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Abstract 

 

This work is dedicated to the advanced in situ X-ray imaging and complementary ex situ 

investigations of the growth mechanisms when silicon solidifies on a monocrystalline seed 

oriented <110> in the solidification direction. It aims at deepening the fundamental 

understanding of the phenomena that occur throughout silicon crystal growth with a particular 

focus on mechanisms of formation of defects detrimental for photovoltaic applications. 

Namely, grain nucleation, grain boundary formation and evolution, grain competition, twining 

occurrence, dislocation generation and interaction with structural defects are explored and 

analysed. Nucleation of twin crystals preferentially occurs on {111} facets at the edge of the 

sample where solid – liquid – vapor triple point lines exist in interaction also with the crucible  

as well as, at grain boundary grooves at the solid – liquid interface (solid – solid – liquid triple 

lines), where two grains are in competition, either on the {111} facets of the groove or in the 
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groove. Enhanced undercooling and/or stress accumulation levels are found to act as driving 

forces for grain nucleation. Additionally, it is demonstrated that twin formation has the property 

to relax stresses stored in the crystal during the growth process. However, grains formed 

initially in twin position can undergo severe distortion when they are in direct competition or 

when they are squeezed in – between grains. Moreover, we show by X-ray Bragg diffraction 

imaging that on the one hand, coherent Σ3 <111> grain boundaries efficiently block the 

propagation of growth dislocations during the solidification process, while on the other hand, 

dislocations are emitted at the level of incoherent and  / or asymmetric Σ27a <110> at the 

encounter with either Σ3 <111> or Σ9 <110> grain boundaries. Indeed, grain boundaries that 

deviate from the ideal coincidence orientation act as dislocation sources that spread inside the 

surrounding crystals. 

 

Keywords: X-ray diffraction imaging, X-ray radiography, twinning, grain competition,  

dislocations, structural defects 

 

1 Introduction 

Aiming to the production of low cost and high efficiency silicon based solar cells for 

photovoltaic (PV) applications, current research focuses on several key targets such as the 

optimization of silicon growth processes and the improvement of the crystalline quality of the 

final ingot. With the conventional multicrystalline silicon (mc-Si) growth technique, the silicon 

structure cannot be controlled at all.  Three alternative technologies have been proposed to 

master the initial grain nucleation and defect generation at the bottom of the crucible during the 

first stage of solidification: the dendritic casting method, the mono-like solidification (ML-Si) 

and the high performance multi-crystalline silicon (HP mc-Si).  A major issue shared by all 

techniques is to control and lower the density of dislocations. Indeed, it is well known that 
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dislocations have a strong harmful effect on the efficiency of solar cells, because they can act 

as preferential segregation sites for impurities ultimately reducing the carrier lifetime. 

Recently, Fujiwara et al. presented the dendritic casting method as a new concept to tailor 

the grain orientation and grain size by controlling the undercooling of the initial grown melt 

[1]. The ultimate goal of this technique is to obtain an ingot with large grains, low density of 

random grain boundaries and thus lower density of dislocations. However, the control of the 

undercooling is not easy in a commercial growth facility due to the large thermal resistance 

from the thick bottom of the silica crucible and of the imperfect Si3N4 coating of the crucible 

walls [2,3].  

The simplest way to control the grain structure formation is to use seeds at the bottom of 

the crucible. Two approaches have been reported in the literature, which represent the two 

extreme grain configurations; the ML-Si and the HP mc-Si. On the one hand, in the case of ML-

Si, a pavement of monocrystalline seeds is placed on the bottom of the crucible in order to grow 

a mono-crystalline ingot, taking up the initial orientation of the seed [4]. However, ML-Si 

efficiencies are still limited due to the presence of structural defects such as parasitic grain 

nucleation on the walls of the crucible [5,6], twin formation and dislocations. The latter, can be 

either arranged in cellular patterns, in the entire mono-like Si ingot and are known as 

background dislocations [7] or generated on the top of the seeds [6,8],  at their junctions [6,9–

12], on precipitates and subsequently propagate vertically along the growth direction 

[4,5,13,14] inducing the formation of sub-grain boundaries. On the other hand, the ultimate goal 

of the HP mc-Si technique is to obtain small and uniform grains at the initial stage of 

solidification with random angle and coherent grain boundaries. This would result in low 

density of dislocation clusters thanks to the interaction of blocking mechanisms by which 

dislocations that nucleate at the beginning of the crystallization process cannot propagate 

further along the growth of the ingot. In the literature, chips [15] (small Si pieces) and granules 
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[16,17] (small spherical Si beads) have been reported to be used as seeds for HP mc-Si ingot 

growth with promising results. However, from the work presented on the literature, we can 

conclude that it is essential to better understand and control the initial grain size and orientation 

distribution at both bottom and walls of the crucible, as well as the initial defect density to 

obtain the targeted dislocation density reduction higher in the ingot [18].  

Both ML-Si and HP mc-Si techniques have a lower defect density than the conventional 

mc-Si while allowing the use of low-cost casting solidification methods [19]. However, as seen 

above, there still exist huge and inherent challenges related to: the control of the initial grain 

nucleation, twinning frequency occurrence, grain competition, defect generation, their 

interaction with grain boundaries and their evolution during growth. As a conclusion, further 

research is needed to increase the competitiveness of those processes and to reach an efficient 

mass production. Few works are available in the literature discussing those phenomena stepping 

forward possible grain formation, grain boundary interaction and dislocation generation 

mechanisms [20–25]. Nevertheless, current fundamental research progress is limited by the 

difficulty of accessing, from the ex situ study of the solidified ingots, understanding and control 

of the processes occurring during crystallization.  

This paper is devoted to the mechanisms involved in the crystallization process that must 

be first understood to be controlled in a further step. Advanced in situ and complementary ex 

situ characterisation methods are used to investigate Si growth mechanisms when Si is 

solidified from a Si seed oriented <110> in the solidification direction. We focus on the grain 

nucleation, the grain boundary formation, the grain competition, the twining occurrence, the 

dislocation generation and interaction with either themselves and/or structural defects, aiming 

at deepening the fundamental understanding on the phenomena that occur during the Si crystal 

growth.  
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2 Experimental procedure 

2.1 In situ X-ray imaging during crystal growth 

GaTSBI (Growth at high Temperature observed by Synchrotron Beam Imaging) is a 

unique device for Si that allows following in real time its solidification process during growth. 

It is a specially designed instrument composed of a high temperature directional solidification 

(DS) furnace employed in conjunction with synchrotron radiation X-ray imaging techniques 

(Bragg diffraction imaging and radiography). GaTSBI not only provides information on the 

solid – liquid interface dynamics, but also gives access to the single grain dynamic evolution 

during growth, the crystalline orientation / misorientation, the qualitative level of local 

distortion, the nature of structural defects, as well as the low angle grain boundaries in single 

crystalline materials. A detailed description of the equipment, of the imaging techniques and of 

the previously obtained results can be found elsewhere [26–29]. 

