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UNSATURATED POLYESTER
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PIMM, UMR 8006, ENSAM � CNRS � CNAM, HESAM Université, Paris, France

9.1 INTRODUCTION
Unsaturated polyester resins (UPRs) are usually obtained from a prepolymer being a condensation

product of unsaturated anhydride (or diacid) and a diol. This highly viscous liquid is dissolved in

a reactive low viscosity solvent, commonly styrene (or sometimes methyl methacrylate). The

curing is initiated by peroxide and metallic salt catalyst of the peroxide decomposition often

called “accelerator”. It induces the copolymerization of double bonds hold by both the prepoly-

mer and the solvent to give a network.

The wide use of such materials in applications ranging from tanks, tubes, and vessels to

shipbuilding or outdoor swimming pools makes it necessary to well understand their long-term

stability in the presence of external factors that cause degradation (temperature, oxygen, water,

chemicals, radiations, etc.). The present chapter is, hence, aimed at:

• presenting the main mechanisms involved in network degradation;

• proposing kinetic schemes and providing the corresponding equations, thereby allowing for the

prediction of changes in network structure (at a molecular scale) and the influence of the cited

causes of degradation;

• using the available structure�property relationships or establishing empirically new ones to

determine the effect of the observed changes at microscopic scale on network properties,

especially thermomechanical properties.

There are basically two kinds of aging mechanisms.

1. Physical aging basically corresponds to changes in composition (water absorption, plasticizer

loss) and in chain conformation, especially when interchain distances are modified, but without

modification of the polymer chemical structure. The main kinds of physical aging are structural

relaxation (with a decrease of free volume) and physical aging by solvent ingress or plasticizer
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loss. In this chapter, focus will be placed on humid aging, which induces plasticization and

differential swelling, thereby generating strains and thus being a possible cause of matrix or

fiber�matrix interfacial damage. The latter will favor water penetration into the material and

thus the eventual propagation of chemical aging deep sample layers.

2. Chemical aging is due to reactions with external agents such as water, oxygen, solar UV, or

ionizing radiations. Since polyesters are often used in contact with water, emphasis will be put

on polyester composite interactions with water. In this chapter, particular attention will be paid

to the phenomenon of osmotic cracking, in which degradation at the microscopic scale leads to

the formation of macroscopic cracks.

9.2 CHANGES IN MECHANICAL PROPERTIES OF NETWORKS

9.2.1 NETWORK PLASTICIZATION BY SOLVENTS

The penetration of water or other small molecules into the polymer provokes a strong glass transi-

tion temperature (Tg) decrease illustrated, for example, in the case of UPR and its composites [1].

From a theoretical point of view, let us recall that the free volume theory allows for the change of

Tg to be predicted in the case of polymer blends and polymer�solvent mixtures by the simplified

relationship seen in Eq. (9.1).
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In common “dry” polyester networks, the Tg is in the order of 380 K and the TgW is in the order

of 120 K. The above relationship can be rearranged as:
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Thus Tg is expected to decrease of about 8 K per per percent of absorbed water. In common

polyesters, water absorption does not exceed 1�2%. The effects of plasticization are thus limited,

but can be critical when the material is submitted to high static loads.

Glassy modulus (Eglassy) depends on the density of cohesive energy: KB11. CED where K is

the bulk modulus and CED the Cohesive Energy Density [2]. In the case of plasticized networks,

the interchain distance increases, so it is expected that the elastic glassy modulus decreases.

The glassy modulus (Erub) depends on the elastically active chain concentration. It decreases

with plasticizer content [3]:

Erub 5 33φ1=3
P 3 EAC½ �3RT (9.3)

Plastification by water, therefore, results in a decrease in mechanical properties such as

glassy and rubbery elastic modulus [1,4]. Identically to Tg changes, depletions of the glassy and

rubbery moduli are expected to be weak since water absorption is low. Moreover, in the absence

of any other chemical damages, these changes would be characterized by:

• an equilibrium state,

• a reversible aspect.



According to Apolinario et al. [5], the elastic modulus actually plateaus in the case of an immer-

sion at 30�C. The drop of elastic modulus is about 5% (for a 1% water uptake) and samples recover

their initial properties after drying. However, this seems to not always be the case [1], meaning that

chemical damage can overlap either in the matrix or at the matrix�fiber interface.

9.2.2 OSMOTIC CRACKING

Osmotic cracking has, in particular, been observed for water diffusion. Its mechanism can be

summarized as follows:

• water diffuses into the polymer and fills a “void” (preexisting cavity) or forms a cluster

(see Section 9.3.2);

• short soluble molecules (e.g., curing initiator byproducts, unreacted styrene, or short fragments

generated from hydrolytic degradation) dissolve in this water phase and lower its chemical

potential;

• this latter step provokes further diffusion of water through the polymer (which behaves as a

permeable membrane) so as to equilibrate its chemical potential. The difference in chemical

potential between dissolved and external water results in an osmotic pressure given by van’t

Hoff’s law:

P5RTΣci (9.4)

ci being the concentration in soluble molecules in the “cavity.”

At a certain stage, the osmotic pressure exceeds the polymer stress at break, which induces an

osmotic cracking. It results in a well recognizable disk crack with radial lines [6] (Fig. 9.1).

FIGURE 9.1

Microscopic observations of disk cracks for osmotic cracking.



