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I. Abstract 

Concrete, a commonly used material in the construction industry, interacts with metallic surfaces such 

as formwork during pouring and reinforced bar during lifespan.  Formworks are designed to minimize hardened 

concrete adherence in order to avoid wall defects after formwork removal.  In opposite, reinforced bar designs 

aim at maximizing their adherence to concrete for optimizing the transmission of mechanical solicitations.  The 

present review investigates the surface properties that govern bonding of freshly poured concrete onto metallic 

surfaces.  Identifying the underlying mechanisms of adhesion highlighted the importance of substrate 

characteristics (roughness, composition), concrete curing and compaction), and interfacial additives (release 

agents, wetting).  This paper addresses the basic requirements in designing a functional surface interacting with 

concrete and emphasizes today challenges.       

Keywords: Concrete, Adherence, Adhesion, Metallic Substrate 

II. Introduction  

Concrete is a mixture of hydrated cement paste and selected aggregates enabling the manufacturing of 

strong, durable and economical structures.  In the construction industry, reinforced concrete walls are mostly 

built by using reinforced metallic prebars to improve mechanical properties and formworks to maintain the 

concrete during curing.  Both concrete and interacting metallic surfaces must be correctly designed for reliable 

constructions.   

Controlling the flow of fresh concrete is complex due to its small workability [1,2] which can be improved 

with the addition of superplasticizers.  The cement paste is an alkaline calcium-containing solution composed of 

cement, filler, sand, gravel, and water.  The residual water left after cement hydration contains soluble ions such 

as Ca2+, OH-, Na+, K+, and SO4
2- [3].  The alkaline cations (Na+ and K+) and anions (OH-) present in the liquid concrete 

phase leads to a very high pH (from 12 to 14 pH) that depends on the nature of the cement and its degree of 

hydration [3].  The chemical specificities of the concrete involve unique interfacial phenomena when interacting 

with metals.    
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Formworks are rigid molds used to contain freshly poured concrete for wall construction.  Even though 

some composite slabs are used as permanent structures [4], most of them are removed after concrete curing to 

reveal the inherent aesthetic of the concrete wall [5–10].  Metal, wood, and polymer are used as formwork 

materials depending of the expected lifespan, geometry of the wall, and the weather during the construction 

day [7,11].  Avoid aesthetic defects related to formwork removal involve lowering concrete adherence which 

implies the application of release agents [12–22], the addition of a polymer skin [7,23], or some specific 

procedures for the formwork removal [6,24].  But these are challenging requirements because excessive sticking 

of concrete on formwork still induces today constructive anomalies for almost 80% of the constructed walls 

[25,26].          

Reinforced bars are designed to maximize the bond strength between the bar and the hardened 

concrete [27].  The design is therefore similar to concrete repairs systems [28–31].  Adequate designs favor 

mechanical anchoring and physicochemical interactions at the interface between the concrete and the bar 

[12,24,32–34].  Moreover to the design of the bar itself, the orientation of the reinforced bar in regards to the 

gravity is important as the Interfacial Transition Zone (ITZ) is different at the lower and upper sides of horizontal 

reinforced bars [35].  Thus, both superficial characteristics and orientation of reinforced bars must be accounted 

for.            

Concrete interaction with both formworks and reinforced bars start as soon as the fresh concrete 

contacts the metallic substrate.  Identifying the underlying mechanisms creating adhesion and adherence during 

the curing process will help in designing proper surfaces.  Adhesion refers to the physico-chemical phenomena 

that create a resistance when separating two surfaces.  Adherence relates to the static friction that hinders the 

relative motion of two surfaces.  The present review aims at providing a perspective on evaluating the interfacial 

behaviors and designing solid surfaces.  As it is beyond the scope of this article to address cement and concrete 

formulations, only the interfacial mechanisms and the implications on the design will be reviewed.  This review 

is presented in three sections: concrete-metal interaction phenomena, interfacial transition zone characteristics, 

and trends for future investigations.  

 

III. Concrete-Metal interaction phenomena 

Concrete is a strong alkaline medium composed of an hydrated mixture of cement and aggregate with 

some residual water containing soluble components (Ca2+, OH-, Na+, K+, and SO4
2-) and fine particles of cement 

and filler [3].  The residual water displaces towards the metallic surface (referred to as wall effect) to form a 

boundary layer named the Interfacial Transition Zone (ITZ).  Once cured, the ITZ is  rich in weak hydrated phases 

(i.e., calcium hydroxide Ca(OH)2) and may possibly exhibit porosities for high water-to-cement ratios  [10,36].   A 

knowledge of the physics behind the interaction of concretes with metals is key for designing surfaces with 

desired interaction behaviors.   
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Adhesion of concrete to metal is developing progressively during concrete curing along the ITZ [37].  The 

ITZ is organized in three superimposed layers [36,38,39] that result from various simultaneous phenomena such 

as sedimentation, segregation, water permeation, wall effect, and mechanical vibrations.  The first 101-102 µm-

thick layer along the substrate is composed of the finest cement particles and water with additions of cement 

substituents and admixtures.  The intermediary 5 mm-thick layer is the mortar layer containing large sand grains, 

cement, and water.  The last layer is the concrete bulk itself with the biggest granulates which have a size of 

approximately 30 mm.  