Solidification experiments are carried out at beam line BM05 at the European 

Synchrotron Radiation Facility (ESRF) and a schematic illustration of the experimental 

installation is presented in Fig.1. The directional furnace is based on two resistive heating 

elements (top and bottom). A Cz silicon sample, housed in a BN crucible (Fig.1b), is introduced 

inside the DS furnace. The front and back sides of the sample (38 mm × 5.8 mm × 0.3 mm) are 

in contact with the crucible walls (Fig. 1b). Solidification experiments are performed in high 

vacuum (~10-6 mbar) under a constant temperature gradient, G=30 K/cm, imposed between the 

two heating resistances. Directional solidification of the remaining liquid is obtained by 

applying a cooling rate R on both heaters in the range of 0.2 – 4 K/min. Several 

melting/solidification cycles are carried out with the same sample. Initially, the sample is 

partially melted to be able to initiate growth from the seedthen, the crystal is solidified taking 

up the initial orientations of the seed (Fig.1b).  
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The polychromatic synchrotron radiation (Fig.1a.(1)) illuminates the Si sample during the 

whole crystal growth process. X-ray Bragg diffracted beams, corresponding to different hkl 

diffracting planes, are regularly recorded on X – ray sensitive films (AGFA Structurix D3-SC, 

17.6×12.5 cm2) positioned at a distance of 300 mm from the sample (Fig.1a.(3)). Due to the 

small beam divergence and its large size, the whole width of the sample is illuminated and the 

recorded Bragg diffraction images contain information on the individual grain shape, 

misorientation and deformation level. This is a powerful technique that can be used for the 

visualization of defects (dislocations, twins, domain walls, inclusions, impurity distribution) 

present in the crystal volume. Indeed, it records their long range distortion fields and / or the 

strain fields associated with a macroscopic crystal deformation. This is made possible, because 

these distortion fields affect the diffracted intensity, so that a contrast (non – homogeneous 

intensity distribution) is created in the recorded image. In this way, Bragg diffraction imaging 

can also be explained as a study of the fine structure of a Bragg spot which contains information 

about the deviation from the perfect crystal structure.  

In the second mode (X – ray radiography), the polychromatic beam, after passing through 

the sample, is monochromated at 17.5 keV using a vertically diffracting Si (111) double-crystal 

monochromator (Fig.1a.(4)). The X – ray radiography images are recorded using a specific 

CCD camera developed at the ESRF named FReLoN (Fast Readout Low-Noise) [30] with 

2048×2048 image pixel size (Fig.1a.(5)). In the present experiment, an optics giving a 5.8 μm 

pixel size and a 11.9 × 11.9 mm2 field of view is used. The X – ray radiography images obtained 

are absorption contrast images. However, the absorption coefficient of the solid and liquid Si 

depends on their mass densities which are not much different (2.31 g/cm3 for the solid and 2.56 

g/cm3 for the liquid) meaning that the solid / liquid interface in the raw images is hardly 

distinguishable. As a consequence, an image processing method consisting of successive 

images division is applied to reveal the shape of the solid / liquid interface more accurately 
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[26]. Both imaging techniques provide complementary dynamic information about crystal 

growth and competition. 

2.2 Ex situ complementary investigations 

After the last melting – solidification cycle, the sample is removed from the GaTSBI 

furnace and mirror polished down to a 1 μm diamond paste. It is then characterised ex situ by 

Synchrotron X – ray rocking curve imaging (RCI) which is a quantitative version of 

monochromatic beam X – ray Bragg diffraction imaging [31–34]. The experiments are carried 

out at beamline BM05 at the ESRF as well. The synchrotron radiation is monochromated at 20 

keV using a vertically diffracting Si (111) double-crystal monochromator. The sample is 

positioned to diffract the Si {220} reflection in the vertical scattering plane (the Bragg angle 

(θB) for Si {220} at 20 keV is 9.28°). The crystal is rotated along the diffraction curve for the 

Si {220}, and the diffracted beam profile is recorded on a CCD camera equipped with an optic 

of 10 μm per pixel and 20.5 × 20.5 mm2 field of view. The series of rocking curve images are 

recorded during sample rotation (ω – scan) with angular steps of 0.0005° over a range of 0.15° 

across the Bragg angle. Each pixel of the camera records its own local rocking curve, so that 

maps of the whole diffracting area of the sample can be reconstructed. Maps of integrated 

intensity and full width at half maximum (FWHM) give information about the level of local 

distortion in each zone of the crystal, and maps of the angular peak position give access to the 

local deviation from the theoretical Bragg angle. Several previous studies [11,12,35,36] have 

proved that RCI using synchrotron light, which provides a high angular resolution (<10-4 °), is 

a powerful tool for visualizing and measuring the lattice distortion and deformation in single – 

crystalline materials.  

Additionally, electron backscatter diffraction (EBSD) scans are executed on a FEG-SEM 

JEOL JSM 7001F equipped with a HKL Nordlys camera using either a 7 μm or a 0.7 μm step 

size. In order to extract the three – dimensional orientation of the sample, color code orientation 
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maps (inverse pole figures (IPF)) are generated with respect to the directions perpendicular to 

the sample surface (y, z) and in the growth direction (x). Coincidence site lattice maps (CSL) 

are reconstructed to evidence the boundaries with a special character. In this paper, Σ3 <111>, 

Σ9 <110>, Σ27a <110>, Σ27b <210> twin boundaries labeling refer to rotations around <h k l> 

that satisfy the misorientation ranges given by the Brandon criterion, which are (60 ± 8.66)°, 

(38,94 ± 5)°, (31.58 ± 2.89)° and (35.42 ± 2.89)°, respectively. The character (symmetric or 

asymmetric) of the grain boundary, the orientation of the crystallographic planes of the adjacent 

grains and the deviations from the optimum crystallographic orientation are identified by a 

detailed analysis of the stereographic projections of the appropriate crystallographic planes. 

Assessment of lattice strain distribution is conducted by the local misorientation approach. This 

method assumes that strain – induced dislocation structure development is associated with 

rotation of “micro – volumes” (cells, sub-grains) leading to an increase of local variations in 

lattice orientation (misorientation) between adjacent points. There are few metrics that may be 

used for quantitative analysis in this approach [37]. In this work, two of them have been 

selected: i) the grain orientation spread (GOS) map that measures the difference between the 

orientation of every pixel in the grain and the grain average orientation, to put in evidence the 

more distorted grains and ii) the average local misorientation (LMP) map to locate deformed 

regions inside grains. This component shows the average local misorientation for 

misorientations below the sub-grain boundary angle (< 5°) using a filter size 3 × 3 pixels. 

3 Experimental results 

As revealed from the X-ray radiography experiments and also observed in our previous 

work [27], for all the imposed cooling rates (0.2 – 4 K/min), the solid / liquid interface remains 

smooth and quasi planar during the solidification of Cz silicon. Fig. 2 presents the EBSD 

crystallographic orientation maps (IPF) of the lastly solidified sample (13th melting 

solidification cycle). A main central grain takes up the initial orientation of the pristine seed, 
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with {101} parallel (x) and perpendicular (y) to the growth direction, {001} being perpendicular 

to the surface of the sample (z). However, parasitic grain nucleation occurs at both sides of the 

sample where solid – liquid – vapour – crucible point lines (SLVC – PL) are present. Those 

grains come in competition with the two elongated grains that grow vertically on the left and 

right side of the central grain from the seed, and their lateral growth is prevented. No grain 

competition takes place between the two vertical grains and the central main grain during 

growth. 

