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Microstructural characterization of annulus fibrosus 
by ultrasonography: a feasibility study with an in vivo and in vitro 
approach

Tristan Langlais1,2 · Pierre Desprairies1,3 · Raphael Pietton2 · Pierre‑Yves Rohan1 · Jean Dubousset1 · 
Judith R. Meakin3 · Peter C. Winlove3 · Raphael Vialle2 · Wafa Skalli1 · Claudio Vergari1,3 

Abstract
The main function of the intervertebral disc is biomechanical function, since it must resist repetitive high loadings, while 
giv-ing the spine its flexibility and protecting the spinal cord from over-straining. It partially owes its mechanical 
characteristics to the lamellar architecture of its outer layer, the annulus fibrosus. Today, no non-invasive means exist to 
characterize annulus lamellar structure in vivo. The aim of this work was to test the feasibility of imaging annulus fibrosus 
microstructure in vivo with ultrasonography. Twenty-nine healthy adolescents were included. Ultrasonographies of L3–L4 
disc were acquired with a frontal approach. Annulus fibrosus was segmented in the images to measure the thickness of the 
lamellae. To validate lamel-lar appearance in ultrasonographies, multimodality images of two cow tail discs were 
compared: ultrasonography, magnetic resonance and optical microscopy. In vivo average lamellar thickness was 229.7 ± 
91.5 μm, and it correlated with patient body mass index and age. Lamellar appearance in the three imaging modalities 
in vitro was consistent. Lamellar measurement uncertainty was 7%, with good agreement between two operators. 
Feasibility of ultrasonography for the analysis of lumbar annulus fibrosus structure was confirmed. Further work should 
aim at validating measurement reliability, and to assess the relevance of the method to characterize annulus alterations, 
for instance in disc degeneration or scoliosis.
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1 Introduction

Intervertebral disc is the largest avascular organ of the 
human body. Its main function is biomechanical function: 
it gives spine its flexibility while protecting the spinal cord 
from over-straining. Thus, it must undergo large and repeti-
tive loads and absorb mechanical shocks. Disc compliance 
and resistance are strongly related to its complex structure: it 
is composed of a strong fibrous outer ring (annulus fibrosus, 

AF) retaining a gel-like substance in the middle (nucleus 
pulposus). The AF in particular is made of concentric 
fibrous lamellae, which are rich in collagen fibres running 
parallel within a given lamella. Each lamella runs in a dif-
ferent direction, and they tend to be discontinuous, i.e. they 
are not rings running around the whole disc, but rather bands 
connecting adjacent endplates (Marchand and Ahmed 1990; 
Vergari et al. 2017).

Given its importance in spinal biomechanics, the interver-
tebral disc is often a key element of numerical models of the 
spine and trunk (Dreischarf et al. 2014). Thus, the realism 
and the relevance of these models rely on the experimental 
characterization of disc’s mechanical and structural prop-
erties (Barthelemy et al. 2016). In particular, the attention 
has been shifting from generic modelling to patient-specific 
modelling and, thanks to the continuous improvement of 
calculation power, towards detailed multiscale modelling 
(Little and Adam 2015; Mengoni et al. 2015; Toumanidou 
and Noailly 2015; Kassab et al. 2016).
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Disc mechanical properties can be estimated in vitro 
from mechanical testing or imaging-based methods, such 
as shearwave elastography based on ultrasound or mag-
netic resonance imaging (Vergari et al. 2014a; Ben-Abra-
ham et al. 2017). In vivo, disc properties can be estimated 
with bending, suspension or fulcrum tests under radio-
logical imaging (Hirsch et al. 2015; He and Wong 2018), 
or non-invasively through shearwave elastography (Streit-
berger et al. 2015; Vergari et al. 2016). However, charac-
terizing disc microstructure with non-destructive methods 
is still a challenge. In vitro, high-resolution magnetic reso-
nance imaging (MRI) and micro-computed tomography 
gives access to disc size and to the annulus’ lamellar struc-
ture (Lin and Tang 2017), but, to our knowledge, no means 
currently exists to estimate lamellar structure in vivo.

The number and thickness of the lamellae have a non-
negligible impact on disc mechanics (Adam et al. 2015). 
Therefore, measuring lamellae in vivo would represent an 
improvement for the personalization of numerical models.