Mechanical anchoring through concrete penetration into the surface asperities and trapping of cement 

particles in hollows [12,17,24,32], capillary suction induced by a continuous water film formed on planar surfaces 

[12,17,32,33], and electrochemical bonding with Ca(OH)2 formation [24,33,34] are underlying mechanisms of 

concrete adhesion.  If the ITZ strength exceeds the concrete bulk strength, the rupture will be cohesive in the 

concrete bulk.  However, a weaker ITZ promotes adhesive rupture along the substrate-concrete interface, i.e. 

the ITZ.     

 

A. Mechanical Anchoring 

The mechanical anchoring theory states that bonding forms by mechanical interlocks when the fines of 

the fresh concrete penetrate into substrate irregularities prior to curing.  The adhering efficiency depends on the 

amount of potentially bonded areas that is controlled by the substrate surface texture itself.  A correctly designed 

adherent texture for reinforced bars must favor penetration of concrete in surface defects [40].  In particular, 

the Wenzel wetting mode is preferred to a Cassie-Baxter regime to facilitate the penetration of the fines into the 

rough asperities [24,41,42].  The addition of superplasticizer in the concrete formulation has, in this regard, a 

positive effect by improving the wetting of the substrate and reducing the defects along the ITZ.      

High substrate roughness such as the use of ribbed bars, higher hydrophilicity, high pressures at the wall 

bottoms (from 1 to 10 t.m-2) [43–45] and mechanical vibrations sustaining filling of interspaces by fresh concrete 

[24,27,46,47] are main factors that improve the bonding.  Mechanical anchoring is raised by eliminating any 

residual humidity film on the substrate before the concrete contacts the substrate [12,17,32] combined with a 

substrate roughness high enough to entrap more than one single particle per asperity [48,49].  The traps must 

exceed several micrometers as particles size in standard Portland concrete varies from 1 to 100 µm [50,51].  

Increasing the number and size of the traps improve adherence such as acid-pickled cleaning of a hot-rolled steel 

that improve the adherence strength from 10-2 to 10-1-100  MPa [34].  However, which roughness parameter is 

most appropriate for evaluating susceptibility to mechanical anchoring remains ill-defined [52]. 

   

B. Capillary Suction 

Capillary suction forms when the liquid film present along the ITZ is continuous.  To obtain a continuous 

liquid film, a substrate surface with a high surface energy is recommended to favor the water spreading at the 
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interface [6].  Moreover, the hydration process must be fast as delaying the hydration induces a drop in bonding 

strength [53,54].  The capillary-induced bond is stronger for smooth and impermeable substrates such as steel 

and polymer [12,17,32].  On the contrary, water removal by absorption (e.g. on wood formworks and porous 

skins) reduces the water amount at the interfacial layer [55–58], weakens the capillary forces, and lowers the 

concrete-substrate bonding [59–61].   

The chemical compounds related to the bonding of the ITZ are confined to a one molecule-thick layer 

at the steel surface.  Therefore, the substrate surface energy, which is a measure of wettability, defines partially 

the extent of chemical bonding.  Among the numerous characterizing methods [62,63], the sessile drop method 

described by the norm AFNOR EN 828 [64] enable the measurements of the physico-chemical properties of solid 

surfaces wetted by known liquids such as cured concrete wetted by liquid repair products [28].  The analysis is 

founded on the Young-Dupré equation for a perfectly flat homogeneous solid surface wetted by a liquid drop.  

The contact angle represents the interacting interfacial tensions in mechanical equilibrium (Eq. 1): 

SV =LS +LV cos      (Eq. 1) 

, whereSV et LS are the solid-vapor and liquid-vapor superficial tensions, respectively.  The thermodynamic 

work of adhesion (Wa), associated to the negative of the free energy of adhesion (-Ga), is related to the wetting 

angle according to the equation of Dupré (Eq. 2): 

𝑊𝑎 = 𝛾𝑆𝑉 + 𝛾𝐿𝑉 − 𝛾𝑆𝐿 = 𝛾𝐿𝑉(1 + 𝑐𝑜𝑠𝜃)     (Eq. 2) 

Adsorption of water at the steel surface is caused by primary (covalent) and secondary (dispersion, 

dipole and hydrogen) bond interactions between fresh concrete and metallic substrate [65].  From a 

thermodynamics point of view, the surface free energy 𝛾𝑆 can be decomposed into a polar 𝛾𝑆
𝑝

 and dispersive 𝛾𝑆
𝑑 

component [66] (Eq. 3): 

𝛾𝑆 = 𝛾𝑆
𝑑 + 𝛾𝑆

𝑝
      (Eq. 3) 

To improve adhesion, the solid surface energy (𝛾𝑆) must be greater than the surface tension of wetting 

substances (𝛾𝑙).  Since the concrete paste has a superficial surface tension of 44 mN∙m-1 [66,67], fresh concrete 

strongly adhere to steel plates with surface energies between 40 and 100 mN·m-1 [17,68].  In opposite, the 

application of a layer of small surface tension substances such as release agents with active carboxyls is used  on 

formworks to lower the substrate surface tensions and limit concrete adherence [33,69,70].   