Horizontal successive twinning revealed by the alternation of two crystallographic 

orientations occurs at the left side of the sample. As demonstrated by the coincidence site lattice 

(CSL) map (Fig. 3a) and the crystallographic orientation (Fig. 2) map, all those twins are in a 

Σ3 <111> relation between them and their crystallographic orientations alternate between the 

initial orientation of the seed ([1�1�0] along x, [11�0] along y, [001] along z) and an orientation 

that corresponds to [41�1�] along x, [011�]  along y and [122] along z.  

The white beam X-ray Bragg diffraction images taken during the solidification process 

(Fig. 4a), illustrate that the parasitic twin nucleation initially occurs at the edge of the sample 

at the SLVC – PL. Each formed twin crystal grows vertically and laterally towards the centre 

of the sample where it becomes in competition with the vertically grown crystal, leading to the 

formation of a distorted Σ27a <110> grain boundary (shown by a dotted arrow in Fig. 4a). As 

it will be discussed later in this paper, this Σ27a <110> grain boundary corresponds to a 3rd 

order symmetrical Σ27a <110> / {511}1,2, which is the most densly packed plane in the CSL, 

at the beginning of its formation and very quickly during growth it evolves to a 3rd order 

symmetrical Σ27a <110> / {552}1,2 grain boundary, which correspond to a less densed pack 

plane in the CSL. Fig. 4b presents the X-ray radiography images revealing the nucleation and 

growth of one of the successive twins between to+405 s and to+466 s. It is important to note that 

this is a division of successive images taken during the solidification process. The white contrast 
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corresponds to a liquid layer in the previous image that has been solidified in the following one. 

On the right side of the same figure, the groove that is formed due to the grain competition 

between the horizontal twin and the vertically grown grain leading to the formation of the 

distorted Σ27a <110> grain boundary is also evidenced (dotted arrow).  

Similarly to the left side of the sample, on the right side horizontal twin nucleation occurs 

at the edge of the sample (SLVC – PL) (Fig. 5a). As described previously, in a similar way, the 

grain V grows vertically and laterally on the {111} facet and it becomes in competition with 

the vertically growing grain from the seed in the central part of the sample. A Σ3 <111> grain 

boundary is formed between those two grains until the moment that the nucleation of grain VI 

happens (position ζ in Fig. 3a) leading to the formation of a Σ9 <110> grain boundary. As the 

growth proceeds, at the encounter of the Σ9 <110> with the vertically grown coherent Σ3 <111> 

grain boundary, a successive vertical twin nucleation in a Σ3 relation occurs leading to the 

formation of a Σ27a <110> grain boundary (position β in Fig. 3a). Those vertical twins 

propagate along the growth direction and they are efficiently blocked by a diagonal Σ3 <111> 

twin boundary higher in the sample (position δ in Fig. 3a). From the corresponding white beam 

Bragg diffraction images (Fig. 5a), it can be seen that the Σ27a <110> grain boundary is highly 

distorted, dislocations are emitted (position β in Fig. 3a) and propagate inside grain VI, while 

the surrounding area of the position β appears to be two times more distorted in comparison to 

the average level of distortion of the sample (position β in Fig. 3b).  

Grain VI is in a Σ3 <111> twin relation with grain V and it finally takes over grain V 

during growth. As revealed by the X – ray radiography images (Fig. 5b), a facetted / facetted 

groove is formed at the solid-liquid interface due to the competition between grains V and VI 

(position ε in Fig. 3a). Then, grain nucleation occurs on the {111} left facet (Fig. 5b) leading 

to the formation of a twin crystal that blocks the further growth of grain VI. In parallel, grain 

nucleation also takes place on the right {111} facet leading to the formation of a Σ9 <110> and 
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a Σ27a <110> grain boundary. From this point, the growth direction changes and grain V is free 

to occupy the space.  

The main difference between the twin nucleation at the edge of the sample on the left and 

on the right side is that in the last case, successive horizontal twinning does not occur. Indeed, 

a first horizontal twin crystal nucleates and grows with the same crystallographic orientation as 

the first nucleated successive twin on the left side. Later in the growth, instead of horizontal 

successive twinning (left side of the sample), diagonal successive twining at the edge of the 

sample is observed and evidenced by the alternation of two crystallographic orientations. Fig. 

6 shows snapshots of the successive twin nucleation on the corresponding diagonal {111} facet 

at the right edge of the sample as observed in dynamic by X – ray radiography. 

As shown in the CSL map (Fig 3.a), most of the grains in the sample are in twin 

relationship and the Σ3 <111> grain boundary is the dominant CSL type. The dynamic 

information obtained from the in situ imaging proves that higher order twin grain boundaries, 

Σ9 <110> are formed at the encounter of two grains that previously nucleated with a Σ3 <111> 

relation on the same grain. Σ27a <110> grain boundaries are formed between two grains that 

are in a Σ3 <111> twin relation with other grains [28]. All the horizontal and diagonal twin 

boundaries initiating at the edge of the sample are a Σ3 <111> type. Only coherent Σ3 <111> 

twins have been identified as growth twins. Incoherent Σ3 <111> and higher order twin 

boundaries (Σ9 <110> and Σ27a <110>) are the result of grain encounter and competition. 

Fig.3b shows the rocking curve imaging (RCI) integrated intensity map of the Si (220) 

reflection that gives a quantitative information about the level of distortion in the sample. There 

is a clear relation between the local distortion and the formed grain boundary type (Fig. 3a 

positions α, β and γ). Indeed, zones where Σ27a <110> grain boundaries are present, are two 

times more distorted in comparison to the average distortion of the whole sample. Moreover, 

the Σ3 <111> vertical grain boundary on the right side of the sample becomes more distorted 
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after the encounter with a Σ27a <110> grain boundary (Fig. 3b position γ). In a subsequent step 

of growth, it is relaxed after the encounter with a diagonal Σ3 <111> twin boundary (Fig. 3b 

position δ). The right part of the sample does not appear in Fig.3b since it is out of Bragg angle 

diffraction. The grain orientation spread map (GOS) obtained from the EBSD measurements 

(Fig. 3c) is a representative image of the level of distortion of each grain and it is in accordance 

with the RCI map. Moreover, it can be seen that successive twins are less distorted in 

comparison to the seed and the up grown crystal. Consequently, the twin crystals have smaller 

level of distortion and thus a lower dislocation density in comparison to the seed. Additionally, 

from the same figure it becomes obvious that grains that underwent competition with other 

grains during the solidification process present the highest level of distortion (see grains 

appearing in red and orange colors in Fig. 3c).  

