂, R̂) conditions. The ratio R/δν is usually considered as the criterion to
differentiate between different streaming regimes, from narrow guides with only inner
cells to large guides with mostly outer cells. The present study implies that not only
R/δν but also R/L ratios should be considered in order to examine the organization
of the streaming flow.

In the following sections we consider the impact of this finding on other
characteristics of streaming flow: slip velocity, mass transport velocity, vertical
component of streaming velocity.

3.2.7. Slip velocity
The viscous boundary layer vortex thickness (inner streaming) was estimated to be

approximatively equal to 1.9δν by Schlichting (1932), who did not consider streaming
outside the boundary layer. As shown by experiments (Moreau et al. 2008), the limit
for large guides between inner and outer streaming cells is 3δν from the wall, as
illustrated in figure 1. At 3δν from the guide wall, the axial streaming velocity was
indeed found to reach its maximum. The flow in the core of the guide is initiated
by transverse diffusion of momentum from there. This position is the limit between
inner and outer streaming cells and the value of the axial streaming velocity at non-
dimensional ŷ= ŷl

= R̂− 3 is thus generally considered as a slip velocity when inner
streaming is not described. Rayleigh’s solution for the slip velocity is given by uSV

R =

(3/8)U2
ac/c0 sin(2πx̂).

The actual non-dimensional transverse location ŷSV of the maximum of the axial
streaming velocity can however deviate from this standard value, depending on values
of R̂ and L̂. Figure 7 shows the difference (or offset) ŷSV

− ŷl between the actual and
standard location of the slip velocity as a function of R̂ (for 6 < R̂ < 200), for two
values of L̂. For the largest value of L̂, we note that the actual location shifts slightly
away from the wall as R̂ increases (it is placed at the standard value for R̂ = 28).
This is in agreement with previous results showing the evolution of the axial streaming
velocity transverse profile with the ratio R/δν (e.g. figure 4 of Bailliet et al. (2001)
and figure 4 of Hamilton et al. (2003a)).
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FIGURE 7. Difference (or offset) between the actual location ŷSV and the standard location
R̂− 3 of the slip velocity, as a function of R̂. Solid line: L̂= 8000, dashed line: L̂= 500.
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FIGURE 8. Normalized axial slip velocity at position ŷ= ŷSV , as a function of R̂. Solid
line: L̂= 8000, dashed line: L̂= 500.

For the smallest value of L̂, the actual location of the slip velocity shifts closer
to the wall as R̂ increases. This can be related to the fact that the u3 contribution
becomes large (see figure 5).

Figure 8 shows the axial slip velocity u, normalized by uSV
R , at the actual position

ŷ = ŷSV (corresponding to figure 7). It can be noted that the normalized value goes
naturally to almost 1 as R̂ becomes large for the largest value of L̂. However this
is not the case for the smallest value of L̂ and the normalized value is reduced
significantly for R̂> 50.

Here again we explore the limit of validity of the classical approach by showing that
both the position and the value of the slip velocity are dependent not only on R̂ but
also on L̂. This is stressed also by results shown in figure 9 that gives a comparison
of the slip velocity and the maximum normalized axial velocity on the guide axis, for
L̂= 8000 and L̂= 500. We can see that the axial slip velocity departs from Rayleigh’s
solution more than that on the axis for small values of R̂ (the solid curve is below
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FIGURE 9. Normalized axial slip velocity versus R̂ (solid line), and maximum normalized
axial streaming velocity on the axis (dashed line). (a) L̂= 8000, (b) L̂= 500.

the dashed curve). For large values of R̂, the opposite is true: the slip velocity departs
from Rayleigh’s solution less than the axial streaming velocity on the guide axis.
Comparing figure 9 (a,b) shows that this tendency is emphasized for smaller values
of L̂, due to increased importance of u3.