 

C. Electrochemical bonding  

Concrete is a basic medium with unique characteristics and complex chemical and electrochemical 

interactions with metals, as indicated in reviews of the subject [71,72,81,73–80].  Electrochemical bonding of a 

concrete on metallic substrates are both electrical and chemical bonds [24,33,34]. This bonding is the result of 

intermolecular electromagnetic interactions progressively formed from the initial contact of the fresh semi-solid 

concrete until the end of its hardening stage.   
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Enhancing electrochemical reactions at the interface should improve concrete bonding to metallic 

reinforced bars.  Numerous molecular interactions occur between metallic surfaces and hardening concretes: 

long-range Van der Walls forces (40 kJ∙mol-1), short-range hydrogen bonds (50 kJ∙mol-1), covalent bonds (60-700 

kJ∙mol-1), metallic bonds (110-260 kJ∙mol-1), and ionic bonds (600-1000 kJ∙mol-1).  The bonding is more efficient 

for greater number of interfacial bonds and longer coupling molecules, e.g. the strength of London’s dispersion 

forces increases between compounds with greater molecular weights.  Hence, concrete mix, adsorption, 

adhesion, and kinetics of carbonation during curing are key factors for mastering electrochemical bonding 

formation.    

The concrete hydration products react with atmospheric CO2, humidity, and metallic hydroxides to form 

efflorescence (that is calcium carbonate CaCO3) that grows during curing because of the high water content 

[8,82].  The numerous hydrated minerals present in fresh concrete, such as portlandite Ca(OH)2 and hilebrandite 

Ca2[SiO3(OH)]OH, contain hydroxyl radicals (-OH) and have asymmetric structures.  These hydrated minerals 

transform into the acid-basic calcium pyro-silicate referred to as afvilite Ca3[Si2O6OH]OH when Ca(OH)2 is further 

being released [33].  Further hardening involve the formation in a hardened cement paste of aliphatic silicates 

such as the monoclinic kronotite Ca6Si6O17(OH)2 with fibrous cross-section, the fibrous tobermorite 

Ca4[Si3O8(OH)]OH2 and the hydrated ribbon silicate - girolite Ca4Si6O15(OH)2 [33].   

Most metals react electrochemically in Ca(OH)2-containing solutions in a similar manner than in fresh 

concrete [46,83–87].  Therefore it is commonly assumed that a saturated calcium hydroxide solution, with a pH 

of 12.6 at room temperature, may be taken as a representative electrolyte for electrochemical studies involving 

fresh concrete [72].  However, it remains unclear whether or not the kinetics of diffusion in saturated calcium 

hydroxide solutions are representative of those in concrete.  Low cost and wear resistant steels are the most 

common materials used in formwork and reinforced bar designs [52,88].  The K2 L8 M14 N2 structure of iron atoms 

indicates the presence of a lone pair of electrons on most external 4th orbit that make the iron atoms very 

reactive.  The electrical charging of steel surfaces by concrete friction during pouring reorganizes the ions at the 

interface to form a double electrical layer composed of Fe2+ and OH- ions on the steel side and Ca2+, Al+ and OH- 

ions on the fresh concrete side [8,10,24].  The application of release agents prior to concrete pouring generates 

a deflocculating action of the cement particles and stabilizes the soap-oil mecellae, isolating each ionic side from 

the other [16].   

Cement paste contains large amount of hydroxyl radicals –OH.  The high electronegativity of iron in steel 

(1.83) and oxygen in the radical –OH (3.44) favors the hydrogen bonding between the iron atom Fe and the 

radical –OH to form Fe(OH)2 molecules [33] followed by the transformation of the initial impermeable oxy-

hydroxide film into a porous, non-protective iron carbonate film [89].  The breakdown of this passive layer causes 

an increase in the substrate reactivity and corrosion rate.  Hydrated FeO oxide steel surface have been associated 

with substrate wettability [90] and concrete adhesion [49,91,92].   

Concrete bonding is stronger for thicker layers of oxide products due to the modified functional groups 

at the surface [49,92].  When adding weak organic acids such as oleic acid, hydroxyls react preferentially with 

them to form neutral non-adherent products [33].  Adhesion is also inhibited with the application of inert 
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surfaces on metallic substrate such as polyvinyl chloride (PVC) [8–10], polydimethylsiloxane (PDMS) [8–10], and 

epoxy [93].  These surfaces possess usually low wettability and small solid surface energy that enhance the water 

accumulation and Ca(OH)2 formation in the first concrete layer according to the reaction [9]:  

Ca(OH)2 + CO2  CaCO3 + H2O      (Eq. 4) 

Therefore carbonation reduces by partial neutralization the alkalinity of Ca(OH)2 associated to a drop of the pH 

from 12.4 to 11.8 [89].  This explains the increase in chemical reactions for thinner concrete bulks that is 

associated to easier flow of atmospheric CO2 towards the ITZ [89].  The concrete adhesion was smaller on 

polyvinyl chloride (PVC) than polyoxymethylene (POM) [8,9] which may be possibly due to greater mechanical 

anchoring on the rougher POM material.  It is noted that the epoxy-based coatings have very good corrosion 

resistance in alkaline concrete medium [93,94] but possess small wear resistance during concrete pouring [52].   