Fig. 7 shows the Bragg diffraction images of the Si (2�2�0) and (151) that correspond to 

the first (Fig. 7a) and the fifth (Fig. 7b) melting / solidification cycles of the same sample. Dark 

zones represent strain fields associated to the presence of structural defects. The fact that the un 

– melted seed appears dark, is mainly due to the solid state reaction between the BN crucible 

and the Si sample, leading to the formation of a Si3N4 layer on the surface of the un – melted 

seed. It is observed that the diffraction images become darker when increasing the melting / 

solidification number of cycles due to the accumulation of the above mentioned phenomenon, 

denoting the degradation of the crystalline quality of the seed. After cooling down, the 

diffraction images are more deformed as observed when performing ex situ Bragg diffraction 

and RCI measurements, this is due to the additional thermal induced residual stresses which 

arise during the cooling process. The effect of cooling down to the ambient temperature on the 

generation and evolution of already present and additional defects in the solidified Si will not 

be discussed in the present paper. Further in situ investigations are currently ongoing to obtain 

more accurate results that will be presented in an upcoming publication. In Fig. 7a, twinning 
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occurrence (big triangular central crystal (grain B)) and two upside down squared – triangular 

grains on their sides (grains A and C) can be observed in the centre of the up-grown crystal. 

The fact that grain B diffracts together with the seed crystal on the (2�2�0) diffraction image and 

alone elsewhere on the X- ray sensitive film ((151) diffraction image of the seed) denotes that 

it is in twin position with the seed. From the same figure, it can also be observed that grains A 

and C do not diffract at all in the (2�2�0) diffraction image with the seed, while grain C diffracts 

in the (151) diffraction spot of the seed with grain B. This is the indication that those grains are 

in different twin relationships between them and with the other grains of the up-grown crystal. 

Dislocations originating in the seed propagate vertically in the up-grown crystal along the 

<110> growth direction during the solidification process. However, their propagation is 

efficiently blocked by the formation of the horizontal twin boundary (between the up – grown 

crystal and the grain B) since they are no longer visible in the inner part of the twin crystal B 

(Fig. 7a). However, when this twin related blocking mechanism is not present, dislocations 

propagate along the whole height of the up-grown crystal. A representative case of this 

phenomenon can be seen in Fig. 7b that corresponds to the fifth melting / solidification cycle 

of the sample. Dislocations are observed, as straight dark lines in the (2�2�0) diffraction image 

and they develop upwards being aligned along the <110> growth direction. In this case, no 

twinning event occurs in the central part of the sample, as confirmed by the (151) diffraction 

image.  

All twin crystals (A, B and C) are of high crystallographic quality and no distorted areas 

are observed in their volume. The zones at the facet junctions, where the nucleation of grains 

A and B occurs, are highly distorted and act as sources for the generation of dislocations that 

spread in the interior part of the surrounding crystals (Fig. 7a). A vertical distorted grain 

boundary is formed at the right side of grain C, at the junction with the grain growing on the 

seed, while no distortion is observed at the grain boundary formed between grains B and C.  
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4 Discussion 

As described in the previous section, during growth twinning, grain competition and 

defect generation occur determining the final structure of the solidified sample. In the 

following, it will be shown that all those events and involved mechanisms tend to reduce the 

total energy of the system. The three main phenomena are discussed in details: i) the twin 

nucleation mechanisms at the edge of the sample; ii) the grain competition and the related 

deformation; iii) the generation of dislocations and their interaction with grain boundaries.  

4.1 Twin nucleation at the border of the sample (solid – liquid – vapor and / or crucible 

phase lines (SLV/C– PL) 

During the solidification of silicon, twin nucleation is commonly observed at the edge of 

the ingot. The nucleation can be explained by the model proposed by Voronkov and Hurle 

[38,39] which is based on the formation of twins on {111} facets. They suggest that twinning 

can happen when (i) an edge facet is attached to the SLV/C – PL, (ii) the external surface of the 

growing crystal is oriented such that the formation of a twinned nucleus produces a segment of 

{111} oriented surface and (iii) the undercooling at the edge of the facet exceeds a critical value. 

Twin nucleation in the bulk crystal is thermodynamically unfavorable and in the case of silicon 

is always related to the presence of {111} facets at the solid liquid interface [40]. Since twinning 

requires a high undercooling in order to occur in the middle of a facet, it is usually observed at 

a solid – liquid – grain  boundary triple line (SSL - TL) in the case of multi – crystalline silicon 

solidification [29,41], at the solid – liquid – vapour  triple lines (SLV – TL) in the case of 

Czochralski growth [38,39] and at the borders, where the liquid silicon is in contact with the 

crucible, during the directional solidification of either the mono-like or the multicrystalline 

ingots (solid – solid – liquid triple line (SSL – TL) [5]. In our experiments, we have been able 

to scrutinize the twin nucleation mechanisms at the borders.  
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Indeed, a horizontal successive twinning and a horizontal twinning (Fig. 3a), followed by 

a successive diagonal twin nucleation occur at the left and right side of the sample, respectively. 

The initial nucleation of those twins is realized at the edge of the sample (Fig. 4, Fig. 5 and 

Fig.6) where a SLV/C – PL is present. The formed twin boundaries are identified as coherent 

and symmetrical Σ3 <111> / {111}1,2. As shown in the stereographic projection of the {111} of 

the seed (Fig. 8a), there are two {111} having a vertical projection parallel to the growth 

direction (x) and two {111} presenting a horizontal projection perpendicular to the growth 

direction (y). In the present case, the first twin nucleus is formed at the edge of the sample on 

the {111} facet having the horizontal projection (which is confirmed by the a common {111} 

plane of the seed (Fig. 8a)) and the left horizontal twin (Fig. 8b), at a point where the facet 

intersects the SLV – PL and is in contact with the crucible wall as well. The free energy of a 

twinned nucleus is higher than the energy of an untwinned nucleus. However, when the twinned 

nucleus contains a {111} facet at the triple phase line, its free energy is lower compared to the 

correctly oriented nucleus, since the free energy of the {111} is lower than that of all other 

planes in the lattice [39]. Twinning is then possible from an energetical point of view . 

In order for nucleation to occur, an increased undercooling at the area close to the edge 

of the sample is necessary. As proposed by Hurle [42], for a sufficiently large undercooling, 

the reduction in free energy due to the presence of the low energy plane at the triple point line 

will exceed the increase in free energy due to the presence of the twin plane. That means that 

the formation of a twinned nucleus is thermodynamically favored under the presence of a 

sufficiently large undercooling. In the present work, the measurement of the exact undercooling 

temperature at the edge of the sample at the instant of the first twin nucleation is not possible 

due to the fast evolution of the phenomenon and to the needed accuracy of the temperature 

measurements. However, the growth rate can be quantified by measuring the height of the solid 

– liquid interface as a function of time and the result is presented in Fig. 9. It becomes clear that 
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the twin formation is always accompanied by a significant increase in the local growth rate, 

despite that the externally imposed cooling rate remains constant (-0.2 K/min) all along the 

experiment.  

Moreover, it is confirmed that the growth rate of the global interface is constant (see red 

curve in Fig. 9), so, it means that a local higher undercooling at the edge of the sample, in 

comparison to the average undercooling at the solid – liquid interface, exists and has been 

estimated at about 0.27 K which is sufficient to initiate the observed twin nucleation. As shown 

in Fig. 4b, at the left edge of the sample, after the initial twin nucleation, the horizontal twin 

grain grows vertically very fast. Its height is limited by the position of the liquidus melting 

isotherm (indicated by H in Fig. 4 b), determining in advance the final height of the formed 

horizontal twin grain. When the first nucleus arrives at the liquidus, stabilization of the growth 

rate is observed due to the release of the latent heat of solidification until the moment that the 

solid – liquid interface of the whole sample arrives at the liquidus. This assumption can be 

confirmed by the growth rate plateau observed in Fig. 9 after each twin nucleation. After 

nucleation, the twin grows laterally with a rough solid – liquid interface with macro steps, as 

shown in the X-ray radiography images (Fig. 4b), towards the center of the sample. This growth 

mechanism is repeated as soon as the undercooling at the edge of the sample is again high 

enough to form an appropriately oriented new two dimensional twin nucleus. The nucleation 

always occurs on the common {111} facet that presents a horizontal projection (Fig. 8a and b) 

followed by a successive alternation of the crystallographic orientation between the one that 

corresponds to the seed and the other that corresponds to the left horizontal twin Fig. 2. 