3.2.8. Average mass transport velocity
The streaming velocity considered up to now in this study, is often referred to

as ‘Eulerian’ time-average velocity. The ‘average mass transport’ velocity, associated
with streaming mass transport, is often considered, especially for thermoacoustic
applications where heat transport due to streaming is the relevant quantity of interest.
The axial component of the average mass transport velocity uM, at the first order of
approximation, is given by

uM(x̂, ŷ)= u+
ρ ′u′

ρ0
. (3.42)

Along the axis, using (3.12) and neglecting terms of order O(e−R̂) and lower, it follows
that

uM(x̂, 0)
uR

= 1−
11
2

1

R̂
−

2π2

45
R̂2

L̂2

[
R̂− 1+

30

R̂2
−

60

R̂3
+

45

R̂4

]
. (3.43)

Figure 10 shows the transverse profiles of axial streaming velocities u and uM, for
three values of R̂ (6, 50 and 90), and two values of L̂ (8000 and 500). The difference
between u and uM is most significant in the viscous boundary layer, as usually
considered. For small values of R̂, differences are significant everywhere, including
on the axis. These differences between u and uM are obviously associated with the
additional term ρ ′u′. As shown by expressions (3.4) and (3.6) this term is nearly zero
since it is the product of two terms nearly in quadrature apart from viscous boundary
layers effects. Indeed on the axis the acoustic velocity oscillates as cos(2πt̂) (see
dominant terms in equation (3.4)) and the acoustic density oscillates as sin(2πt̂) (see
dominant terms in equation (3.6)). This feature is associated with the standing wave

https://doi.org/10.1017/jfm.2019.111
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Acoustic streaming 1003

1 2 3 4 5 6

1 2 3 4 5 6

10 20 30 40 50

10 20 30 40 50

1.0
0.5

-0.5
-1.0
-1.5
-2.0

1.0
0.5

-0.5
-1.0
-1.5
-2.0

1.0
0.5

-0.5
-1.0
-1.5
-2.0

1.0
0.5

-0.5
-1.0
-1.5
-2.0

1.0
0.5

-0.5
-1.0
-1.5
-2.0

1.0
0.5

-0.5
-1.0
-1.5
-2.0

ŷ

ŷ
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FIGURE 10. Axial velocities uM(−1/4, ŷ)/uR (dashed line), u(−1/4, ŷ)/uR (solid line).
(a) R̂ = 6, L̂ = 8000, (b) R̂ = 50, L̂ = 8000, (c) R̂ = 90, L̂ = 8000, (d) R̂ = 6, L̂ = 500,
(e) R̂= 50, L̂= 500, ( f ) R̂= 90, L̂= 500.

character of the oscillation in the guide under study that is closed at both ends and
excited at its resonance frequency. In such resonators acoustic pressure (and thus
density oscillations) are in quadrature with acoustic velocity due to boundary layers
effects. Therefore for large guides (see figure 10b,c,e, f ) the difference between u and
uM is only significant close to the wall. For narrow guides, the inner streaming takes
up most of the guide, thus u and uM are different through the whole guide section
(see figure 10a,d).

Also in the case R̂= 90 and L̂= 500 (figure 10f ), the change of sign of u at ŷ≈ 25
indicates the appearance of a new vortex with reverse flow near the axis.

3.2.9. Vertical streaming velocity
It can also be useful to consider the vertical component of streaming velocity,

especially to detect the appearance of new cells. Let us define the average mass
transport vertical velocity variable given by, in the first order of approximation

vM(x̂, ŷ)= v +
ρ ′v′

ρ0
. (3.44)

The continuity equation (first equation in (3.10)) becomes

∂uM

∂ x̂
+ L̂

∂vM

∂ ŷ
= 0. (3.45)

Integrating equation (3.45) and using the boundary conditions (3.11c) yields the
simplified expression

vM(x̂, ŷ) =
πU2

ac

16c0L̂
cos(2πx̂)

{
ŷ

R̂

(
−33+ 6R̂− 4π2 R̂4

L̂2

)
+

ŷ3

R̂3

(
11− 6R̂+

8π2

15
R̂4

L̂2

)

−
4π2

15
R̂4

L̂2

ŷ5

R̂5
+ eŷ−R̂

[
cos(R̂− ŷ)

(
16+ 4

ŷ

R̂

)
+ sin(R̂− ŷ)

(
16− 4

ŷ

R̂

)]
+ 2e2(ŷ−R̂)

}
. (3.46)
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FIGURE 11. Vertical average mass transport velocities vM(−1/2, ŷ)/uR (dashed line),
v(−1/2, ŷ)/uR (solid line). (a) R̂= 6, L̂= 8000, (b) R̂= 50, L̂= 8000, (c) R̂= 90, L̂= 8000,
(d) R̂= 6, L̂= 500, (e) R̂= 50, L̂= 500, ( f ) R̂= 90, L̂= 500.