Reinforced bars are sometimes galvanized to extend the service life of corrosion-susceptible structures 

[95].  Zinc is an amphoteric metal stable over a wide range of pH (6–13.2).  The immersion of the galvanized 

rebars in alkaline solutions promotes the formation of a zinc hydroxide film (pH < 12.9) or soluble zincate ion 

ZnO2- (pH < 12.9).  However, in presence of Ca2+ ions, passive films of calcium hydroxizincate 

(Ca(Zn(OH3)2. 2H2O) are formed [96] following the sequence of reactions [3] (Eqs. 5 to 8): 

Zn + 4OH− → Zn(OH)4
−2 + 2e−     (Eq. 5) 

Zn + 2OH− → ZnO + H2O + 2e−     (Eq.6) 

ZnO + H2O + 2OH− → Zn(OH)4
2−     (Eq.7) 

2Zn(OH)4
2− + Ca2+ + 2H2O → Ca(Zn(OH3)2. 2H2O + 2OH−  (Eq.8) 

The hot-dip galvanized coating is formed of four thin layers (Figure 1) [87]: the 1st layer (outside layer) is zinc, the 

2nd layer is zeta () phase, the 3rd layer is delta () phase, and the 4th layer (inside layer) is steel substrate.  The 

reactive pure zinc layer thickens with increasing hot-dip time [87].   

  

Figure 1: Scanning electron micrograph of hot-dip galvanized coating [87]. 

Galvanized steel is electrochemically more reactive than steel in the fresh concrete medium, leading to 

a 15% increase in interfacial bonding strength compared to bare steel rebar [87].  Indeed, ZnO and Zn(OH)2 

present at the substrate surface react with hydration compounds to initially form calcium hydroxyzincate 

(CaZn2(OH)6·2H2O) [34,54] and later ZnSiO4 and Ca2Zn2Si2O7 after several days of curing [87].  These heavy 

components promote high bonding strength of concrete (up to 0.23 MPa [34,95]).  However, zinc dissolution is 

important at pH above 13.5 [84] which produces hydrogen and modifies the cement hydration kinetics [97].  The 

morphology of the attack, the hydrogen evolution, and the nature of the corrosion products that are expected 
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are summarized in Figure 2 [3].  Chromate passivation is efficient in inhibiting the corrosion of galvanized steels 

[98] but is today controversial because of raised concerns on health hazards. 

 

Figure 2: Behavior of galvanized rebars immersed in alkaline solutions ccontaining Ca2+ ions with 11-14 pH 

range (CaHZ = Ca(Zn(OH)3)2.2H2O) [3] 

Corrosion investigations in alkaline environments revealed that the open circuit potential (OCP) and 

corrosion rate were -430 mVSCE and 3.0 µm/year for bare steel, and  -770 mVSCE and 7.8 µm/year for hot-dip 

galvanized steel (Figure 3) [87].  The corrosion rate was calculated using the Stern-Geary equation.  The smaller 

corrosion potential of zinc revealed that galvanized materials are more active than bare steel in alkaline 

environments.  The faster corrosion is related to the absence of passive film.  These results in alkaline 

environments are in agreement with the known more reactive galvanized steel than bare steel in fresh concrete.  

  

Figure 3: Potentiodynamic polarization curves in pH 12 solution [87] 

Alloying zinc with passivating elements improve the corrosion resistance of galvanized coatings.  

Chromate [99], Ce-containing [100–105], and La-containing [106,107] conversion layers have protected 

efficiently galvanized steels in alkaline fresh concretes.  While chromate is today avoided for its toxicity, rare-

earth salts are promising alternatives.  Ce-rich galvanized coatings form in alkaline environments a thick film of 

Ce(OH)3 (outer layer) and Ce2O3 (inner layer) (Figure 4) that delays corrosion but only for a limited time [100].  

Similarly, the formation of lanthanum oxide La2O3 and hydroxide La(OH)3 at the La-rich galvanized surfaces delays 

the formation of Ca(Zn(OH)3)2 crystals when immersed in calcium-containing solutions (Figure 4) [100,108].  

Aluminum doping in the galvanized coating limit the calcium hydroxizincate formation due to the preferential 

reaction of OH- and Ca(OH)2 with Al atoms [109,110] but the results highlight ambiguous effects on bonding 

strength improvement or deterioration [34,88,95]. 
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(a) (b)    

Figure 4: pH working conditions in cement superimposed to Pourbaix diagrams  

for (a) Ce-containing water and (b) La-containing water [100,111].  

 

Electrochemical bonding of concrete on steel [112,113] and others metals such as Al, Zn and Pb [14] 

may be limited by controlling the electronic interactions with the metallic substrate polarization [114,115].  

Increasing polarizing current favor the migration of water to the interface (electro-osmosis) but care must be 

taken to avoid the disruption of the concrete hydration by excessive water migration.  Schematic principles are 

described in Figure 5 and polarization effect on adherence is shown in Figure 6.  Maintaining steel potential at -

0.4V is the condition for maximum of bonding strength.  The effect of water condensation on adherence is similar 

to the observed drop in bonding when using concretes with high water-to-cement ratio [116].     

