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a b s t r a c t 

The scapholunate joint is one of the keystones of the wrist kinematics, and its study is difficult due to the

carpal bones size and the richness of surrounding ligaments. We propose a new method of quantitative

assessment of scapholunate kinematics through bone motion tracking in order to investigate scapholunate

ligament lesion as well as repair techniques. On 6 intact wrists, steel beads were inserted into the bones

of interest to track their motions. Experimental set up allowed wrist flexion extension and radio-ulnar

deviation motions. Low-dose bi-planar radiographs were performed each 10 ° of movement for different 

configurations: 1) intact wrist, 2) scapholunate ligament division, 3) repair by soft anchors at the poste- 

rior then 4) anterior part. Beads’ 3D coordinates were computed at each position from biplanar X-Rays,

allowing accurate registration of each wrist bone. The Monte Carlo sensitivity study showed accuracy be- 

tween 0.2 ° and 1.6 ° for the scaphoid and the lunate in motions studied. The maximum flexion-extension 

range of motion of the scaphoid significantly decreased after anterior repair from 73 ° in injured wrist to 

62.7 °. 

The proposed protocol appears robust, and the tracking allowed to quantify the anchor’s influence on the

wrist kinematics.

1. Introduction

The wrist can be schematized into a dual linkage system includ- 

ing the proximal and the distal carpal row, in which each bone in 

a given row moves in the same direction during wrist motion. The 

scapholunate interosseus ligament (SLIL) is a complex anatomical 

structure connecting the scaphoid to the lunate within the first 

row of carpal bones. Therefore, during wrist flexion or radial de- 

viation, the distal part of the scaphoid flexes which leads lunate 

into flexion through the SLIL. This ligament is also critical for com- 

plex wrist movements useful in daily living functions, such as the 

dart throwing motion. When this ligament is completely torn and 

the scapholunate joint becomes dissociated, the dorsal and lateral 
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aspect of radioscaphoid fossa becomes stressed because the forces 

crossing the wrist cannot be distributed normally. 

Sooner or later, this instability leads to a predictable course 

of degenerative arthritis called scapho-lunate advanced collapse 

(SLAC). 

Although the dorsal component of the SLIL is widely considered 

as the most resilient [1 , 2] , recent work highlighted that the loads 

to failure between dorsal and volar part of the ligament are not 

statistically different [2] . 

From a mechanical perspective, the aim of a surgical repair or 

ligamentoplasty is the substitution of the SLIL using biomaterials 

(bone-ligament-bone autografts or other solution [3–6] ) allowing 

wrist motions recovery and physiological load distribution. 

The study of scapholunate joint kinematics is challenging be- 

cause the carpal bones are small and the surrounding ligament 

structures are complex. 

There are only few studies investigating the effect of the 

surgery for the restoration of the scapholunate kinematics [7 , 8] . 

Those previous studies are based on different motion track- 

ing methods making any comparison difficult. For example, two 

studies [9 , 10] computed their geometrical parameters such as the 
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Fig. 1. a) Radius local frame: red axis = prono supination axis, green axis = Flexion Extension axis, blue axis = Radio Ulnar Deviation axis. A cylinder is fitted with a least 

square condition to the green area to obtain the prono supination axis and the radius styloid is manually selected and corresponds to the barycenter of the blue area. b)

Registration of the three bones considered using the bead 3D coordinates (in red the beads). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

gap between the lunate and the scaphoid using a single 2D X-ray 

posteroanterior (PA) radiograph of the wrist, which means that 

their results may be affected by the projection of 3D shapes onto 

a 2D plane compared to other studies measuring the same dis- 

tance in 3D using biplanar radiographs [7] or electromagnetic (EM) 

sensors [8] . 

In addition, one could question the impact of the EM sensors 

on the wrist kinematics. 

Recent approaches use biplanar X-Rays with embedded ra- 

diopaque markers for bone tracking [11–13] . 

Thus, we propose a new method of quantitative assessment 

of scapholunate kinematics through bone motion tracking allow- 

ing the investigation of scapho-lunate ligament lesion as well as 

techniques of repair. The objectives of this study are two-fold: the 

evaluation of the accuracy of this new method and the analysis of 

the effect of the modelization of an additional volar repair of the 

scapho-lunate ligament. 