A rise in temperature induces an increase in water solubility in polymers and the redissolution

of the water phase in polyesters and, thus, possible self-healing. Conversely, a decrease in tempera-

ture induces a supersaturation of water in polymers and the initiation of new disk cracks [7]. Last,

the initiation time for disk cracks would obey the Arrhenius law [6].

9.2.3 CHANGES INDUCED BY CHEMICAL AGING

Jefferson et al. [1], compared the changes in Tg and elastic modulus (at glassy state) in virgin

polyester materials (matrices with carbon nanofibers and/or glass fibers), those polyester materials

after water immersion (weight gain about 0.1%�1%), and unsaturated polyester (UP) materials

immerged in water and then dried.

Their results, illustrated in Fig. 9.2, show that water penetration is not totally reversible.

Comparable results were obtained for UP immersion in ethanol (Table 9.1) [8]; where mass uptake

curves displayed a maximum followed by a decrease ascribed to the leaching of small molecules,

and the ultimate stress decreased with ethanol aging. However, one sees that a σR decrease cannot

be explained only by ethanol ingress. Actually, the decrease for σR is observed to be lower for

instances of higher ethanol uptake.

These (irreversible) changes are associated to the chemical degradation described in Section 9.3.
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FIGURE 9.2

Effect of water immersion on modulus [8].

Table 9.1 Changes for Unsaturated Polyesters Resin (UPR)

Composites in Presence of Ethanol

Mass Uptake (%) Ultimate Stress (MPa)

T (�C) 7 Days 30 Days 0 Days 30 Days

90 3.2 1 393 166

115 2.5 0.3 142



The elastic modulus at glassy state actually depends on cohesive energy more than on cross-link

density. In the case of hydrolysis, moderately polar ester groups are converted into highly polar

ones (carboxylic acids and alcohols). However, there are no studies evidencing an increase in

glassy moduli with hydrolysis (see, e.g., Fig. 9.2 where a decrease is observed).

At temperatures above the Tg, thermoset networks are in the rubbery state. Elastic behavior is

given by the Flory approach, according to which the Young’s modulus is proportional to the

concentration of elastically active chains, n0 [3]:

E5
3ρRT
MC

5 3n0RT (9.5)

where ρ is the density, MC the average molar mass between cross-links, R the gas constant, and T

the absolute temperature.

Eq. (9.5) is a theoretical equation valid for ideal networks. The analysis of a wide series of UPR

networks has shown that the modulus�cross-link density is rather:

E5 3ρRT 3
1

MC

2 1:5

� �
(9.6)

illustrating the effect of dangling chains [9].

It is clear that chemical changes leading to either chain scission or cross-linking will modify the

concentration of elastically active chains and later the rubbery modulus. For degraded networks

having undergone chain scission (s) and/or cross-linking (x), it can be proposed that:

n5 n0 2ψ3 s1φ3 x (9.7)

with ψ5 1 for tetrafunctional networks and ψ5 3 for trifunctional networks.UPR are possibly tetra-

functional networks but there are degradation studies based on these relationships.

The glass transition of a fully cured network (TgN) is given by the DiMarzio’s equation [10]:

TgN 5
Tgl

12KDMFn0
(9.8)

where KDM is the DiMarzio’s constant; n0 is the cross-link density (mol/kg); Tgl is the glass transi-

tion of a “virtual” linear polymer (n05 0); F is the flex parameter (kg/mol) related to the molar

mass per rotatable bond.

The calculation of the parameters of DiMarzio’s law is illustrated in the case of epoxies [11]. In

the case of UPR, an attempt to describe glass transition of networks was done [12], but it seems

that it is only possible to predict Tg values with F, Tgl, and n0 coming from structural considerations

if KDM is an adjustable parameter. The most obvious reason is the nonideality of polyesters and, in

particular, the possible presence of cross-link nodes where:

• the cross-link bridge is made of several homopolymerized styrene (S) units, which can be

considered as trifunctional:

EE

EE HC CH

Sj

HC CH



• the cross-link bridge is made of homopolymerized fumarates or maleates, which can be

considered as hexafunctional:

EE HC CH

S

EE HC CH

S

One can see here that UPRs are further from ideal networks than epoxies, for example.

However, the determination of KDM for virgin networks can allow for the estimation of the residual

cross-link density after a chemical aging and later, the concentration in chain scissions and cross-

links.

Tg changes induced either by chain scission or cross-linking can be related to changes in

yielding properties since it was proposed in thermosetting networks that [13]:

σY 5C Tg � T
� �

(9.9)

and

εY 5
Tg � T
� �

500
(9.10)

Considering ultimate properties, it seems that both ultimate stress and strain decrease following

the initial tensile curve of networks as a “rupture envelope” at least in the case of hydrolyzed net-

works (Fig. 9.3).

FIGURE 9.3

Decrease of ultimate stress and strain for various polyester networks having undergone various levels of

hydrolysis [14].

Reprinted with the permission of Elsevier.