 

 

Figure 5: Experimental setup for polarization of walls in contact with concrete [112]. 

 

Figure 6: Effect of applied polarization of steel on bond strength with cement [113]. 
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D. Summary 

In summary, adhesion of concrete on metallic surfaces is controlled by interfacial interactions between 

the substrate and the curing concrete.  Chemical reactivity, mechanical anchoring, and the ITZ thickness are key 

factors in controlling the bonding strength.  The question remains whether or not one mode of adhesion is 

predominant.  A better understanding must involve a microscopic analysis of the ITZ.  

 

IV. Interfacial Transition Zone characterization   

The bonding strength between metallic substrate and concrete has to be either minimized to avoid 

bonding issue during formwork removal or maximized to lengthen service life of concrete-metal composite 

structures.  The Interfacial Transition Zone (ITZ) controls the concrete adherence.  It has been characterized both 

chemically and mechanically.   

 

A. ITZ Chemical Characterization 

Optical and electronic microscopies have been used successfully to observe the interface between bare 

steel and hydrated cement paste.  The ITZ size is difficult to measure but is estimated between 20 and  150 µm 

thick [10,54].  It exhibits porosities and a clear boundary composed of hydrated phases (Figure 7a) [27].  

Elemental analyses have been performed on cross-sections of the concrete-to-steel interfaces after concrete 

curing to observe spatial distributions of Ca, Si, and Fe (Figure 7b) [10,27,117].  The paste fraction near the ITZ 

contained lot of Si and Ca-rich unhydrated cement particles while the mill scale contains many porosities [27].  

X-ray diffractions demonstrated that the ITZ characteristics are influenced by the C3A/C3S ratio, and the alkaline, 

gypsum, and free lime contents [54].   

   

Figure 7: (a) SEM micrograph of typical microstructure present at ITZ of uncoated steel  

and (b) corresponding elemental mapping of Ca/Si/Fe [27]. 

 

Carbonation of the cement paste causes a drop in pH that leads to the formation of a thin, insoluble, 

and protective oxide layer.  Back scattered electron (BSE) imaging of the first tens of micrometers of concrete 

along the steel surface revealed high amounts of SiO2 [87], Ca2SO4 [87], 2CaOSiO4 [87], and Ca(OH)2 [10,34].  More 
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Ca(OH)2 molecules form when water-on-cement (w/c) ratio are high and preferentially in the ITZ rather than in 

the cement bulk because wall effects induce greater water amounts in the ITZ.  This may lead to smaller gaps 

between the ITZ and the metallic substrates [35].  Calcium hydroxide Ca(OH)2 contents increase during concrete 

hardening constantly to attain a maximum of 30% in the ITZ (Figure 8) [10].  The Ca(OH)2 contents are increased 

when using wire-brushed, oxide-free steels because the iron atoms detached by friction from the brush onto the 

substrate are chemically reactive in alkaline environments.  These higher amounts of calcium hydroxides in the 

ITZ are related to more concrete-to-steel chemical bonds, greater adherence [34], and the sudden change in 

mechanical properties between steel and paste [27].   

 

Figure 8: Microstructural gradient of calcium hydroxide (CH) at the ITZ measured by EDX [10]. 

Backscattered electron imaging revealed that the fractured interface between steel and concrete 

exhibits large Ca(OH)2 crystals, porosities, and a dearth of calcium-silicate-hydrate (C–S–H) [10,27,113] (Figure 

9), the whole being surrounded with a layer of cement paste [113]. As curing proceeds, the different precipitation 

kinetics of the various cement hydration products cause segregation and properties gradients from the concrete 

bulk to the ITZ-steel interface [113,118].  The compositional gradient of this segregated zone varies with 

sedimentation of the fresh cement paste and steel surface preparation [113]. 

  

Figure 9: Typical microstructures observed on fracture surfaces at the ITZ between steel and concrete [27]. 

 

 

B. ITZ Mechanical Properties 

1. Micro-scale properties 

Concrete is composed of three superimposed layers: the cement skin (about 0.1 mm thick) against the 

substrate, the mortar skin (about 5 mm), and the concrete skin (about 30 mm) aside the concrete bulk [38].  The 

existence of these distinct layers is due to a wall effect, the sedimentation and segregation induced by gravity 

and compacting methods (e.g. vibrations for improving compaction), and permeation and evaporation of water 
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in and out of concrete.  These layers generate gradients of mechanical properties across the  first 5 mm of the 

ITZ from the metallic surface towards the concrete bulk (Figure 10) [38]. 

 

Figure 10: Mechanical properties gradients from concrete skin to 5 mm depth [38]. 

Depth-sensing indentations [27,37] has been performed on ITZ to provide quantitative information on 

Young modulus and hardness gradients at the µm-scales representative of the ITZ layers (Figure 11).  Micro-

indentations show variation of mechanical properties in both hardness (from 800 to 200 MPa) and elastic 

modulus (from 31.9 to 5.5 GPa) within the first 40 µm of the ITZ [37].  Young modulus peaks at 100 GPa were 

associated to unhydrated cement particles.  The low mechanical properties away from the interface were 

associated to the Ca(OH)2-rich interfacial transition zone and change with concrete formulations [27,37,54].  