2. Methods

2.1. Dissection and inclusion of the wrists 

Six arms from 3 female cadavers were collected from the 

anatomy laboratory of our university hospital in a frozen state and 

subsequently thawed at room temperature. 

Wrist arthroscopy were performed to check the integrity of 

the SLIL: we classified the scapho-lunate joint instability accord- 

ing to the Geissler and the European Wrist Arthroscopy Society 

(EWAS) classification [14 , 15] (wrists having a scapho-lunate joint 

state smaller than 2 are considered to be stable). 

The morphology of the lunate was classified according to Vie- 

gas [16] . All the anatomical structures have been preserved. A lon- 

gitudinal dorsal and palmar incision from the entire forearm to the 

base of the third finger as well as retinaculum of the flexors and 

extensors was performed to allow access to the joint capsule. The 

set of epidemiological characteristics of the wrists are summarized 

in Table 1 . 

2.2. Setting up markers 

Steel beads were introduced under fluoroscopic control 

(Siemens Siremobil Compact, Siemens AG, Munich, Germany) three 

by three, within the lunate, the base of the third metacarpal 

(1 mm beads). the scaphoid and the distal radius epiphysis (1.5 mm 

beads). These beads were placed manually after making a bone 

orifice using a Kirchner wire of diameter 1.2 and 1.6 respectively. 

Table 1

Epidemiological characteristics of anatomical parts.

Age Side Arthroscopic assessment Viegas classification

Geissler EWAS

91 R I 1 2

L I 2 2

89 R I 2 1

L I 2 1

80 R II 2 1

L II 2 1

Because wrist bones are very small, the robustness of each local 

frame was investigated as defined in Section 2.4 . 

2.3. Imaging and 3D modeling 

Each included wrist was scanned with a bone density phantom 

using a Philips Brilliance 64 scanner (120 kV, 500 mA, Thornton, 

CO, USA), 0.5 mm thick, allowing for an accurate 3D reconstruc- 

tion of wrist bones and steel beads using MITK software. Radius CT 

reconstruction allowed to define the wrist Flexion-Extension (FE), 

Radio-Ulnar Deviation (RUD), and Prono-Supination (PS) axes as 

described in the literature [17] ( Fig. 1 a). X -axis was defined as the 

axis of the best fit cylinder defined from the radius diaphysis. The 

Y -axis corresponded to the axis crossing the radius styloid secant 

and perpendicular to the X -axis. Z axis was defined by the cross 

product. 

2.4. Kinematics analysis and experimental set up 

Bone tracking was performed using low dose biplanar X-rays 

allowing the computation of the beads 3D coordinates. First, each 

segmented bone was positioned onto the first X rays acquisition 

using a rigid registration. Then, the bead positions at each wrist 

position were carefully checked. Since any bead sliding within 

the bone was not measured, for each step, the position of the 

bone was readjusted by rigid registration using the new beads 3D 

coordinates. 

Custom software ( Fig. 1 b) was used to automatically record the 

beads 3D coordinates at each step, and custom MATLAB (Natick, 

USA) routines were used to compute the new position of each 

bone. 

Given the small size of the bones, a Monte Carlo sensitiv- 

ity study was performed to quantify the robustness of each local 

frame. A Gaussian noise with a range of motion (RoM) of 0.1 mm 



Fig. 2. Test bench. Legend: the asterisk ( ∗) represents the 3D printed base fixed 

to the reference plane. The crosses ( + ), the pulleys guiding the cables with 500 g 

masses (red arrow). The white arrow indicates the plate on which are fixed the

fingers and the palm with the aid of a clamp. An intermediate piece connects it to

the motor.

was applied to the bead coordinates using the MATLAB function 

randn. 500 “noisy” frames were compared to the initial frame to 

quantify the angular deviation induced by the noise. The standard 

deviation (1SD) of the angular deviation over the 500 iterations al- 

lowed us to estimate the reliability of each local frame. 

The radius and third metacarpal positions were used to com- 

pute the wrist motion. From the radius local frame, scaphoid and 

lunate rotations and translations along wrist FE, RUD and PS in 

each wrist position were computed. 