9.2.4 INTERFACIAL DAMAGES IN COMPOSITES

In UPR�glass fiber composites, it is known that the interface is a domain where water is expected

to be more soluble than in the matrix [15] as well as being subject to a faster diffusion. The

consequences of aging are then worst in the case of composites in which water promotes:

• matrix�fiber decohesion [16] evidenced by a decrease in the interfacial shear strength [17]

• composite delamination [17]

• the hydrolysis of coupling agents [18]

9.2.5 CONCLUSION

The failure of UPR and UPR composites originate from physical aging (i.e., diffusion of small

molecules in the network without changes in its architecture) and/or chemical aging (i.e., irrevers-

ible mechanisms inducing chain scissions and/or cross-linking). The main mechanisms associated

with these degradation modes will be presented in Section 9.4, Mechanisms of Chemical

Degradation.

Some of these changes can be described using polymer physics laws from values of water

uptake or concentration in cross-link. If these latter can be described by kinetic law, it may permit

the changes in engineering properties (and later the lifetime) to be predicted.

9.3 MECHANISMS OF PHYSICAL AGING BY SOLVENT INGRESS

9.3.1 COMPATIBILITY WITH ORGANIC SOLVENTS

Sorption isotherm for organic solvents into polymers is described by the Flory�Huggins equation:

ln
P

P0

� �
5 lnð12φpÞ1φp 1χφ2

p (9.11)

in which P/P0 is the water activity in the external medium around the polymer; φp is the polymer

volume fraction in the polymer�water mixture; and χ is the polymer�solvent interaction expres-

sing the affinity of polymers for certain chemicals (“like seeks like”). It can be calculated by:

χ5
Vm

RT
� δpolymer2δsolvent
� �2

(9.12)

δ being the solubility parameter with δUP B 22 MPa1/2 [19]. Low χ values correspond to high

polymer�penetrant compatibility.

It is, hence, not surprising that aromatic halogenated solvents such as chlorobenzene display a

high affinity with UPR [20,21], whereas apolar solvents (cyclohexane) or highly polar solvents

(water) are poorly soluble in polyesters. Extensive tables reporting the compatibility of different

kinds of UPR with several sorts of fluids and chemicals can be found in Ref. [22].



The diffusion of solvents into UPR has been scarcely investigated in existing literature. The

transport phenomena of penetrants in polymers can be described by [23]:

M tð Þ
MN

5 k3 tn (9.13)

M(t) and MN being the mass uptake at any time and at the theoretical equilibrium, respectively,

and n describing the mechanism of diffusion. Schematically:

• n5 0.5 means that the diffusion obeys Fick’s law as often observed in polymer networks when

the polymer chains have a high mobility allowing an easy penetration of the solvent (with the

diffusion rate, Rdiff, being slower than the polymer relaxation rate, Rrelax).

• n5 1 means that the diffusion is either anomalous, that is, the diffusion and relaxation rates are

almost of the same order or otherwise it means that the diffusion rate is much higher than the

relaxation rate of a given polymer so that a sharp diffusion profile is observed.

The “diffusion” aspects will be recalled in more detail in the case of water (see Section 9.3.2).

According to Deslandes, the diffusivity of chemicals in UPR is first driven by their viscosity since

diffusivity increases with reciprocal viscosity [24].

The resistance to several chemicals seems to be improved by the addition of large quantities

(about 40%) of microscopic fillers such as ATH, mica, or calcium carbonate [25] or small quanti-

ties (typically 1%�5%) of nanoclays [26]. On the contrary, the presence of microvoids increases

both the equilibrium concentration and the sorption rate [24].

9.3.2 SORPTION AND DIFFUSION OF WATER

Water is a highly polar solvent, therefore, its solubility in polyester is expected to be very low

along with the subsequent damage. However, water is able to react with the ester groups of UPR so

that the physical aging of water (reversible) is often accompanied by irreversible damages [1]

occurring either in the matrix or at the fiber�matrix interface. Humid aging is, hence, by far one of

the most important mechanisms for UPR degradation. Beside the chemical interaction (described in

Section 9.4.1), two key parameters describe the polymer�water interaction:

• the polymer affinity with water (the hydrophilicity or solubility), and

• the rate of water penetration into the polymer matrix (the diffusivity).

9.3.2.1 Solubility
In composite matrices such as UPs, Henry’s law is often used to describe the sorption of water in a

matrix. It can be written as:

CS 5σ3 a (9.14)

where Cs is the equilibrium concentration of water in the polymer, σ is the solubility coefficient,

and a is the activity of water (i.e., the ratio of its external pressure over the saturation pressure at

the considered temperature). σ is in the order of 0.36�0.42 cm3/mmol [27] corresponding to about

1% of water uptake after an immersion aging. The general shape of curves for water ingress is



depicted in Fig. 9.4 [28] (In some cases, the difference between type ➃ and ➂ curves is unclear,

particularly since relatively high quantities of polymerization initiator and catalyst are used and can

be extracted by surrounding water).

According to Fig. 9.4, determining the true equilibrium mass uptake is not always easy since

other mechanisms can overlap, in particular the effects of hydrolysis (particularly very strong mass

loss at long immersion durations) on mass uptake curves is observed only at elevated temperatures

[29]. Despite this issue, the orders of magnitude of equilibrium water uptake are reported in

Tables 9.2 and 9.3 together with available experimental details [27,30�32].

It is often proposed to describe water absorption in polymer by [33]:

H5
wm 3M

1800
5

X
niHi (9.15)

where M is the molar mass of the repetitive unit; ni is the number of groups able to bind with Hi

molecules of water, and wm is the equilibrium water absorption (expressed in wt.%).