Nano-indentation tests with too-small normal loads did not confirm these trends because the indentation 

imprints became as large as the concrete porosities.      

 

Figure 11: Evolution of elastic modulus across the ITZ between concrete and bare steel [27]. 

2. Macro-scale properties 

The establishment of a standardized adherability test is an ongoing topic of interest for the industry as 

it would have the obvious advantage of enabling a reliable adherability comparison between diverse materials 

and concrete formulations.  Even though the numerous existing laboratory tests provide a rough qualitative 

ranking of material adherability, the problem arises in not knowing how changes in testing procedure affect 

rankings and how measured data relate to real concrete fabrications.  Full-scale testing has been adopted in an 

effort to bypass the difficulties inherent in predicting field behaviour from small-scale laboratory tests.  However, 

due to the complexity and large dimensions of full-scale testing, laboratory-scale tests have been developed to 

quantify the adherability, limiting the full-scale adherability tests to a validation role for in-field applications.  
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There is also the inability to predict, with any certainty, whether or not bonding will indeed occur in a specific 

application.  Nevertheless, limitations exist in providing an overview of the literature data as the broad spectrum 

of loading conditions, concrete formulations, and adherability test design highlight inconsistencies in the testing 

methodology and collected data. These discrepancies lead to a lack of understanding and disagreement on the 

critical factors controlling concrete adherence. 

A broad variety of adherability tests has been developed over the years to investigate the steel-concrete 

interface, as indicated in reviews on the subject [119,120].  Testing devices include beam-end pullout specimens 

[33,54,87,93,94,121–130], splice specimens [121,122], beam-end test [95,98,122,128,131,132], and laboratory-

scale tensile tests [68].  Conclusions must be carefully formulated as fracture modes differ between reinforced 

bar (shear mode) and formwork (tensile mode) adherability tests.  Post-mortem fractographies revealed that the 

rupture involved both cohesive and adhesive failure zones [34] with a cohesive failure depending on the relative 

cement quality compared to the ITZ strength [24].  The concrete bulk tensile and compressive strengths are 2-

to-3 MPa and 20-to-30 MPa, respectively, for a normal concrete with a w/c ratio of 0.5.  Fracture should thus be 

adhesive if the ITZ tensile strength is lower than 2 MPa.   

The single rebar pullout test is conducted following usually the ASTM C 234-91a, ASTM C234-86 or ASTM 

A944 specifications.  A correlation has been established between interfacial toughness measured by indentation 

and bond strength measured by pull-out tests [116] providing a link from one scale to the other.   Many theories 

[41,124,133–135] and numerical models [41,119,124,125,130,133,134,136] are applied to deduct the interface 

properties from acquired experimental curves.  They usually simplified the stress state to a simple shear mode 

[137] even though the ITZ fracture is in reality more complicated with the involvment of many other factors such 

as friction [129] and important size effects [137].  Assuming a pure shear fracture, the ultimate shear stress 

𝜎𝑏 (also referred to bonding stress or splice stress) was calculated from the maximum pullout load (P) 

accordingly:   

𝜎𝑏 =
𝑃

𝜋𝑑𝑙
       (Eq. 9) 

, where d is the bar diameter, l is the embedded length of the bar, and 𝜋𝑑𝑙 the interface area.  The measured 

debonding shear stress of a steel bar from a concrete varies from 3 to 12 MPa [41,93–95,133].  The progressive 

increase in bonding strength during the first 28 days of concrete hardening [24,34,113,127] was attributed to the 

formation of an aggregate-free interfacial zone composed by segregated hydration products which attain a 

practically constant structure after a few days [113].  Summary of the testing data is provided in Table 1.  The 

strength of the concrete, the roughness of the bar surface (i.e. ribbed bar), and the chemical adhesion of the 

concrete-steel interface are evidenced as key factors for controlling the durability of the bonds.   

Low-adherence coatings are hydrophobic and thus composed of either silicone-doped polymers [8–10], 

fluor-plastic-doped polymers [24], fusion-bonded epoxy (FBE) chemically stable in high pH environments [138], 

and Bakelite-doped polymers [24].  Coatings must also possess high friction coefficients with concrete to 

maximize the work energy for debonding [129]. The ITZ bonding stress is promoted by the only interfacial 

phenomena as the expoxy-coating thickness within the range recommended by ASTM A775M/775M-93 has 
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negligeable effect [122].  Coating the reinforced bar with pure epoxy usually drops the bonding stress down to 2 

MPa [93,94,121–124] but doping the epoxy with foreign silica sand particles provide additional friction and 

interlocking forces that compensate the lack of electrochemical bonding and induce an increase of bonding 

strength up to 10 MPa [93,94].  On the opposite, environmentally-friendly phosphate conversion, oxided 

surfaces, and hot-dip galvanized coatings can double the bonding strength on steel [46,49,92,94,121–123,139].  

Smaller bonding strength is measured for galvanized surfaces, especially for cements with weak C3A/C3S ratio 

[54] because zinc delays the crystallization of calcium hydroxyzincate (CaZn2(OH)6,2H2O) [54,96].    