Based on morphometric data provided by the 3D reconstruc- 

tion, the dimensions of the test bench could be adjusted for each 

specimen. The test bench consisted of a 3D printed base attached 

to the reference plane. In this base, the forearm was positioned 

in a neutral prono-supination position by two 35 mm screws and 

fixed by a PMMA surgical cement. All the wrist and finger tendons 

were secured in three groups at the volar and the posterior part of 

the wrist to which a force of 5 N was transmitted through pulleys 

( Fig. 2 ). 

The hand was fixated to a perforated plate using straps around 

each finger and the wrist to remove any sliding effect during the 

imposed motion. 

The hand motion was controlled in displacement. The test 

bench was specifically designed to impose pure planar motions. 

The RoMs considered are FE ( y -axis) ranging from 30 ° flexion 

to 60 ° extension, and RUD ( z -axis) from 20 ° radial deviation to 30 °
ulnar deviation. 

Table 2

Monte Carlo sensivity study (1 SD, degrees) for each bone according the 3 axes.

Lunate Scaphoid 3rd metacarpal

X axis (Pronation – Supination) 1.4 3.0 1.0

Y axis (Flexion - Extension) 1.5 0.2 1.0

Z axis (Radial - Ulnar deviation) 1.6 0.2 1.0

An EOS biplanar X-Rays acquisition (EOS imaging, Paris, France) 

was performed every 10 ° after performing a cycling test of 5 cycles. 

For each wrist, movements were performed when the wrist was 

intact, after SLIL lesion, dorsal repair and both dorsal and volar re- 

pair. 

Injury and repairs were performed by a senior hand surgeon. 

Injury consisted in sectioning the dorsal and the volar parts of 

the SLIL as well as the dorsal radiocarpal ligament (DRC) and dor- 

sal intercarpal ligament (DIC) with a blade. 

Finally, the modelling of the ligament was performed us- 

ing 1 mm soft anchors (Juggerknot, ZimmerBiomet, Warsaw, USA) 

( Fig. 3 ). For the third configuration: one anchor was inserted at the 

posterior and proximal part of the scaphoid and another one par- 

allel in the lunate. The threads of the two anchors were knotted 

together with a Nicky’s knot. For the last configuration, an addi- 

tional volar repair was modelized by the same procedure at the 

anterior part of the scaphoid and the lunate. 

2.6. Statistics 

For each subject, the kinematics has been studied on the in- 

tact wrist injured, after repair of the dorsal part of the ligament 

and finally after further repair of the anterior part of the liga- 

ment. Friedman’s statistical tests were generated, and a Wilcoxon 

test was performed for the significative values as a post-hoc study 

using SPSS Statistics® software for Mac (Version 25, SPSS, IBM, NY, 

USA). 

The threshold of significance was P < 0.05. 

3. Results

The results of the sensitivity study have shown a measurement 

accuracy between 0.2 ° and 1.6 ° concerning the motions of interest 

(FE and RUD) ( Table 2 ). There was a significant difference within 

the different configurations during FE of the wrist for the FE of 

the scaphoid ( p = 0.03), and the translation along the RUD axis 

( p = 0.01). During RUD of the wrist, there were also significant dif- 

ferences for the RUD of the scaphoid ( p = 0.01) and the translation 

along the FE axis ( p = 0.003) and the RUD axis ( p = 0.02). There 

were no significant changes for the lunate motions during FE or 

RUD of the wrists. All the results of the RoM of the scaphoid and 

the lunate concerning the configuration and the direction of the 

displacement of the wrist are presented in the annex. 

The post-hoc study that focused on the rotation of the scaphoid 

around the Y -axis during FE of the wrist ( Fig. 4 a) has shown a sig- 

nificant increase of the motion of the scaphoid between the intact 

configuration and the injured one (63.8 ° to 73 °) and a significant 

decrease between the injured and the additionnal volar repair con- 

figuration (73 ° to 62.7 °). For the Z -axis, during RUD of the wrist 

( Fig. 4 b), we found the same behavior (29.3 ° to 33.3 ° and 33.3 °
to 30.7 °, respectively). For the scaphoid/lunate translation along 

Z -axis, for the FE of the wrist ( Fig. 5 a) or along Y -axis for RUD 

of the wrist ( Fig. 5 b), the results have shown a significant differ- 

ence between the intact and the injured wrist (1.9 mm to 4.1 mm, 

and 1.1 mm to 2.8 mm) but no differences among the two repair 

modalities. 