Consequently, this growth model observed in real time can explain the successive twinning 

growth mechanism experimentally observed.  

At the right side of the sample, similarly to the left side, the first twin nucleasion occurs 

on the {111} facet of the seed that presents a horizontal projection, following the nucleation 
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mechanism described previously (Fig. 8b and c). The formed grain V has the same 

crystallographic orientation with the left horizontal twin and grows vertically and laterally on 

the {111} facet as well, where it becomes in competition with the vertically grown grain in the 

center of the sample (Fig. 5a). However, despite the fact that twin nucleation is initiated again 

at the edge of the sample during the solidification process, successive horizontal twinning does 

not occur. The second twin preferentially nucleates at the edge of the sample on the diagonal 

{111} facet (Fig. 8c) instead of the horizontal one as illustrated in Fig. 6. The formed twin then 

grows laterally along the facet. Its vertical growth is very quickly blocked by the formation of 

a new twin that has the orientation of the first horizontal twin. The nucleation occurs again at 

the right edge of the sample on the common diagonal {111} facet of the first diagonal (Fig. 8d) 

and of the first horizontal twin (Fig. 8c). The phenomenon is repeated by the alternation of two 

crystallographic orientations (the orientation of the first horizontal and first diagonal twin) 

leading to the formation of the observed successive diagonally inclined twinning (Fig. 2). The 

second twin preferential nucleation on the diagonal {111} facet instead of the horizontal {111} 

facet is a consequence of the higher undercooling present at the level of the diagonal facet. This 

is confirmed by the observation of the X-ray radiography dynamical images of the growing 

solid – liquid interface (Fig. 6) in this region. From these images, we were able to estimate the 

undercooling corresponding to the horizontal facet (0.17 K) and to the diagonal one (0.35 K). 

4.2 Grain competition and twin nucleation at the solid – solid – liquid triple phase lines 

(SSL-TPL)  

As seen before, the twin crystals that nucleate at the edges of the sample extend towards 

the central part of the sample and they become in competition with the grains that grow 

vertically along the growth direction. As growth proceeds, this grain competition results in the 

groove formation and the nucleation of new twin crystals at the SSL – TPL, leading to the 

generation of new grain boundaries and thus determining the final solidified Si structure. The 
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above mentioned mechanisms are examined in this section with a particular focus on the 

crystallographic orientation of the grains and the energetically favourable grain boundary type 

formation. Fig. 10a presents a zoom image of the zone α in Fig. 3a. The grain I (Fig. 10a) has 

the same orientation as the first left horizontal twin and the stereographic projection of its {111} 

can be seen in Fig. 8b, while grain IV (Fig. 10a) has the same orientation as the initial seed and 

the stereographic projection of its {111} can be seen in Fig. 8a. During growth, the grain I 

grows laterally and it becomes in competition with the vertically growing grain III. This 

competition has for consequence the nucleation of the twin grain II. It should be stressed that 

this is not an isolated observation but, on the contrary, it happens repeatedly following exactly 

the development of the horizontal twins. It is well known that the formation of a Σ3 <111> grain 

boundary is always the most favourable since it has the lowest boundary energy, followed by a 

Σ9 <110> and then a Σ27a <110> as the most unfavourable of the three types. Based on the 

orientations of grain I and III, a Σ9 <110> / {114}1,2 that macroscopically deviates by 6° from 

the {114} is formed at the encounter of those two grains. The formation of the Σ9 <110> / 

{114}1,2 grain boundary cannot be seen in Fig. 10a, due to the magnification of the image, but 

its presence is visible at a similar triple point at an earlier stage of the solidification (see Fig. 

3a) and is observed for all the successive twins sharing the same orientation. The fact though 

that a vertical and coherent Σ3 <111> grain boundary is replaced by a misoriented Σ9 <110> / 

{114}1,2 grain boundary created after the encounter of grains I and III seems to influence the 

grain boundary energy enough to cause a twinning event. It is believed that this is the driving 

force for the nucleation of grain II.   

According to the model of Duffar and Nadri [43] and experimentally confirmed by 

Tandjaoui et al. [27], at the grain – grain – liquid triple phases, that correspond to the 

intersection of a grain boundary with the solid / liquid interface, grain boundary grooves are 

formed and can have one of the following three configurations, depending on the 
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crystallographic orientations of the adjacent grains: i) rough solid – liquid interface on both 

sides of the groove, ii) rough / facetted groove, iii) facetted / facetted groove. The facets that 

form the groove have {111} crystallographic orientation. In the present case, after the 

nucleation of grain II, the grain boundary between grain I and II forms a facetted – facetted 

groove at the solid – liquid interface, as revealed by the dynamic observation of the 

solidification process by the X-ray radiography measurements (Fig. 10d_1). The angle between 

the two facets that form the groove is in accordance with the respective crystallographic 

orientations of the grains I and II as confirmed by the stereographic projections of their {111} 

(Fig. 10e). Indeed, it can be seen on this figure that the facetted – facetted groove observed in 

Fig. 10d_1 is formed due to the encounter of the common {111} of grain I and II (superimposed 

yellow – blue spot / dotted line) and the {111} of grain II (yellow spot / dotted line). We checked 

that the 70 ° groove observed in Fig. 10.d_1 corresponds to the angle between the {111} from 

grains I and II (Fig. 10e). In the general case, when two adjacent grains have no specific 

crystallographic relation, when a facetted / facetted groove is formed at the solid – liquid 

interface, the two facets have the same growth rate. As a consequence, the grain boundary 

between both grains follows the bisector of the angle of the grain boundary groove. This is not 

the case here for the groove formed at the solid-liquid interface between grains I and II. The 

reason is that they are in twin Σ3 <111> relation as confirmed by the CSL map (Fig. 10a). For 

this specific case, the twin grain II nucleates on the common {111} facet between grains I and 

II (the left hand side facet on Fig. 10d) and propagates along the facet similarly to the lateral 

growth characterised previously (Fig. 4) and can be seen on Fig. 10d as well.  

Due to the grain competition between grains II and III and their respective 

crystallographic orientations, a symmetric Σ27a <110> / {511}1,2, misoriented by 4° from the 

ideal orientation, grain boundary is formed at the beginning of its formation. However, very 

quickly during growth, the two competing grains adapt to form a symmetric Σ27a <110> / 
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{552}1,2 and not misoriented grain boundary. The newly formed grain boundary corresponds to 

a less dense packed plane in the CSL, but in the present case it seems that its formations is 

energetically favourable for the system in comparison to the formation of the denser but 

misoriented Σ27a <110> / {511}1,2. Its orientation relative to the growth direction implies that 

grain III will finally gain the competition with grain II. 