In the case of polyesters, the hydrophilicity in networks is expressed as [31]:

k5 k1 3 ester½ �1 k2 3 ether½ �1 k3 3 chain ends½ � (9.16)

Here, the term [chain ends] accounts for acid or alcohol groups loacted at the extremity of

prepolymers. More precisely, it seems that the contribution to hydrophily of those acids and

alcohols is higher than ethers and esters. The effect of diacid or diol on the hydrophilicity of

prepolymers has been illustrated for example in [34]. Maleates have been shown to increase the

hydrophilicity either in prepolymers [34] (Fig. 9.5) or in cross-linked networks [32].

Relative mass
uptake

Time

Level of
solubility

FIGURE 9.4

Theoretical shape of kinetic curves for water uptake and possible subcases. ➀ Water uptake without chemical

aging or leaching. ➁ Water uptake followed by hydrolysis. ➂ Water uptake accompanied by leaching of

unreacted chemicals. ➃ Water uptake followed by hydrolysis and extraction of hydrolysis byproducts.



Table 9.2 Effect of Diol, Styrene Content, Prepolymer, and Temperature on the Water Solubility of Unsaturated

Polyester Resin (UPR) (NB: All isotherms display the shape ➀, Fig. 9.4)

Prepolymer Diol Styrene (%) Catalyst T (�C) HR (%) WH2O (%)

M (50%)1 I (50%) PG 38 MEKP (1.5%)1 Co Oct (0.2%) 25 100 0.65 [27]

M (50%)1 I (50%) PG 38 MEKP (1.5%)1 Co Oct (0.2%) 25 100 0.56 [27]

M (50%)1 I (50%) PG 38 MEKP (1.5%)1 Co Oct (0.2%) 25 100 0.85 [30]

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 30 100 0.72 [31]

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 40 100 0.89 [31]

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 50 100 0.91 [31]

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 30 100 0.84 [31]

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 40 100 1.02 [31]

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1 [31]

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 30 100 1.12 [31]

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 40 100 1.36 [31]

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1.44 [31]

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 30 100 1.12 [31]

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 40 100 1.36 [31]

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1.44 [31]

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 30 100 0.47 [31]

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 40 100 0.56 [31]

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 50 100 0.75 [31]

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 30 100 1.06 [31]

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 40 100 1.29 [31]

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1.58 [31]

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 30 100 0.74 [31]

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 40 100 0.92 [31]

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1.14 [31]

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 30 100 0.97 [31]

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 40 100 0.92 [31]

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 50 100 1.16 [31]

M1 I PG 45 MEKP (1.5%)1 Co Oct (0.5%) 30 95 0.85 [32]

M1 I PG 45 MEKP (1.5%)1 Co Oct (0.5%) 50 95 0.83 [32]

M1 I PG 45 MEKP (1.5%)1 Co Oct (0.5%) 70 95 1.08 [32]



M1 I PG 45 MEKP (1.5%)1 Co Oct (0.5%) 90 95 1.25 [32]

M1 I PG1 NPG 38 MEKP (1.5%)1 Co Oct (0.5%) 30 95 0.94 [32]

M1 I PG1 NPG 38 MEKP (1.5%)1 Co Oct (0.5%) 50 95 1.08 [32]

M1 I PG1 NPG 38 MEKP (1.5%)1 Co Oct (0.5%) 70 95 1.1 [32]

M1 I PG1 NPAG 38 MEKP (1.5%)1 Co Oct (0.5%) 90 95 1.32 [32]

M PG 40 MEKP (1.5%)1 Co Oct (0.5%) 30 95 3 [32]

M PG 40 MEKP (1.5%)1 Co Oct (0.5%) 50 95 3.1 [32]

M PG 40 MEKP (1.5%)1 Co Oct (0.5%) 70 95 2.8 [32]

M NPG 40 MEKP (1.5%)1 Co Oct (0.5%) 30 95 1.7 [32]

M NPG 40 MEKP (1.5%)1 Co Oct (0.5%) 50 95 1.7 [32]

M NPG 40 MEKP (1.5%)1 Co Oct (0.5%) 70 95 1.8 [32]

M, maleate; I, isophthalate; PG, propylene glycol; NPG, neopentyl glycol; DPG, dipropylene glycol; DEG, diethylene glycol.



Table 9.3 Effect of Postcuring on Shape of Sorption Isotherm (Fig. 9.4) and Water Solubility in Unsaturated Polyester

Resin (UPR) [28]

Prepolymer Catalyst T (�C) HR (%) Isotherm WH2O (% w/w)