Ultrasonography has shown potential in the assess-
ment of fibrous tissues. For instance, it has been used to 
examine healthy and pathological tendons, both to char-
acterize their structural (Denoix et al. 1990; van Schie 
et al. 1999) and mechanical properties (Crevier-Denoix 
et al. 2005). Feasibility of ultrasonographic imaging of 
the disc has been tested preliminary in vitro (Johnson 
et al. 2002; Kakitsubata et al. 2005) and in vivo with a 
posteromedial approach (McNally et al. 2000). Recent 
technical advances allowed a vast improvement in ultra-
sonographic image quality and resolution, but applications 
to the intervertebral disc are still lacking. In particular, 
it was never determined, to our knowledge, whether the 
concentric structures that are visible in ultrasonographies 
indeed correspond to the lamellae.

Magnetic resonance imaging (MRI), on the other hand, 
was previously used to characterize disc lamellar structure 
in vitro (Wright et al. 2016; Sharabi et al. 2018), while 
polarized light microscopy remains the gold standard 
to observe lamellae (Adam et al. 2015). Thus, these two 
validated modalities could be used to interpret ultrasono-
graphic images in vitro.

The hypothesis of the present work was that current 
ultrasonographic technology could give access to the char-
acterization of the AF lamellar structure in vivo. The aim 
was to demonstrate the feasibility of such technique by 
measuring lamellar thickness in a cohort of healthy ado-
lescents and comparing the results with literature values 
of in vitro measurements. Moreover, to further validate the 
information conveyed by the ultrasound images, discs from 
cow tails were imaged with ultrasound, MRI and optical 
microscopy to compare the lamellar structure visible in 
each modality.

2  Materials and methods

2.1  Subjects

Healthy adolescents, ageing between 10 and 18 years of 
age, with no antecedents of musculoskeletal disease were 
included after signed informed consent (theirs and their par-
ents when minor). Their weight and height were recorded, 
and their body mass index (BMI) was calculated. The study 
was approved by the ethical committee (C.P.P Île de France 
VI 14 409).

2.2  In vivo ultrasonography

Ultrasonography was performed by an experienced user 
with an Aixplorer (SuperSonic Imagine, Aix-en-Provence, 
France) and a linear SL 10-2 probe. Imaging protocol was 
previously described for shearwave elastography of the disc 
(Langlais et al. 2018): the subject was supine, arms along the 
body, in normal respiration. The probe was placed against 
the abdomen, oriented in the transversal plane. Disc L3-L4 
was detected by looking for the abdominal aortic bifurca-
tion, which is usually at the L4 vertebral level (Deswal 
et al. 2014). The orientation of the probe was then carefully 
adapted to obtain a good image of the AF lamellar structure 
(Fig. 1).

2.3  Measurement of lamellar thickness

Image processing was performed with ImageJ (Schneider 
et al. 2012). An operator traced three radial lines across the 
AF, one medial and two mediolateral (Fig. 2), between the 
annulus outer and inner surface; the outer ending of the line 
was defined on the disc’s outer border, while the inner end-
ing corresponded with the last visible lamella (Fig. 2). The 
lines were spaced by about 5 mm. Grayscale values of the 

Fig. 1  Example of lamellar structure of the annulus fibrosus (AF) of 
L3–L4 intervertebral disc. A aorta, NP nucleus pulposus



pixels along each line were extracted and automatically pro-
cessed in Matlab 2016b (The MathWorks Inc., Natick, MA) 
to detect the interlamellar borders. These were defined as the 
midpoint between each peak and valley. Finally, the average 
lamellar thickness for each AF was calculated as the average 
distance between interlamellar distances.

Conversion of pixel size to millimeter was possible thanks 
to the vertical scale available in each image (Fig. 1).

2.4  In vitro validation

A cow tail was retrieved at the local butcher. The first two 
caudal discs were imaged with ultrasound applying a pre-
vious described protocol (Vergari et al. 2014a), similar to 
the one adopted for the in vivo measurements: the probe 
was gently placed on the ventral aspect of the cow tail with 
abundant acoustic gel, oriented transversally relative to 
the tail’s main axis. The probe was then tilted to image the 
disc’s transversal plane and acquire an image of the annulus’ 
lamellar structure.