As growth proceeds, higher in the sample, grain II is found in competition with both grain 

IV, which is a horizontal twin that grows laterally on the top of grain I, and grain III.  When it 

encounters the {111} facet of grain IV, a facetted – facetted groove is formed and the grain 

boundary follows the bisector of the groove that corresponds to a symmetrical Σ9 <110> / 

{122}1,2 minimizing the interfacial energy of the two planes. The competition between grains 

II and III is in favor of grain III so that grain II is finally squeezed between grains III and IV 

and a vertical Σ3 <111> {111}1,2 is formed at their encounter.  The vertical Σ3 <111> {111}1,2 

grain boundary is formed due to the macroscopic crystallographic orientations of grain III and 

IV that present a common and vertical {111}. As growth proceeds, the same phenomenon is 

repeated successively always initiated from the successive twin nucleation at the edge of the 

sample.  

 Similarly to the left side, on the right side of the sample, the horizontal twin that initially 

nucleates at the edge of the sample, grows laterally and comes in competition with the vertically 

grown grain on the seed. At their encounter, an incoherent Σ3 <111>/ {112}1,2 and asymmetric 

Σ3 <111>/ {115}1 | {111}2 grain boundary is formed until the position ζ (Fig. 3a), where the 

nucleation of grain VI occurs (Fig. 5a). The formation of an asymmetric and incoherent grain 

boundary is not a configuration that minimizes the grain boundary energy, however the system 

has no other choice since grain V grows laterally following its diagonal {111} facet, as revealed 

by the X-ray radiography image Fig. 5a to+100s, and those two grains have no {111} in common 

with regards to the growth direction (Fig. 8a and c). Then, after their encounter and due to the 
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non-energetically favorable grain boundary formed, the adjacent grains try to adapt to reach a 

better energetic configuration. This is characterized by the perturbed shape of the grain 

boundary which is not as straight as the symmetrical Σ3 <111> grain boundaries and which 

tends to orient along the growth direction. In the following step, grain VI nucleates. Indeed, the 

grain boundary energy is reduced if twinning occurs (grain VI) leading to the formation of a 

low energy coherent Σ3 <111> / {111}1,2 and an asymmetric Σ9 <110> / {115}1 | {111}2 grain 

boundary. The analysis of the stereographic projections of the {115} and {111} planes that 

create the asymmetric Σ9 <110> / {115}1 | {111}2 grain boundary shows that the {111} that 

belongs to grain VI is very well oriented, however the {115} that belongs to the vertically grown 

crystal deviates by 4o from the ideal orientation. This is probably the driving force for the new 

grain nucleation that occurs at position β (Fig. 3a) leading to the dissociation of the asymmetric 

Σ9 <110> / {115}1 | {111}2 to a low energy coherent Σ3 <111> / {111}1,2 and a slightly 

misoriented (~2o) symmetric Σ27a <110> / {115}1,2 grain boundary. On the one hand, the 

vertical low energy coherent Σ3 <111> / {111}1,2 propagates during growth along the whole 

field of view. On the other hand the formed Σ27a <110> / {115}1,2 CSL is a high energy 

configuration and it favors the nucleation of new twins (successive straight line twins) parallel 

to the growth direction initiated at position β (Fig. 3a). This twinning occurrence finally leads 

to the formation of coherent and thus low energy Σ3 <111> / {111}1,2 grain boundaries 

elongated to the growth direction resulting in the decrease of the total energy of the system.  

Fig. 11 is a closer view of the position ε in Fig. 3 showing the CSL, GOS, LMP maps and 

the stereographic projections of {111}. From the stereographic projection of {111}, it can be 

confirmed that the facetted – facetted groove observed in the X-ray radiography images 

presented in Fig. 5b correspond to the {111} corresponding to grains V and VI.  As previously 

observed for grains I and II, those two grains are in twin relation so that growth of grain V 

proceeds along the common {111} facet between grains V and VI until a new nucleation occurs. 
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As shown in Fig. 5b nucleation occurs between t0 +857 s and t0 + 862 s on both facets leading 

to the blocking of grain VI growth and the generation of grain VII (Fig. 11a). Between grain V 

and VII an incoherent Σ9 <110> grain boundary, composed of Σ9 <110> / {122}1,2 and Σ9 

<110> / {411}1,2 segments, is formed. As already discussed previously, this configuration does 

not correspond to a low energy state and for energetical reasons grain VIII nucleates and as a 

consequence, a coherent Σ3 <111> and an incoherent Σ27a <110> grain boundaries are formed. 

From this point and higher in the sample, grain V continues to occupy the space.  

In the central part of the crystal a main grain takes the initial orientation of the seed and 

grows vertically along the growth direction. Two elongated grains grow on each sides (Fig. 2) 

while no grain competition occurs between them, as already observed previously [28]. It is 

believed that this is due to the fact that those grains have the same crystallographic orientation 

<110> along the growth direction (x) (Fig. 2) and they also have a common {111} parallel to 

the growth direction. This leads to the formation of two vertical coherent Σ3 <111> / {111}1,2 

grain boundaries (Fig. 3a), that correspond to the the lowest energy and are also oriented parallel 

to the growth direction, and thus the system is in the most energetically favorable state.  

From the examined grain boundary configurations, it becomes clear that: i) a higher 

energy boundary favors nucleation that creates multiple lower energy grain boundary segments, 

through multiple twin nucleation, reducing the total system energy and ii) the grain boundary 

configuration is influenced by the CSL, the orientation of the boundary and the growth direction 

as well. From our in situ study, we can also conclude that only Σ3 twin grain boundaries 

nucleate and that other grain boundaries are only consequences of subsequent grain 

competition. 
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4.3 Deformation, dislocation generation and interaction with grain boundaries   

Several origins of dislocations have been evidenced during our experiments: those 

coming from the seed and others generated during the growth process. The interactions between 

dislocations, grains and twin boundaries are analysed. 

In the X-ray Bragg diffraction images of the first and fifth melting / solidification cycle 

(Fig. 7a, b) dislocations (dark lines) can be evidenced because of the strain fields they create 

that appear as black lines on the diffraction images. Dislocations, originating in the seed and/or 

generated at the seed / up-grown crystal interface, propagate on a vertical {111} slip plane into 

the up – grown crystal along the <110> growth direction. The seed crystal is taken from a 

Czochralski (Cz) ingot and should be dislocation free [44]. However, as shown in the Bragg 

diffraction images the up – grown dislocations already exist in the initial seed. Depending of 

the pulling speed or the cooling rate, many point defects cannot be avoided in Cz – Si, such as 

self-interstitial atoms, vacancies, Frenkel pairs or impurity atoms. The main impurity in Cz 

material is oxygen which accumulates in interstitial position in the ingot (solid phase) due to its 

segregation coefficient higher than the unit (1.25), regardless carbon and doping species which 

are incorporated in substitutional position in the matrix. When oxygen silicide precipitation 

takes place, or when doping impurities like boron and nitrogen diffuse from the BN crucible 

via the so – called Goesele mechanism (kick-out) in the silicon seed, self-interstitial atoms can 

be generated and if they cannot find any sink to be annihilated (like surfaces, voids, 

dislocations), they agglomerate in disks and form prismatic Frank loops (sessile edge 

dislocations) or dissociated dislocation loops (loop punching from an oxygen silicide 

precipitate, for instance). These dislocations  can glide in {111} and can propagate throughout 

the crystal when a thermal or mechanical driving force is present as in our experiments for 

which the seed is maintained at high temperature close to melting temperature.   
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Another possible source of the observed dislocations can be the interface between the un-

melted seed and the solidified silicon. As presented in the integrated intensity map (Fig. 3b), a 

slightly distorted zone is formed in the vicinity of this area implying that the up grown crystal 

does not perfectly adopt the initial orientation of the seed. This is confirmed by the rocking 

curve measurements where a misorientation of 5 ×10-2 degrees is found between the seed and 

the up – grown crystal. M. G. Tsoutsouva et al. [11] have shown that relative misorientations 

of this order of magnitude can act as sources for the production of dislocations in solidified 

silicon.  