O (60%)1 M (40%) MEKP (1%)1 CN (0.3%)1 DMA (0.05%) AC 30 75 ➀ 0.8

O (60%)1 M (40%) MEKP (1%)1 CN (0.3%)1 DMA (0.05%) PC 30 75 ➀ 0.8

O (60%)1 M (40%) BPO (1%)1 DMA (0.3%) AC 30 75 ➂ 0.8

O (60%)1 M (40%) BPO (1%)1 DMA (0.3%) PC 30 75 ➃ 0.7

I BPO (2%)1 DMA (0.3%) AC 30 75 ➀ 0.6

I BPO (2%)1 DMA (0.3%) PC 30 75 ➀ 0.5

I MEKP (0.5%)1 CN (0.3%)1 DMA (0.05%) AC 30 75 ➀ 0.4

I MEKP (0.5%)1 CN (0.3%)1 DMA (0.05%) PC 30 75 ➀ 0.5

I MEKP (4%)1 CN (0.3%)1 DMA (0.1%) AC 30 75 ➀ 0.55

O (60%)1 M (40%) MEKP (1%)1 CN (0.3%)1 DMA (0.05%) AC 65 75 ➁ 1

O (60%)1 M (40%) MEKP (1%)1 CN (0.3%)1 DMA (0.05%) PC 65 75 ➁ 1.3

O BPO (1%)1 DMA (0.3%) AC 65 75 ➃ 0.6

O BPO (1%)1 DMA (0.3%) PC 65 75 ➃ 1

I MEKP (4%)1 CN (0.3%)1 DMA (0.1%) PC 65 75 ➀ 1

I MEKP (0.5)1 CN (0.3%)1 DMA (0.05%) PC 65 75 ➀ 1

I MEKP (0.5)1 CN (0.3%)1 DMA (0.05%) AC 65 75 ➃ 0.75

I BPO (2%)1 DMA (0.3%) AC 65 75 ➃ 0.7

I BPO (2%)1 DMA (0.3%) PC 65 75 ➃ 0.7

MEKP, methyl ethyl ketone peroxide; CN, cobalt naphthanate; DMA, N,N-dimethylaniline; BPO, benzoyl peroxide; AC, as cast; PC, post cured.



According to Table 9.2, increasing the styrene (S) content induces a decrease in maximal water

uptake consistently with the fact that S units are almost apolar and unable to interact with water

molecules. It was even proposed that:

wmax 5
wmax prepol

12 sð Þ (9.17)

Where s is the styrene weight fraction.

It is, however, difficult to correlate the polyester hydrophilicity with prepolymer one: it was for

example observed that prepolymers are almost 3-times more hydrophilic than corresponding

polymerized network [34]. Two reasons are proposed: first, copolymerization with styrene induces

a certain hindrance of the ester groups decreasing their affinity to water, and secondly, there is

no obvious link between water affinity of prepolymer being at rubbery state and networks being

usually in glassy state.

According to Table 9.3, there is a small but positive effect of postcuring on the affinity of

polyesters to water (i.e., water uptake increases with post curing). Two reasons might be envisaged:

• post curing generates groups with a higher affinity to water (e.g., it can be imagined that the

ester groups held by maleate are less hydrophilic than the succinate groups obtained after

polymerization of the double bonds).

• the disappearance of unreacted groups (e.g., styrene) is higher in incompletely cured UPRs,

which lowers the maximal level of mass uptake and permits a shift from strong type ➃ behavior

(Fig. 9.4) to more moderate behavior, that is, type ➃ curves with a lower rate of mass depletion

or even type ➂ curves.

From Eq. (9.13), the effect of temperature is expected to obey Arrhenius law [35]:

CS 5C0 3 exp
2E

RT

� �
(9.18)

where E5ES 1 EP, ES and EP being the activation energies, respectively, for solubility coefficient

and for water vapor pressure. The fact that the equilibrium concentration increases with temperature

for any given kind of UP network [31,32] means that ES1 EP . 0, that is, ES . 243 kJ/mol [35].

FIGURE 9.5

Hydrophilicity of prepolymer as a function of diacid or diol.



Henry’s law means that the sorption isotherm displays a linear shape. However, experimental

data sometimes display a positive curvature (Fig. 9.6). If the latter cannot be fitted by Eq. (9.10)

with a fixed χ value (or rather that χ decreases with water affinity), it means that water first

dissolves randomly in the polymer matrix (at low water activity) and then forms clusters, that is,

aggregates of dimers or trimers or more water molecules (at higher water activity).

The presence of clusters can be evidenced either:

• experimentally using dielectric spectroscopy [36] or FTIR [37], or

• theoretically from Zimm�Lundberg analysis allowing for the assessment of the MCS (mean

cluster size) [38,39] from the clustering function:

fZL 5
G11

ν1
52 12φ1

� �
3

@a1=φ1

@a1

� �
T ;P

2 1 (9.19)

where G11 is a cluster integral for water and ν1 and ϕ1 are the partial molecular volume and

volume fraction of water, respectively. When fZL is below 21 value, no clustering occurs. MCS is

thus given by:

MCS5 11φ1 3
G11

ν1

� �
(9.20)

MCS can also be estimated from χ values used for simulating the sorption isotherm:

MCS5
1

12 2χφ1 1 12φ1

� �
: @χ

@lnφ1

� 	
T ;P

(9.21)

Fillers usually reduce the permeation of water (and many other chemicals) [40]. It seems,

however, that there is an optimum effect. In the case of highly filled UP composites, the water

uptake is even shown to clearly increase with filler content [41]. This can be explained by the

FIGURE 9.6

Sorption isotherm of water in Unsaturated Polyester Resin (UPR) together with the estimation of mean cluster

size [30].



competition of two phenomena. First, fillers increase tortuosity [42] and maybe decrease the

hydrophilicity of matrices, second, however, their presence favors the existence of an interface

where water is preferentially absorbed and diffuses faster [15]. Natural fibers promote strong water

absorption [43].