Afterwards, the tail was frozen intact to preserve disc 
microstructure and hydration, and it was thawed at room 
temperature on the day of the subsequent analyses.

MR images of the same two discs were acquired with a 
Gyroscan Intera 1.5 T whole-body imager (Philips, Amster-
dam, Netherlands) using a 47-mm microscopy coil. The 
MRI acquisitions were realized in two phases. First, a fast 
and low-resolution longitudinal scan was performed to pre-
cisely determine the transversal midplane of each disc. Then, 
high-resolution scans (TR = 80 ms, TE = 21 ms, NSA = 20, 
Resolution = 90 × 90 × 200 μm) were performed to obtain 
high-resolution MR images of this plane.

On the same day, the cow tail was dissected to expose the 
first two discs. A wedge was excised from the ventral part of 
each annulus, and it was placed in a cryo-microtome. Slices 
of 30 μm thickness were cut, they were placed on a micro-
scope slide and then they were imaged with a Nikon Eclipse 
E200 microscope, fitted with a 4x/0.10 Nikon objective, 

two cross-polarizer filters placed before and after the sam-
ple and a QImaging Retiga 2000R camera with a definition 
of 1600 × 1200 pixels. A rectangular grid of images was 
acquired to cover the whole sample, and they were stitched 
together with ImageJ’s plugin MosaicJ (Thévenaz and Unser 
2006). Each annulus yielded a microscopic image of approx-
imately 4 × 4 mm with a pixel size of 1.86 μm.

The images of each annulus, which were obtained with 
the three modalities, were resampled to the same pixel size 
and manually superimposed to appreciate the consistency of 
the annulus appearance across modalities.

2.5  Reliability and statistics

A second operator processed the in vivo images of a random 
subset of 10 subjects. Reliability of lamellar thickness meas-
urement was assessed by calculating the root mean squared 
difference between operators and the intraclass correlation 
coefficient (ICC).

Data distribution of lamellar thickness was not normal 
(Lilliefors test, p < 0.05), so correlations were analysed 
with Spearman’s rank test and differences between sexes 
with Mann–Whitney tests. Statistical significance was set 
at p < 0.05.

3  Results

Twenty-nine adolescents were included; Table 1 reports their 
demographical data. One subject (not included in Table 1) 
was excluded since his abdomen was too muscular and lean, 
and reliable acoustic contact could not be achieved.

Average lamellar thickness was 229.7 ± 91.5 μm, ranging 
between 156 and 323 μm. Within-subject lamellar variability 
was 17.8 μm in terms of twice the standard deviation. In 
other words, 95% of the measured lamellae in each patient 
were within the range [average ± 17.8 μm].

Fig. 2  Example of extraction 
of lamellar profile in a lumbar 
annulus fibrosus. Three radial 
lines were defined by an opera-
tor across the annulus fibrosus, 
one medial and two mediolat-
eral. Grayscale values of the 
pixels along each line (plot) 
were extracted to automatically 
detect the interlamellar borders 
(crosses), which were defined 
as the horizontal midpoints 
between main peaks and valleys



Root mean squared difference between operators was 
17 μm (7% of overall average), while ICC was 0.7, indicat-
ing “good agreement” between operators.

A significant correlation was observed between lamellar 
thickness and BMI (p = 0.0058, rho Spearman = 0.29). How-
ever, when BMI was substituted with BMI percentile accord-
ing to subject age and sex (using World Health Organiza-
tion Child Growth Standards), this correlation disappeared 
(p = 0.7).

Lamellar thickness was also correlated to subject 
age (p = 0.0082, rho Spearman = 0.35, Fig.  3): it was 
220.8 ± 33.9 μm before 13 years and 245.4 ± 34.0 μm after 
this age (p = 0.002). No difference was observed between 
sexes.

Average pixel size in ultrasonographic images was 92 μm, 
and average imaging time was 5 min.

Figures 3d and 4d show the superimposition of three 
imaging modalities for the two first discs from cow tails. 
The images show good qualitative agreement, with matching 
lamellar structure (Figs. 4 and 5).  