In the case of the first melting / solidification cycle (Fig. 7a), where twinning occurs, the 

propagation of the vertically grown dislocations is efficiently blocked by the horizontal grain 

boundary formed with grain B, since they are no longer visible in its interior part. After a 

crystallographic analysis, it is found that the twin crystal B is in a Σ3 <111> relation with the 

seed after a rotation of 60° around the (11�1) plane and its diffracting plane corresponds to the 

(1�11). The twin crystal (B in Fig. 7a) is of high crystallographic quality and no distorted areas 

are observed in their volume. This implies that the growth dislocations after the intersection 

with the Σ3 <111> / {111} boundary manage to cross-slip on the two inclined {111} that present 

a horizontal projection. Due to the small thickness of the sample (0.3 mm) they very quickly 

reach either the front or the back surface of the sample [45]. Since pure screw dislocations have 

no preferential glide plane and since a substantial reduction of dislocation density is observed 

whenever twinning occurs, it is assumed that the generated dislocations in the studied Cz 

sample during melting/solidification cycles have an edge component.   

The same dislocation blocking mechanism is also visible in the integrated intensity map 

(Fig. 3b) that corresponds to the 13th melting / solidification cycle of the same sample, where 

the horizontal twin crystal, above the formation of the coherent Σ3 <111> / {111} twin 

boundary, appears less distorted in comparison to the grown crystal from the initial seed.  
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From the grain orientation spread map (GOS) in Fig. 10b, that gives an indication of the 

level of each grain distortion, it can be seen that grain II is the most deformed as compared to 

the horizontal twins I and IV and grain III. It is strongly believed that this is due to the fact that 

grain II is in direct competition with those grains so that its development is blocked due to the 

growth of grains III and IV and at the end it is found to be squeezed at the encounter of the Σ3 

<111>, Σ9 <110> and Σ27a <110> grain boundaries. The same phenomenon is also observed 

in the case of grain VI (Fig. 11b), whose growth is prevented by the nucleation of grain VII on 

its {111} facet. From the same figure, we can confirm that the multiple twin nucleation of grains 

VII and VIII that occurs at position ε (Fig. 3a) relaxes the stresses in the growing structure. 

Lastly, grain VII is less deformed than grain V and VI, and then grain VIII is the least distorted. 

The grain deformation is directly related to the dislocation density in the inner part of 

each grain and this is better revealed by the average local misorientation maps (LMP) in Fig. 

10c and 11c. In both figures, the grains that appear more distorted in the GOS map (grains II 

and VI) present also a higher dislocation density in the LMP maps. The LMP (Fig. 10c and 11c) 

and the rocking curve integrated intensity map (Fig.3b positions α, β and γ) shows that there is 

a direct relation between the level of distortion and the twin boundary CSL type. On the one 

hand, all the low coincidence incoherent Σ27a <110> twin grain boundaries are more distorted 

in comparison to the incoherent Σ9 <110> and to the coherent Σ3 <111>. On the other hand, 

dislocation generation generally occurs at the encounter of two grain boundaries that belong to 

different CSL type one of them being a Σ27a <110>. For instance, at the encounter of the Σ27a 

<110> with the Σ9 <110> and with the Σ3 <111> grain boundaries at position β in Fig. 3a, b 

and at position γ in Fig. 3a, b respectively , dislocations are emitted from the sharp edge of the 

grain boundary in the surrounding crystal. This is also visible in the Bragg diffraction images 

of the first melting/solidification cycle where dislocations are generated at the edges of the grain 

boundaries between grains A and C with B (Fig. 7). Actually, when a low coincidence and 
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incoherent twin boundary, such as a Σ27 <110>, which common plane is no longer a glide 

plane, meet with another grain boundary, dislocations cannot any more easily cross the 

crystallographic barrier and hence pile up nearby the grain boundary. This causes a drastic 

increase in the neighboring plane deformation which in turn can transform the grain boundary 

edge into a stress concentrator and make it behave as dislocation source. On top of that, the 

character of the grain boundary (coherent - incoherent) and its Σ – type, its deviation from the 

optimum orientation and the symmetry or non-symmetry of the boundary planes seems to have 

an impact on the distortion of the formed boundary and on the emission of dislocations in the 

vicinity of the surrounding grains as well. A representative case is position ζ in Fig. 3a, where, 

as extensively discussed in details in paragraph 4.2, the incoherent and asymmetric Σ3 <111> 

grain boundary that deviates from the ideal orientation drives the nucleation of grain VI creating 

a lower energy coherent Σ3 <111> / {111}1,2 and an asymmetric Σ9 <110> / {115}1 | {111}2 

grain boundaries. The {115} plane of the Σ9 <110> / {115}1 | {111}2 grain boundary deviates 

from the ideal orientation as well. At this area, as it can be seen in the Bragg diffraction images 

(Fig. 5a), the zone near those grain boundaries appears darker indicating higher distortion levels 

in comparison to the central part of the grain. Additionally, higher up, a bunch of dislocations 

expands in grain VI.  It is believed though, that a deviation from the relative orientation of the 

two adjacent crystals that leads to the formation of grain boundaries that deviate from the ideal 

coincidence orientation can produce a network of so called secondary dislocations which allow 

the system to conserve the minimum energy pattern over most of the boundary surface. The 

existence of such networks was shown among others by Balluffi et al.[46,47] and Bollmann et 

al.[48].  

Another information that can be extracted from the LMP map (Fig. 11c) is that most of 

grain V distortion is located at the edge of the grain which is squeezed between grains VI and 

VII. In this area, it is believed that the accumulation of dislocations introduces local strain that 
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acts as driving force for the twin VII nucleation parallel to the {111} facet of grain VI. Evidence 

of this assumption can also be seen in the case of the first melting/solidification cycle (Fig. 7a). 

The horizontal twin nucleation (grain B) initiated in the central part of the sample is probably 

favored by the local stresses due to the presence of the vertically grown dislocations. Those 

results are just an indication that the induced local – stresses can help triggering twin nucleation 

however, more experimental observations are needed to confirm this hypothesis to further 

understand the twin nucleation mechanism.  