The case of interpenetrating polymer networks (IPNs) was illustrated in studies dealing with

vinyl ester networks (BisGMA cured with styrene) mixed with epoxy systems. Interestingly, it

seems that the water uptake for 50:50 networks made of epoxy/diamine and polyester is closer to

values observed for epoxy/diamine. It is hence suggested that blending only affects the preexponen-

tial factor (see Eq. 9.18) rather than the activation energy [44].

9.3.2.2 Diffusivity
Several models describe the rate of water diffusion in polymers:

1. Case I diffusion is observed when the characteristic time for diffusion is shorter than the typical

time of polymer motions. In this case, the rate of water uptake, M(t)/MN, increases linearly

with time.

2. Fick’s law is observed when the characteristic time for diffusion is higher than the typical time

of polymer motions. In this case, the rate of water uptake, M(t)/MN, increases linearly with the

square root of the time. Another key characteristic of Fickian diffusion is the existence of a

plateau at a long exposure time (contrarily to Langmuir diffusion).

Relative mass uptake can be simulated from the analytical resolution of Fick’s law [45]:

M tð Þ
MN

5 12
8

π2

� �
3

XN
n50

1

2n11ð Þ2
� �

3 exp 2
D3 2n11ð Þ2 3π2 3 t

4e2

� �
(9.22)

If the relative mass uptake linearly increases with the square root of time, the diffusion obeys

Fick’s law and D can be calculated from the slope. This equation actually admits an approxi-

mate solution for low levels of water sorption (M/MN ,0.6):

MðtÞ
MN

5
4

e
3

ffiffiffiffiffiffiffiffiffiffiffi
D3 t

π

r
(9.23)

3. The “Langmuir” law is observed when the water diffusing in a given polymer is either “free” or

“bound,” that is, if it displays some “strong” interactions with some sites of the polymer

structure (e.g., water-unreacted oxiranes in the case of epoxy/diamine matrices) [46]. One of its

main experimental features is the existence of a double sorption plateau. There is, however, no

evidence of “Langmuir” diffusion in polyesters.

Experimentally, the linearity of mass uptake versus square root of the time is sometimes an

approximation. However, most authors have assumed the diffusion obeys Fick’s law so as to assess

the diffusivity values given in Table 9.4.

Despite the experimental scattering [31], it seems that D obeys Arrhenius law:

D5D0 3 exp
2ED

RT

� �
(9.24)

For the materials given in Table 9.3, ED takes a value close to 25�30 kJ/mol.



Fick’s law is based on the assumption that diffusivity does not change with the penetrant con-

centration. However, a concentration-dependent diffusivity was observed [30] as depicted in

Fig. 9.7 showing unambiguously the existence of a non-Fickian process; since the plot of relative

mass uptake does not intersect a 0 for t5 0, and the water diffusivity depends on its concentration

which was mathematically modeled as:

D5D0 3 expðγ3 cÞ (9.25)

where γ is a plastification coefficient describing the fact that the sorption of the penetrant increases

free volume in the matrix which facilitates its diffusion. A complete investigation by Marais et al.

[30] shows that D is multiplied by about 3 when water activity increases from 0.2 to 1 (Fig. 9.7).

In conclusion, water diffusion in UPR seems to be Fickian at first, but the finest investigations

(featuring tests under several water activities) suggest a more complex mechanism for water diffu-

sion. This remains to be linked with the structure of UPR.

Table 9.4 Experimental Values of Water Diffusivities in Unsaturated Polyester Resin

(UPR) [31]

Prepolymer Diol Styrene (%) Catalyst T (�C) D (mm2/s1)

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 30 6.93 1029

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 40 123 1029

M (46%)1 I (54%) PG 44 MEKP (1.5%)1 Co Oct (0.5%) 50 (14�19)3 1029

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 30 5.63 1029

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 40 8.63 1029

M (46%)1 I (54%) PG 42 MEKP (1.5%)1 Co Oct (0.5%) 50 103 1029

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 30 2.13 1029

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 40 2.73 1029

M (46%)1 I (54%) PG 40 MEKP (1.5%)1 Co Oct (0.5%) 50 3.83 1029

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 30 103 1029

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 40 133 1029

M (70%)1 I (30%) PG 45 MEKP (1.5%)1 Co Oct (0.5%) 50 223 1029

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 30 103 1029

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 40 133 1029

M (46%)1 I (54%) NPG 45 MEKP (1.5%)1 Co Oct (0.5%) 50 183 1029

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 30 6.83 1029

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 40 113 10211

M (46%)1 I (54%) DEG 38 MEKP (1.5%)1 Co Oct (0.5%) 50 21.53 1029

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 30 11.73 1029

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 40 16.53 1029

M (46%)1 I (54%) DPG 42 MEKP (1.5%)1 Co Oct (0.5%) 50 233 1029

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 30 12.53 1029

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 40 163 1029

M (46%)1 I (54%) PG 43 MEKP (1.5%)1 Co Oct (0.5%) 50 24.53 1029



9.4 MECHANISMS OF CHEMICAL DEGRADATION

9.4.1 HYDROLYSIS

As previously discussed, it was observed that:

• the interaction of UPRs with water leads first to a weight increase corresponding to water

absorption, but later a mass decrease is observed corresponding to the leaching of small

molecules even in fully cured matrices [17].