Table 1  Anagraphical data

Adolescents (n = 29)

Age 13 ± 1.9 (range 10–16)
Sex 13 girls, 16 boys
Height (cm) 160 ± 10 (range 140–180)
Weight (kg) 48.2 ± 11.3 (range 30–73)
Body mass index 18.6 ± 3.1 (range 12.6–27.6)

Fig. 3  Correlation between age and lamellar thickness

Fig. 4  Example of multimodal 
imaging of annulus structure. 
Polarized light microscopy 
(μ), magnetic resonance image 
(MRI) and ultrasonography 
(US) of a cow tail disc. The 
fourth panel shows the three 
images superimposed at the 
same pixel size; lamellae appear 
continuous in the three images, 
confirming that the alternate 
dark/bright banding visible in 
US correspond to the lamellae



4  Discussion

In this preliminary work, the lamellar structure of the 
intervertebral disc AF was quantified in vivo for the first 
time, and the information conveyed by ultrasound was val-
idated with multimodality in vitro imaging. The original-
ity of this approach was to test ultrasonography, which is 
widely used in clinic, to assess the intervertebral disc with 
a clinic-compatible protocol and a quantitative analysis. 
Lamella thickness of L3/L4 annulus fibrosus, which was 
non-invasively measured with ultrasonography, was simi-
lar to previously reported values for adult discs measured 
in vitro: 229.7 ± 91.5 μm in the present study (10–16 years 
old) against 180 ± 20 μm in young adults (18–29 years old) 
and 420 ± 60 μm in adults (53–76 years old) (Marchand 
and Ahmed 1990).

The learning curve for in vivo AF imaging is not long, 
but care must be taken to obtain good-quality images. The 
adolescent must be relaxed, and steady pressure must be 
applied to the probe to move aside intestinal contents and 
gas. It is advisable to first detect the aortic bifurcation, 
which corresponds the L4 vertebra in 64% of subjects 
(Deswal et al. 2014). Then the probe can slide cranially to 
measure L3-L4 disc, as was done in the present work, or 

caudally, to measure the lower discs. In some cases, the 
probe must be placed slightly medially, if the navel pro-
duces shadow artefacts in the image, although in general, 
a large amount of gel is enough to fill the navel and avoid 
artefacts.

The lamellar structure of the AF is only visible if the 
probe is in the same plane of the disc; otherwise, ultrasound 
waves cross a small part of the AF but then they are imme-
diately reflected by the adjacent vertebral bodies. Therefore, 
once the disc position has been identified, the probe must 
be slowly titled until the lamellar structure appears. In other 
words, seeing the lamellar structure in the image means that 
the probe is in the correct orientation relative to the disc 
and that the imaging plane is between the adjacent verte-
bral bodies. This can be further confirmed with the in vitro 
measurements, where the intervertebral disc can actually be 
seen during the acquisition, and the probe orientation can be 
estimated relative to it.

Beyond research applications, such characterization could 
also have interesting clinical applications since measurement 
is rapid, non-invasive and potentially accessible in clini-
cal routine. Evidence is accumulating on the relationship 
between disc alterations and spine deformity, such as ado-
lescent idiopathic scoliosis (AIS), although the pathogenesis 

Fig. 5  Second example of 
multimodal imaging of annulus 
structure. Polarized light 
microscopy (μ), magnetic 
resonance image (MRI) and 
ultrasonography (US) of a cow 
tail disc. The fourth panel shows 
the three images superimposed 
at the same pixel size; lamellae 
appear continuous in the three 
images, confirming that the 
alternate dark/bright banding 
visible in US correspond to the 
lamellae



and natural progression of this pathology are still poorly 
understood (Kouwenhoven and Castelein 2008; Yagi et al. 
2014). For instance, increased intervertebral torsion is char-
acteristic of the progressive scoliosis geometric phenotype 
(Skalli et al. 2017), suggesting a role of altered disc tor-
sional behaviour, which in turn can be affected by lamellar 
structure (Adam et al. 2015). Moreover, it is known that 
scoliotic spines are stiffer than healthy ones (Deviren et al. 
2002), and recent in vivo measurements showed that this 
increased stiffness could be due to the AF (Langlais et al. 
2018). Mechanical and microstructural alterations of the 
disc have been already demonstrated in adolescent idiopathic 
scoliosis patients (Yu et al. 2005; Langlais et al. 2018). If 
these changes are accompanied by morphological ones, the 
technique tested in this work could be used to assess them. 
Other structural alterations of the AF, such as delamination 
or focal lesions, could be the cause or the consequence of a 
degenerative process, pathologic deformity or trauma (Naish 
et al. 2003), and they could be detected by ultrasound.