Conclusions 

In-situ experiments in combination with X-ray imaging techniques is a powerful tool for 

deepening the understanding on the processes involved during solidification. Phenomena that 

occur during crystal growth such as grain nucleation, grain competition, twin formation, defect 

generation, their evolution and interaction with grains have be followed and investigated in situ. 

Once grains have nucleated, they grow and some of them extend, while some others cannot 

keep growing in the upper part of the sample. Τhe selection mechanism depends on the process 

parameters (velocity of the solid – liquid interface, temperature gradient, cooling rate) defining 

the isotherm profiles and evolution and is also directly linked to the relative crystallographic 

orientation between competing grains. It also depends on the local interface morphology (rough 

or faceted).  

Nucleation of twin crystals is found to occur on {111} facets at the edge of the sample 

where solid – liquid – vapor triple point lines exist and at the location where the sample is in 

contact with the crucible as well. Nucleation also takes place at the solid – solid – liquid triple 

point lines, where two grain are in competition, on the {111} facets of the groove. Twin 

nucleation is accompanied by a significant increase of the local growth rate related to a higher 

undercooling than on the global solid – liquid interface. The enhanced undercooling 

temperature and the stress accumulation are found to be driving forces for the twin grain 
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nucleation. Moreover, it is observed that coherent Σ3 <111> grain boundaries efficiently 

blocked the propagation of growth dislocation.  

Areas in which Σ27a <110> grain boundaries are present are two times more distorted in 

comparison to the average distortion of the sample. Dislocations are emitted at the encounter of 

a Σ27a <111> grain boundary with either a Σ3 <111> or a Σ9 <110> grain boundary. On top of 

that, the character of the grain boundary (coherent – incoherent), its Σ – type, its deviation from 

the optimum orientation and the symmetry or non-symmetry of the boundary planes have an 

impact on the distortion of the formed boundary and on the emission of dislocations in the 

vicinity of the surrounding grains as well. 

  From those experiments, it becomes obvious that twinning observed in our ingots is a 

growth rather than a deformation phenomenon. Moreover and importantly, only Σ3 twins 

nucleate during growth, higher order grain boundaries being the result of grain competition. 

The samples containing low dislocation density present large number of areas containing 

multiple twins and vice versa. In general, the nucleation of twins is thermodynamically 

unfavorable since it increases the total system energy by adding new grain boundaries. 

However, from this work it is brought in evidence that twinning  that  results in the grain 

boundary dissociation have always the tendency to relax the stresses developed in the crystal 

during the growth process. Grains that are in direct competition with other grains and / or 

squeezed in – between grain boundaries are more deformed and contain higher density of 

dislocations but during growth their development is prevented and their size remains limited.  
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Figures and captions  

 

(a) 

 

(b) 

Fig. 1: a) Schematic illustration of GaTSBI that is designed to allow the use of X-ray imaging 

techniques during the melting/solidification process. A polychromatic radiation provided by a 

synchrotron source (1) illuminates the Si sample situated in the directional solidification furnace 

(2). A specially designed equipment installed right after the furnace (3) allows us to record in 

situ the X-ray diffraction images corresponding to the different crystallographic planes of the 

sample (hkl). Alternatively, the polychromatic direct beam is monochromated by a double Si 

(111) monochromator (4) and the absorption image (radiography) of the sample is registered in 

real time on a CCD camera (FReLoN) (5), b) the Cz Si sample is housed in a BN crucible which 

is almost transparent to X-rays. It contains a housing of 40 × 6 mm2 and 300μm depth for the 

sample that has a total surface of 38 × 5.6 mm2 and 300μm thickness. The sample/crucible set 
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is introduced in the furnace chamber perpendicularly to the X-ray incident beam. A detailed 

description of the equipment can be found in [24]. 

 

 

Fig. 2: Crystallographic orientation maps (IPF) of the solidified sample in the x (growth 

direction), y and z-directions obtained by EBSD ex situ measurements (7 μm step size) after 

the 13th melting-solidification cycle performed with an applied temperature gradient G = 30 

K/cm and a cooling R = -0.2 K/min. 
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Fig. 3: a) Coincidence site lattice map (CSL) of the grain boundaries (7 μm step size), b) rocking 

curve imaging (RCI) integrated intensity map of the Si {220} diffraction plane family that gives 

quantitative information on the level of distortion. 𝒈𝒈��⃑  is the diffraction vector on the plane of the 

figure, c) Grain Orientation Spread (GOS) map that measures the orientation difference 

between every pixel in the grain and the grain average orientation. 
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Fig. 4: a) White beam X-ray Bragg diffraction images during silicon growth, illustrating the 

successive twin nucleation that occur at the left edge of the sample and the formation of a 

distorted Σ27a <110> grain boundary. b) X-ray radiography images displaying the twin 

nucleation on the horizontal {111} facet at the SLVC-PL and the grain boundary groove at the 

level of the distorted Σ27a <110> grain boundary (dotted arrow).   
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Fig. 5: a) White beam X-ray Bragg diffraction images during silicon growth, illustrating the 

nucleation of the twin that occurs at the right edge of the sample. b) X-ray radiography images  

showing the facetted / facetted groove formation as results from the grain competition between 

V and VI and the twin nucleation on the left and right facets (position ε in Fig. 3a) leading to 

the formation of a Σ27a <110> grain boundary.   
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Fig. 6: X-ray radiography images showing the successive twin nucleation on the diagonal {111} 

facet at the right edge of the sample. 
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Fig. 7: X-ray Bragg diffraction images corresponding to the a) first (G = 30 K/cm, R = -1 K/min) 

and b) fifth (G = 30 K/cm, R = -1 K/min) melting / solidification cycle of the sample. 
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Fig. 8: Stereographic projections of the {111} planes of the a) seed, b) the first horizontal twin 

on the left, c) the first horizontal twin on the right and d) the first diagonal twin on the right. 

The z-axis is normal to the sample surface. The line below gives the corresponding 3D 

representation of the plane arrangement. 
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Fig. 9: The height of the solid – liquid interface as a function of time measured by the X-ray 

radiography images at the left edge of the sample, where successive twin nucleation occur 

(black points) and for the global solid – liquid interface (red points). The arrows indicate the 

instant of nucleation of three horizontal twins which match with the instant of growth rate 

change.  
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Fig. 10: EBSD measurements of the position α in Fig.4a using a 0.7 μm step size a) coincidence 

site lattice map of the grain boundaries (CSL), b) grain orientation spread map (GOS) that 

measures the degree of orientation change between every pixel in the grain and the grain 

average orientation, c) average local misorientation map (LMP) that locates deformed regions 

in the sample. d) X-ray radiography images illustrating the facetted – facetted groove formation 

at the encounter of the horizontal twin I and of grain II, e) stereographic projections of the 

crystallographic planes {111}, {110} and {112} on which the grain colours correspond to the 

GOS image (b) of the same figure. The stereographic projections are tilted due to the setup of 

the equipment during the measurement.  
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Fig. 11: EBSD measurements of position  ε in Fig.4a using a 0.7 μm step size a) coincidence 

site lattice map of the grain boundaries (CSL), b) grain orientation spread map (GOS), c) 

average local misorientation map (LMP), d) pole figure of {111} planes with the colours of 

grains corresponding to the GOS image (b) of the same figure. 
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