Table 1: Bonding strength measured between formwork and concrete 

 

Most works on mechanical characterization of steel-concrete interface have been performed for 

reinforcing bars applications (i.e. shear strength characterization).  Only few works have been devoted to 

formwork applications with the focus on the tensile strength measurement of the ITZ.  Formowrk removal implies 

in fact an ITZ fracture mostly in a tensile mode.  Hence, the previously described popular pullout test is efficient 

for reinforced bar testing but inadequate for quantification of concrete adherence on formworks.  The tensile 

strength measured by removing full-scale formworks are consistents with laboratory-scale measurements from 

both a qualitative and quantitative viewpoints.  Results are summarized in Table 2.   

Table 2: Bonding strength measured between formwork and concrete 

Reinforced bar Concrete Bonding strength  
Ref 

Material 
Surface 
finish 

Ultimate Compressive 
Stress (MPa) 

Hardening 
Conditions 

Ageing 
Time 

Testing 
Device 

Fracture 
Stress (MPa) 

Bare steel smooth 39-67 20 °C / 100%RH 1 day Pull-out 5-9 [140]  

Bare steel smooth 88-100 20 °C / 100%RH 28 days Pull-out 8-10 [140]  

Bare steel rough  39-67 20 °C / 100%RH 1 day Pull-out 13-18 [140]  

Bare steel rough 88-100 20 °C / 100%RH 28 days Pull-out 23-27 [140]  

Bare steel smooth 15.6 - 3 days Pull-out 6-8 [54]  

Bare steel smooth 31.3 - 28 days Pull-out 8-14 [54]  

Galvanized Steel smooth 15.6 - 3 days Pull-out 3-6 [54]  

Galvanized Steel smooth 31.3 - 28 days Pull-out 4-7 [54]  

Bare steel smooth 14.6 - 3 days Pull-out 5-6 [54]  

Bare steel smooth 29.2 - 28 days Pull-out 8-10 [54]  

Galvanized Steel smooth 14.6 - 3 days Pull-out 3-6 [54]  

Galvanized Steel smooth 29.2 - 28 days Pull-out 9-13 [54]  

Bare steel smooth - - 28 days Pull-out 6-8 [139]  

Bare steel smooth - - 7 days Pull-out 7.8 [92]  

Bare steel smooth - - 28 days Pull-out 8.2 [92]  

Steel with 
acetone 

smooth - - 7 days Pull-out 6.8 [92]  

Steel with 
acetone 

smooth - - 28 days Pull-out 7.5 [92]  

Bare steel smooth 21-45 - - 
Shear 
Test 

3-30 [141]  

Bare steel smooth 44-50 - 28 days Pull-out 5.4 [142]  

Galvanized Steel smooth 44-50 - 28 days Pull-out 5.8 [142]  

Bare steel smooth 13-15 - 7 days Pull-out 1-2 [33]  

Acid pickled steel smooth 40 - - Pull-out 0.52 [34]  

Zn/Al coated steel smooth 40 - - Pull-out 0.01 [34] 

Bare steel smooth 30 - - Pull-out 1.2-1.9 [126]  

Bare steel deformed 30 - - Pull-out 1.5-2.0 [126] 

Formwork material Concrete Hardening conditions Ageing time 
Bonding strength 

(10-3 MPa) 
Ref 

Steel without release agents - 17°C / 85%RH 1 days 185 [24]  

Steel without release agents - 17°C / 85%RH 3 days 489 [24]  

Steel with release agent - 17°C / 85%RH 1 days 47 [24]  
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In conclusion, adherability quantification has been mostly performed for reinforced bars applications 

and little for formwork design.  Unfortunately, comparison of different works is almost impracticable because of 

the different concrete compositions, the absence of roughness measurements on the tested substrates, and the 

varying testing procedures.   

 

C. Test parameters influence 

The history of pouring and curing conditions, substrate material, and concrete formulation affects 

concrete adherability.  The amount of contraction of the concrete during curing depends on the physico-

mineralogical properties and hardening conditions [24] and decreases the bonding strength if contraction is 

sufficient to promote interfacial micro-fractures.  Interfacial bonding develops progressively during curing and 

drying, so the time of testing post-pouring is important.  Greater bonding strength is associated to concrete in 

contact with rough and reactive substrates under high pressures associated to high concrete pouring heights and 

intense vibrations enhancing concrete penetration in the substrate interstices [24,113] (Figure 12).   On the other 

hand, the aggregate content of the mortars does not influence the ITZ bonding strength (Figure 13) because this 

zone is entirely composed of cement hydration products and is free from aggregates [113].  Thus increasing the 

initial w/c ratio lowers the quantity of water at the interface and subsequently the amount of hydration products 

in the ITZ, leading to a fracture strength reduced by 10% [113]. 

  

Figure 12: Influence of vibration time on bond strength between concrete and steel [24]. 