The Eulerian velocity v can be obtained using (3.44) and (3.13). Figure 11 shows
the vertical velocities v and vM for several values of R̂ and two values of L̂. For small
values of R̂ (figure 11a,d), v and vM are very different. Also in the case R̂= 90 and
L̂=500 (figure 11f ), the change of sign of v and vM at ŷ≈46 indicates the appearance
of a new vortex with reverse flow near the axis.

Finally, as a summary, figure 12 shows the streamlines of the streaming flow plotted
using (3.42) and (3.46), for R̂= 90 and L̂= 500 and 8000. For such large values of R̂,
the inner streaming is restrained in a very small region near the wall. For L̂= 8000,
Rayleigh streaming is composed of two counter-rotating vortices as usual, while for
L̂= 500 it is composed of four vortices, the flow along the axis being reversed.

4. The axisymmetric case
Streaming flow in cylindrical guides shows common features with the one between

plates. It is composed of toroidal vortices that span λ/4 in the axial direction and inner
and outer vortices coexist. Figure 1 corresponds to the streaming patterns observed in
an axial section. However the value of the axial streaming velocity on the axis, and
the position of the centre of the outer streaming vortex, are quite different from the
case of parallel plates. We have performed an analysis similar to that presented above
for the case of a cylindrical guide. One goal is to deduce the condition for L/R such
that additional counter-rotating streaming cells appear, associated with the third source
term.

4.1. Acoustics
With the same change of variables as in the plane case (r̂= r/δν , where r is the radial
coordinate), the linearized equations governing acoustics in the axisymmetric case are

1
2

c0
∂ρ ′

∂ t̂
+ ρ0

(
∂u′

∂ x̂
+ L̂

1
r̂
∂

∂ r̂
(r̂v′)

)
= 0 (4.1a)

ρ0
c0

2
∂u′

∂ t̂
+ c2

0
∂ρ ′

∂ x̂
= ρ0

π

2
c0

1
r̂
∂

∂ r̂

(
r̂
∂u′

∂ r̂

)
(4.1b)

∂ρ ′

∂ r̂
= 0, (4.1c)
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FIGURE 12. Streamlines of the mass transport velocity for R̂ = 90; L̂ = 500 (a), L̂ =
8000 (b). (c) Zoom on the inner region of top figure.

where u′ and v′ are the axial and radial components of the acoustic velocity. The
boundary conditions for u′ and v′ remain given by (3.3), replacing ŷ by r̂.

We start again with a given axial velocity solution of (4.1), approximated following
Schuster & Matz (1940) for moderate and large channels (R̂ > 6)

u′(x̂, r̂, t̂) = Uac cos(πx̂)
[(
−1+

1
2

I0((1− i)r̂)

I0((1− i)R̂)
+

1
2

I0((1+ i)r̂)

I0((1+ i)R̂)

)
cos(ωt̂)

−

(
1
2i

I0((1− i)r̂)

I0((1− i)R̂)
−

1
2i

I0((1+ i)r̂)

I0((1+ i)R̂)

)
sin(ωt̂)

]
, (4.2)

where I0 is the modified Bessel function of the first kind.
Using the hypothesis that ρ ′ depends on x̂ and t̂ only, together with the boundary

conditions, equation (4.1a) is integrated with respect to r̂ to obtain the radial acoustic
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velocity component

v′(x̂, r̂, t̂) =
π

4
Uac

r̂

L̂
sin(πx̂)


0F̃1

(
; 2,

ir̂2

2

)
− 0F̃1

(
; 2,

iR̂2

2

)
I0((1+ i)R̂)

(cos(ωt̂)− i sin(ωt̂))

+

0F̃1

(
; 2,
−ir̂2

2

)
− 0F̃1

(
; 2,
−iR̂2

2

)
I0((1− i)R̂)

(cos(ωt̂)+ i sin(ωt̂))

 , (4.3)

where 0F̃1(; b, z) is the regularized confluent hypergeometric function.