In perspective, non-invasive assessment of disc micro-
structure could have vast potential clinical applications, 
since it could represent a novel tool to assess scoliosis or 
disc degeneration. Accessing disc structure in vivo could 
also have a huge impact on numerical modelling of the 
disc (Adam et al. 2015), but also of the whole scoliotic 
trunk, given the increasing interest in multiscale modelling 
approaches (Viceconti et al. 2015). Further technical and 
methodological advances of MRI could make it possible to 
cross-validate the proposed technique with in vivo measure-
ment of disc lamellar structure. Moreover, peri-operative 
imaging of the disc during spinal surgery would remove 
potential artefacts due to the tissues surrounding the spine, 
thus providing further validation of the technique.

In vitro validation of the technique was limited to two 
samples and to a qualitative comparison. Still, multimodality 
imaging of animal samples confirmed that the fibrous con-
centric structures visible in ultrasound are indeed lamellae 
(Figs. 4, 5). Polarized light microscopy shows individual 
lamellae with clearly visible layers of fibres separated by 
interlamellar matrix. MRI and ultrasonography resolution 
do not allow seeing fibres within each lamella, but they show 
lamellae as a pattern alternate bright and dark layers. It was 
previously demonstrated that signal intensity of each layer in 
MRI images depends on the orientation of the fibres within 
the layer, as they interact with the magnetic field (Wright 
et al. 2016). More fundamental research is needed to deter-
mine what causes the lamellae to be bright or dark in ultra-
sound images, but a similar phenomenon might be occurring 
when ultrasound waves interact with the lamellae.

This work is a preliminary feasibility study; the main 
limitation is that segments were manually defined on the 
AF to estimate lamellar thickness. Such approach suffers 
from the subjective placement of the segments by of the 

operator, although the same principles were applied for all 
images (two mediolateral and one medial segments, between 
the outer and inner surfaces of the AF). Work is underway to 
develop a semi-automatic method to extract lamellar thick-
nesses and distribution. The second limitation is that in vivo 
measurement was only performed in the lumbar region of 
adolescents. Thoracic discs are hidden anteriorly by the rib 
cage and posteriorly by the intervertebral joints and neural 
arch. Ultrasound-based elastographic measurement of adult 
cervical disc was previously demonstrated feasible (Vergari 
et al. 2014b); however, it is not yet clear if the quality of 
b-mode images would be sufficient to characterize lamellar
structure.

A correlation was observed between lamellar thickness 
and subject BMI. However, BMI increases with age, and its 
interpretation depends on subject sex. Therefore, compar-
ing lamellar thickness with the percentile-equivalent of BMI 
according to subject characteristics seemed more appropri-
ate; when this correction was applied, the correlation disap-
peared. Therefore, the relationship between lamellar thick-
ness and BMI could be indirect, and actually depending on 
subject age.

Marchand and Ahmed reported an effect of age on the 
thickness and on the number of distinct layers found in the 
annulus: older subjects showed less layers, and the lay-
ers were thicker. This corroborates the results obtained in 
the present work where a positive correlation was shown 
between age and lamellar thickness (Fig. 3). Interestingly, 
the age of subjects included in Marchand and Ahmed’s study 
and the present one do not overlap: the older patient in the 
present work was 16 years old, while the younger one in the 
previous study was 18. This could mean that lamellae tend 
to thicken throughout the subject’s life, the later phase of 
which could be associated with a loss of collagen organisa-
tion which has been described in older adults (Gruber and 
Hanley 2002).

While this study aimed at determining the feasibility of 
ultrasound characterization of AF lamellar structure, further 
work could give an insight on the development and pro-
gression of disc alteration. The non-invasive character of 
ultrasonography opens the way to large-scale data collection 
which could clarify the role of the disc in AIS.
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