• UPRs display a strong drop in their mechanical properties in the presence of gaseous ethanol at

90�C or 115�C [8], whereas ethanol is only poorly soluble in UP.

The main reason is the existence of chemical damage (chain scission reactions—Table 9.5)

overlapping with the physical damage (plastification of the network by the absorbed fluid). The

rate of chain scissions formation is, in principle, given by:

ds

dt
5 k3 E0 2 sð Þ3w (9.26)

where k is the rate constant of hydrolysis, E0 the initial concentration of hydrolysable groups

(esters), w the water concentration, and s the concentration of chain scissions.

t1/2

M(t)/M∞ a = 1

a = 0.2

D = 0.39 ×10–8 cm2/s

D = 1.42 × 10–8 cm2/s

FIGURE 9.7

Plot of relative mass versus square root of the time for UP at 25�C.

Table 9.5 Several Aging Modes and Their Consequences at

Macromolecular Level

Hydrolysis
Thermal
Oxidation

Radio
Oxidation

Photolysis and
Photooxidation

Chain scission 1 1 1 1

Cross-linking 0 Post

polymerization

Post polymerization, irradiation under

vacuum or of thick materials



Eq. (9.25) can be integrated as:

s5E0 3 12 exp 2 k3w3 tð Þ½ � (9.27)

And simplified as:

sBk0 3E0 3w3 t (9.28)

Hence, it seems possible, in principle, to predict the rate of degradation from relatively simple

data: water affinity, concentration of esters (depending on the structure of prepolymer and styrene

content), and rate constant of prepolymer hydrolysis. This simplified approach only gives a rough esti-

mation of degradation since there are many complications including either chemical: (1) copolymer

effect, (2) autocatalytic effects, (3) chain end effects, or physical factors: (4) changes in hydrophilicity

with aging conversion degree, (5) effects linked to water diffusion.

1. The copolymer effect: the hydrolysis rate constant in UP made of phtalate and maleate/fumarate

is observed to differ from values observed in corresponding pure phthalate or maleate/fumarate

UPs due to ester�ester interactions or hindrance by styrene [34].

2. Autocatalytic effects: Hydrolysis generates a carboxylic acid which can act as a catalyst of

further hydrolysis events. The differential system becomes [47]:

ds

dt
5 k0 3 E0 2 sð Þ3w1 kcat 3 E0 2 sð Þ3 s3w (9.29)

Some examples of the autocatalytic hydrolysis of polyester-based polymers can be found in

Refs. [46,48], but the case of UPR has not been investigated.

3. The chain ends are possibly more reactive than constitutive units located in the middle of

chains [14] (Scheme 9.1).

4. Changes in water affinity induced by hydrolysis: esters (being moderately polar) are converted

into much more hydrophilic species (carboxylic acid, alcohol). It is, hence, possible that water

equilibrium uptake is expressed as [14]:

w5w0 1 a3 s (9.30)

where s expresses the number of hydrolysis events. The systematic study of hydrolysis (or even

aging) induced changes in water affinity remains, however, scarcely studied.

5. Water diffusion effects: water is submitted to competition between the reactions of hydrolysis

and diffusion from the surface layers to deeper layers. This results in the existence of a

degraded layer, the thickness of which can be approximated by [14]:

z2 5
Dw

k w½ � (9.31)

CH O C

O
C

OH
O

CH3

CH2

CH OH

CH3

CH2

C

C
OH

O

O

OH+ H2O

SCHEME 9.1

Self-decomposition of chain ends in UPR.



Since water solubility hardly depends on temperature, the thickness of this degraded layer

depends on temperature:

Ez 5
1/2 ED � Ekð Þ (9.32)

It is well documented that ED , Ek so the thickness of the degraded layer measured at elevated

temperature (during an accelerated aging test) is quite different from the value observed in

“service” conditions. Such diffusion-reaction coupling can be predicted using numerical models

[49,50]. Some experimental values (for hydrolytic aging together with other aging modes) are given

in Table 9.6.

In terms of structure�properties relationships, existing data show that maleates and fumarates

are more unstable than isophthalates and orthophthalates because of higher hydrolysis rate constants

and higher hydrophilicity. Generally, isophthalates induce a higher stability than orthophthalates

[51,52]. Neopentyl glycol induces a higher stability than propylene glycol [52,53] and ethylene

glycol�based polyesters are also quite unstable [34].

As hydrolysis at moderate temperatures (typically below UPR�glass transition) is an

aging mode leading to polymer failure, there is an increasing interest in using hydrolysis as a

recycling mode for UPR networks by regenerating feedstock (in particular the diol). Subcritical

water (with the use of strong alkali: NaOH or KOH) can potentially allow for the recovery of

a great part of glycol after a treatment at 230�C for 1 hour [54]. There are, however, some

complexities linked to high temperature hydrolysis in the presence of additives (KOH, phenol)

in UPR where secondary reactions (typically above 200�C) can generate a wide variety of

chemicals [55].

9.4.2 THERMAL AGING

Thermal degradation is a radical in chain mechanism. At relatively high temperatures (. 200�C),
the thermolysis of the polymer backbone is by far the main source of radicals, whereas at

“moderate” temperatures (,150�C, i.e., in UPR service conditions), the thermal decomposition of

hydroperoxides becomes kinetically prominent.