4.2. Streaming flow equations
Using the same change of variables as in the plane case, the equations to be solved
are 

ρ0

(
∂u
∂ x̂
+ L̂

1
r̂
∂

∂ r̂
(r̂v)

)
=−

∂

∂ x̂
(ρ ′u′)− L̂

1
r̂
∂

∂ r̂
(r̂ρ ′v′)

ρ0
π

2
c0

1
r̂
∂

∂ r̂

(
r̂
∂u
∂ r̂

)
=
∂p
∂ x̂
+ ρ0

∂

∂ x̂
(u′u′)+ ρ0L̂

1
r̂
∂

∂ r̂
(r̂u′v′)

ρ0
π

2
c0

1
r̂
∂

∂ r̂

(
r̂
∂v

∂ r̂

)
= L̂

∂p
∂ r̂
+ ρ0

∂

∂ x̂
(u′v′)+ ρ0L̂

1
r̂
∂

∂ r̂
(r̂v′v′)

(4.4)

and the boundary conditions for u and v are now

u= 0 at r̂= R̂;
∂u
∂ r̂
= 0 at r̂= 0, (4.5a,b)

v = 0 at r̂= 0 and r̂= R̂, (4.5c)

∫ R̂

0
r̂u dr̂= 0. (4.5d)

The average products of fluctuations are calculated with the expressions of u′ and v′
from equations (4.2) and (4.3). Since the complete expressions are complicated, we
only give here u′u′ and u′v′:

u′u′(x̂, r̂)=
U2

ac

2
cos2(πx̂)

(I0((1+ i)r̂)− I0((1+ i)R̂))(I0((1− i)r̂)− I0((1− i)R̂))

I0((1− i)R̂)I0((1+ i)R̂)
(4.6)

u′v′(x̂, r̂) =
1

16
(1− i)

πU2
ac

R̂

1

L̂

sin(2πx̂)

I0((1− i)R̂)I0((1+ i)R̂)
[ ( I0((1− i)r̂)

− I0((1− i)R̂) )
(

R̂I1((1+ i)r̂)− r̂I1((1+ i)R̂)
)

+ (I0((1+ i)r̂)− I0((1+ i)R̂))(R̂J1((1+ i)r̂)− r̂J1((1+ i)R̂)) ], (4.7)

where J1 is the Bessel function of the first kind.
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FIGURE 13. (a) T(r̂, 20) (solid line), approximated function (dashed line). (b) Maximum
relative error as a function of R̂ (log–log plot).

Taking the curl of the momentum equations results in

−
π

2
c0L̂

∂

∂ r̂

(
1
r̂
∂

∂ r̂

(
r̂
∂u
∂ r̂

))
= −L̂

∂2(u′u′)
∂ r̂∂ x̂

− L̂2 ∂

∂ r̂

(
1
r̂
∂(r̂u′v′)
∂ r̂

)
+
∂2(u′v′)
∂ x̂2

+ L̂
1
r̂
∂2(r̂v′v′)
∂ x̂∂ r̂

. (4.8)

4.3. Results
In the same way as in the plane case, we consider separately the four problems
associated with each source term in equation (4.8).

However, there is no symbolic form for the integral of terms of the form
T(r̂, R̂) = Re[(1 + i)I0((1+ i)r̂)/I0((1+ i)R̂) · I1((1− i)r̂)/I0((1− i)R̂)] that appear
in the successive integrations. Nevertheless these terms can be approximated with
good accuracy using an exponential function that can be integrated symbolically.
Figure 13 (a) shows T(r̂, 20) together with the approximated function (a purely
exponential function based on a two-point interpolation) that is used instead in the
successive integrations. The curves are nearly superimposed and indistinguishable.
The maximum relative error between the two functions is represented in a log–log
plot in figure 13 (b) for values of R̂ between 6 and 200, showing excellent accuracy
and a variation in 1/R̂2. The full expressions for the streaming velocity components
are not developed below, since the formulae are very lengthy. Instead, the following
fitted formula is obtained for the axial streaming velocity along the axis, normalized
by Rayleigh’s solution, which is now uR =−(3/8)U2

ac/c0 sin(2πx̂)

u
uR
= 1− 5.676

1

R̂0.98
− 0.296

R̂2.98

L̂2
. (4.9)