Fig. 3. Ligament injuries and repairs. Legend: Intact configuration: Dorsal Radio Carpal (DRC) ligament in orange, Dorsal Intercarpal (DIC) ligament in blue, posterior and

volar part of the SLIL in red. Injured configuration: realization of the lesion of the DRC, DIC and the posterior and the volar part of the SLIL. “Dorsal repair only” configuration:

placement of anchors at posterior part of the scaphoid and the lunate and fixed together. Additional volar repair configuration: same additional procedure on the volar part

of these bones.

Fig. 4. a) Mean maximum RoM of the rotation ( °) of the scaphoid around the Y - axis during FE of the wrist for the four configurations.

b) Mean maximum RoM of the rotation ( °) of the scaphoid around the Z -axis during RUD of the wrist for the four configurations. ∗ correspond to P < 0.5.

4. Discussion

Quantitative assessment of physiological kinematics, the ef- 

fect of a potential lesion or even surgical restoration is difficult 

with respect to this joint due to the uncertainty of tracking wrist 

bone movements.Our original approach was to perform the anal- 

ysis of the scapholunate kinematics in vitro using a low dose 

biplane x-ray with intraosseous markers tracking the bone. Fur- 

thermore, different configurations of the wrist were compared: 

when the SLIL was intact, then divided and repaired by soft 

anchors. 

A significant increase of the RoM of the scaphoid between in- 

tact and injured configurations along FE (during FE of the wrist) 

and RUD (during RUD of the wrist) was observed. 

The modeling of an additional volar repair significantly de- 

creased the RoM. 

The reported trends concerning the scaphoid RoM before and 

after the lesion are consistent with the literature. In particular, Wa- 

ters et al. [18] highlighted the same increase in scaphoid flexion in 

injured wrists. 

Regarding the lunate, while the literature reported that SLIL 

lesion increases lunate extension from 5.4 ° to 15 °, we found a 

greater variability ranging from 11.8 ° in extension to 7.4 ° in flex- 

ion ( Table 3 ). 

The wide range of RoM reported in the literature [19 , 20] under- 

lines the multiple challenges of this type of investigation such as 

great inter-individual variations or the reproducibility of the liga- 

mentous lesion [18] . 



Fig. 5. a) Mean maximum RoM of the translation (mm) of the scaphoid/lunatum along the Z -axis during FE of the wrist for the four configurations.

b) Mean maximum RoM of the translation (mm) of the scaphoid/lunatum along the Y -axis during RUD of the wrist for the four configurations. ∗ correspond to P < 0.5.

Table 3

Comparative study of the literature comparing FE RoMs of the scaphoid and lunate before and after ligament injury in FE of the wrist. SLIL = Scapho Lunate Inter osseus Liga- 

ment, ST = Scapho Trapezial Ligaments, RSC = Radio Scapho Capitate Ligament, DRC = Dorsal Radio Carpal Ligament, DIC = Dorsal Inter Carpal Ligament, EM = ElectroMagnetic 

sensors. + = flexion; - = extension. 

Autors, year Number

of wrists

Method Lesion(s)/ Repair Kinematics ( °) FE Scaphoide effect

of the lesion ( °)
FE Lunate effect of

the lesion ( °)

Short, 1995 [21] 6 EM sensors/ active wrist simulator SLIL FE: 50–30 + 3.6 - 5.4

Short, 2002 [22] 8 EM sensors/ active wrist simulator SLIL + ST + RSC FE: 40–30 + –

Short, 2005 [23] 24 EM sensors/ active wrist simulator SLIL + ST + RSC FE: 50–30 + > 2 - > 2

Short, 2007 [24] 24 EM sensors/ active wrist simulator SLIL + DRC + DIC FE: 50–30 + 3.9 - 6.4

Short, 2009 [8] 8 EM sensors/ active wrist simulator SLIL + DRC + DIC FE: 50–30 + –

Stilling, 2010 [20] 12 tantalum beads, preformed plate,

biplanar radiographs

ST 0 /E 30 + Not studied

Eschweiler, 2016 [26] 8 EM sensors/ passive wrist

simulator

SLIL FE: 30–30 + 2 No difference [ < 1]

Waters, 2016 [18] 16 EM sensors/ active wrist simulator SLIL FE: 50–30 + 9 - 15

Current Study, 2018 6 wrists, passive wrist simulator SLIL + DIC + DRC FE: 30–60 + 9.2 [6.5 - 12.5] + 2.9 [ −11.8 - 7.4]

From Table 3 , it is noticeable that most of the previous stud- 

ies [8 , 18 , 21–26 ] used an active motion simulator coupled with EM 

sensors. 