 

Steel with release agent - 17°C / 85%RH 3 days 142 [24]  

Glass fiber reinforced plastic - 17°C / 85%RH 1 days 21 [24]  

Glass fiber reinforced plastic - 17°C / 85%RH 3 days 26 [24]  

Multi-layered compressed paper - 17°C / 85%RH 1 days 18 [24]  

Multi-layered compressed paper - 17°C / 85%RH 3 days 18 [24]  

Fluor-plastic - 17°C / 85%RH 1 days 9 [24]  

Fluor-plastic - 17°C / 85%RH 3 days 10 [24]  

Mild steel 
Cement paste 
and mortars 

- 
1 day 1100-1900 [113]  

28 day 3300-5100 [113] 
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Figure 13: Effect of vibration and curing time on bond between steel and concrete [113]  
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V. Practical Implications 

The aim of the review was to understand the underlying phenomena of concrete bonding on metallic 

surfaces in order to master interfacial bonding strength.  Construction engineers can mitigate bonding by 

adjusting the concrete composition, designing properly metallic substrates, and controlling pouring and curing 

conditions.  The following discussion demonstrates the multifaceted nature of this problem and addresses some 

factors that may be used by the construction engineer to control adherability. 

Functional designs require understanding the dynamic interaction of concrete with metals during curing.  

Adhesion of concrete to metallic surfaces is proven to be a complex subject with combinations of electrochemical 

and mechanical factors [12,24,32,33,52].  Smooth surfaces over wide flat areas maximize capillary-induced 

bonding only if these surfaces possess low solid surface tensions to spread a continuous water film.  Reactive 

surfaces lead to strong bonding because of the formation of metallic-containing hydration products.  Finally, 

roughness has a complex role to control simultaneously mechanical anchoring, capillarity in asperities, and 

Wenzel versus Cassie-Baxter wetting mode.  Compromises are usually required for controlling adherence.  For 

example, epoxy coatings are used to limit corrosion of reinforced bars but simultaneously lower the bond 

strength of concrete to steel [98,122] leading to pros and cons for long lifespans of structures.    

One particularity of formwork applications compared to reinforced bars is the wear resistance viewpoint 

when submitted to repetitive utilizations that lead to an evolving skin functionality pouring after pouring.  In fact, 

polymeric skins have proven an efficient anti-adherence solution [8–10,24,93,94,98,121–124] but have weak 

resistance to fresh concrete-induced abrasion [52,88].  The study of concrete friction on substrates was mainly 

investigated using the plane/plane tribometer [16,19,21,52,88,143–150] and few rheological models 

[52,88,151].  The friction and wear behavior have highlighted the dependence of interfacial friction stresses of  

fresh concrete on a substrate with the demoulding agents [19,150,152], the aggregate contents [149], the paste 

volume [16] and the optional addition of superplasticizer [16,19,150].  While adding superplasticizer reduces the 

friction stress by deflocculating the cementious mixture [16], friction of concrete without superplasticizer  

involves a direct contact of granulates on the substrate surface.  Substrate superfical elements are also infuencing 

the wear rates.  Indeed, while galvanized coatings reduce the wear rates compared to bare steels [54], polymeric 

skins with hardnesses of the order of magnitude of 10-2-10-1 GPa are not hard enough to resist fresh concrete-

induced friction damages [52].  Wear rates are reduced as the concrete curing progressive and is thus dependent 

on the cement chemistry [54].     

VI. Summary and perspective 

The present review focused on the adherence of concrete on metallic formworks and reinforced bars.  

Recent developments have suggested both mechanical anchoring, capillary suction, and electrochemical bonding 

to play a direct role in controlling bonding strength.  With advancing ideas regarding adhesion phenomena and 

improved testing methods, construction science is moving to a point where the overall strength of adherence 

may someday be predicted between a given concrete composition and a solid substrate.  From a practical 
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standpoint, bonding strengths are difficult to measure and control, and are related to specific humidity, material, 

and restraining conditions (tensile versus shear).  Combining experiments with segregation and mechanistic 

models will enable to improve the quantification of conditions needed for fracture in the ITZ to occur. 

Many adherability tests have been developed to rank bonding of different concrete-substrate interfaces 

solely upon the fracture strength.  The experiment with the application of either a shear or tensile load  

determines the adherence propensity and subsequently the functionality of surfaces in contact with concrete.  

Although useful in making rough-cut rankings, a better approach is to consider the adherability testing as an 

experimental means to understand the relationship between the external loading force and the local stresses in 

the ITZ.  Nevertheless, difficulties are still encountered for the identification of the individual contribution of each 

component leading to the measured overall bonding strength.  Further studies should be devoted in 

understanding the underlying mechanisms of the concrete-steel bonding interactions and the potential 

dominant effects of environmental conditions such as moisture, electrochemical conditions, interfacial 

interactions, rebar geometries, w/c ratio, curing times, and cement type.   

Finally, a comment should be made on the available literature data.  Reviewing the scientific publications 

highlighted that important experimental details were not systematically reported.  This impeded the 

interpretation of the data and hindered the generalization of the conclusions of these specific conditions to the 

other experimental setups.  Standardization of not only adherability test procedures, but also defining what 

needs to be measured will help in the long-term understanding of concrete-substrate adherability.  Discrepancies 

in collected data are compelling arguments for developing novel design geometries of adhereability tests to 

enable easier access for instrumentation and facilitate the testing device as a research tool.   

.   
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