This expression shows a similar but slightly different dependence on R̂ compared
to that obtained in the plane case (3.39). It also shows that an extra cell of reversed
flow may still appear near the axis in circumstances where the ratio R̂2.98/L̂2 in the
third term is not negligible. More precisely, the condition for this is

L̂ 6 L̂limit(R̂)=

 0.296R̂2.98

1−
5.676

R̂0.98


1/2

. (4.10)
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FIGURE 14. Limit value L̂limit(R̂)/R̂ under which the flow is reversed on the axis.
Minimum values: R̂= 11.93, L̂/R̂= 2.6.
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FIGURE 15. Axial velocities u(−1/4, ŷ)/uR, L̂= 500 (solid line), L̂= 8000 (dashed line).
(a) R̂= 6, (b) R̂= 50, (c) R̂= 100.
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FIGURE 16. Radial velocities v(−1/2, ŷ)/uR, L̂= 500 (solid line), L̂= 8000 (dashed
line). (a) R̂= 6, (b) R̂= 50, (c) R̂= 100.

Figure 14 shows, for the axisymmetric case, the variation with R̂ of L̂limit/R̂ for the
appearance of reverse flow on the axis. For example, for R̂= 100, the extra cell will
appear for L̂< 536 in the axisymmetric case, that is for a shorter guide than in the
plane case. Note that for small values on the vertical axis of figure 14 the limit of
validity of the hypothesis (R/L)2� 1 is reached.

This has to be kept in mind when assessing geometries compatible with the
existence of the extra cell.

Figures 15 and 16 show the radial profiles of axial and radial streaming velocities
u, v, for three values of R̂ (6, 50 and 100), and two values of L̂ (500 and 8000).
The behaviour of the streaming flow is similar to that in the plane case. The inner
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FIGURE 17. Streamlines of the mass transport velocity in an axial plane section for
R̂= 100; L̂= 500 (a), L̂= 8000 (b).

streaming is of lower amplitude than in the plane case. It is also seen that the centre
of the outer vortex is closer to the wall than in the plane case, as expected (Rayleigh
1884). The influence of the third source term is visible in the case R̂= 50, L̂= 500.
An extra vortex appears and the flow is reversed on the axis for R̂ = 100, L̂ = 500.
Figure 17 shows the corresponding streamlines of the mass transport velocity in an
axial plane section. The inner vortex is very narrow in this case and not visible on
this figure.

5. Conclusion

Rayleigh’s outer streaming flow in standing wave guides (infinite parallel plates
or cylindrical tubes) was revisited, by solving the full linear streaming equations
for moderate to large guides, using symbolic computations. The effect of each
Reynolds stress source term was analysed separately and several features that were
not previously reported were exhibited: analysis of the effect of the two classically
dominant Reynolds stress source terms highlighted the commonly accepted fact that
the streaming flow is generated only by viscous boundary layer effects. The outer
streaming is created from momentum diffusion of the velocity created near the
guide wall, and not from pressure gradient effects. The dependency with the guide’s
length and the radius of the axial streaming velocity normalized by Rayleigh’s
solution along the axis was quantified. It was shown that the effect of the third
Reynolds stress source term which is usually neglected can become important for
some geometrical parameters that were identified. In these situations, a vortex with
reverse flow is created along the guide axis. Several characteristics of the streaming
flow were analysed, such as slip velocity, mass transport velocity and transverse
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component of streaming flow, in connection with the effect of the third source term.
For all these characteristics it was shown that not only the ratio of wave guide width
(or radius) to viscous boundary layer thickness, but also the ratio of guide width (or
radius) to guide length, are driving criteria for the organization of streaming.
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