Although active motion simulators allow to produce hand mo- 

tions closer to the physiological behavior by stretching the tendons 

which helps to emulate wrist rotations, the use of EM sensors fix- 

ated to the dorsal face of the wrist by means of carbon rod could 

interfere with the joint kinematics by exerting non-physiological 

forces onto the soft tissues. In addition, the use of EM sensors in- 

duces an asymmetric RoM more important in flexion (50 °) than in 

extension (30 °) due to the presence of the sensors on the dorsal 

side. 

Our work is interested in studying the effect of a surgical treat- 

ment on scapholunate kinematics, which unfortunately is not well 

documented in the literature [7 , 8] . 

Slater et al. [7] have shown that the lesion increases the gap 

between scaphoid and lunate in clenched fist position (2.1 mm in 

intact versus 8 mm in injured wrist) and the repair decreased the 

diastasis: between 3.1 mm and 5.8 mm according to the type of 

capsulodesis. 

Similarly, Pollock et al. [9] highlighted an increase in the 

scapho-lunate gap from 2.9 mm when the ligaments are intact to 

5.0 mm when the ligaments are sectioned. The repair decreased 

the pathological gap from 2.6 mm to 4.6 mm according to the type 

of capsulodesis. 

Although a similar increase was observed, the lower values re- 

ported in this paper, around 1 mm for the intact configuration and 

about 3 mm for the injured one, are most likely due to the wrist 

configuration (passive RoM versus clenched fist position). 

From our results, although the lunate seems less affected, the 

volar repair of the ligament tends to improve the scaphoid kine- 

matics and reduce the distance between the scaphoid and the lu- 

nate. Thus, this study suggests that a combined posterior and an- 

terior repair may be helpful in improving scapholunate kinematics 

after injury. 

Based on the Monte Carlo sensitivity study, uncertainty of the 

carpal bone displacements was quantified, with values ranging 

from 0.2 ° to 1.6 ° concerning the FE and the RUD axis. The scaphoid 

and lunate frames were more sensitive to the bead displacements 

because the beads were closer to each other compared to the 

beads inside the radius or the third metacarpal. While the re- 

sults were all processed, the analysis focused on rotations in the 

Y and Z -axis corresponding to the displacement imposed by the 

motor. Indeed, for the scaphoid, the estimated uncertainty along 

the Z -axis was relatively high (3 °). This uncertainty could be re- 

duced by positioning the beads further away from each other. 

Nevertheless, although the carpal bones are very small, we man- 

aged to get robust local frames as well as preserving the ligament 

integrity. In addition, the reported changes in scaphoid and lu- 

nate RoM along wrist FE and RUD after injury and ligament re- 

pair are both higher than the uncertainty, and consistent with the 

literature. 

Our study has some limitations: the relative low number of 

wrists and the use of a passive wrist movement simulator which 



does not consider the transmission of forces within the joint pro- 

duced by an active contraction of the wrist tendons. 

Despite these limitations, the proposed protocol has several ma- 

jor strong points: minimally invasive intraosseous radio-opaque 

makers that both preserve the integrity of ligaments and prevent 

from extrinsic sensor limitations. The integrity of the SLIL exam- 

ined in situ under prior arthroscopy is also a pledge of rigor be- 

cause the proportion of ligamentous lesions on the cadaveric is 

significant: 43% in our study, ranging from 16% to 50% in the lit- 

erature [27–29] . 

This preliminary study seeks to accuratly understand the 

scapholunate kinematics. Our results about the wrist kinematics 

are consistent with previously reported values. The scapholunate 

kinematics analysis highlights how the lesion alters the bone mo- 

tions and how the anchors tend to restore the physiological kine- 

matics. Further investigation on larger samples would be highly 

valuable to track subject-specific variabilities and strengthen the 

trends reported in this paper. Our protocol can also be easily ex- 

tended to other wrist bones to investigate the impact of the lesion 

at a larger scale within the wrist. 
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