In the case of thermal degradation at high temperatures, a kinetic analysis of nonisothermal

degradation curves suggested that degradation first occurs on styrene groups [56] in good agree-

ment with the analysis of volatiles [57].

The case of thermal aging of UPRs at moderate temperatures (at which the main source of

radical generation is hydroperoxides) is in part different. In the case of thermal aging of polyester

Table 9.6 Values of Thickness of Degraded Layers for Various Aging Conditions

Aging
Mode

Experimental
Conditions Kinetic Parameters

zdegraded
(µm)

Hydrolysis 100�C2 100%HR Dw5 (66 1) 3 10211 m2/s EDw5 25�30 kJ/mol

(Table 9.4)

450�1200

k0 5 (4�30)3 1027 s21 EH5 65 kJ/mol [47]

Photoaging 60�C�SEPAP

12�24

EDO25 20�45 kJ/mol

(Table 9.7)

140

Thermal

aging

160�C EOX5 50 kJ/mol [58] 600



monitored by FTIR, Arrieta et al. [58] observed that the main chemical change was the formation

of an anhydride (Fig. 9.8). Their interpretation was that anhydrides are formed by the oxidation of

methylene in the α-position of the ester group. They confirmed their reasoning from analysis of a

thermally oxidized prepolymer (where anhydrides were also observed) and from the absence of

acetophenone groups characteristic of polystyrene oxidation [59].

The most plausible mechanism is based on the radical attack of C�H in the α-position of the

ester groups. The main consequences of this mechanism are the formation of anhydride and some

chain scissions (Scheme 9.2).

FIGURE 9.8

FTIR spectra of a UPR (A) and its prepolymer (B) thermally oxidized at 160�C [58].

Reprinted with the permission of Elsevier.
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Another consequence of thermal aging at high temperatures is the high yield of volatiles result-

ing from advanced chain scission processes (Table 9.4). According to Arrieta et al. [58], they can

occur even under an inert atmosphere (i.e., from the direct thermolysis of the polymer), but are

strongly accelerated by oxygen (Fig. 9.9).

Shih et al. [57] studied the high temperature thermal degradation of epoxy�polyester IPNs.

According to their results:

• Modulated thermogravimetric analysis (TGA) curves can permit the extraction of kinetic

parameters of apparent kinetic models for nonisothermal degradation. It seems that epoxy

allows for the thermal stability of UPR and IPNs to be improved, which later display kinetic

parameters in between those of UPR and epoxies. The authors, however, stated that the

degradation of UPR and epoxy in IPNs do not interfere.

• Pyrolysis tests followed by GC/MS for thermal degradation at relatively high temperature

analysis reveal that almost the same degradation products are evolved from IPNs and epoxies

(mainly bisphenol-A, isopropenyl phenol, and phenol), whereas the products characterizing the

thermal degradation of polyesters (in particular styrene monomers, dimers, and even trimers)

are absent. Those two results can be considered as somewhat difficult to reconcile. The

durability of IPNs thus appears to be an open issue.

Identically to hydrolytic aging, a degraded layer is generated [60] due to a diffusion-reaction

coupling as schematized in Fig. 9.10.

FIGURE 9.9

Kinetic curves for mass loss for a UP network thermally aged at 160�C [58].

Reprinted with the permission of Elsevier.



Its thickness can be approximated by [61,62]:

TOL2 5
DO2

3 O2½ �
rOX

(9.33)

where rOX is the oxidation rate on the surface of polymer, DO2
and [O2] are the oxygen diffusivity

and concentration in a given polymer matrix, respectively. It is hence crucial to determine the oxy-

gen transport properties in UP matrices. Some values as reported by Pauly [63] are presented in

Table 9.7.

9.4.3 RADIOLYTIC AGING

The effect of irradiation on UPs was described by Wilski [64] in the case of high-dose irradiation

under an inert atmosphere, and lower dose irradiation under air.

The results unambiguously show competition between two phenomena. The first one occurs in

the absence of oxygen and results in an increase (at least in the earliest exposure doses, i.e., lower

than 1 MGy) of thermomechanical properties (deflection temperature being linked to Tg, flexural

and impact strengths). The second one is favored by the presence of oxygen and induces the deple-

tion of the mentioned properties (Fig. 9.11).

The most reasonable explanation is common with other polymers and is based on the existence

of a degraded layer as developed in Section 9.4.2.

➀ Under nitrogen (or in the bulk of thick materials where aging mechanisms are anaerobic),

irradiation generates radicals reacting by coupling (cross-linking):

Polymer1 hν-P� 1 1=2H2

P� 1 P0H-PH1 P0�

P� 1 P�-PH1 double bond dismutationð Þ
P� 1 P�-P2P ðcross-linkingÞ

This supplementary radiation induced cross-linking improves the mechanical properties as

observed by Charlesby et al. [65] in the case of the radio-curing of UPR.

FIGURE 9.10

Degradation profile of oxidized materials (NB: x5 0 and x5 L correspond to edges in contact with

atmospheric air).



Table 9.7 Oxygen Permeation Parameters for Unsaturated Polyester Resin (UPR)

Main Components (%)
Sample
Thickness (cm) T (�C) 10153P 1083D ED (kJ/mol) 107.S ES (kJ mol21) Refs.

UP resin 25 0.2 23 1.04 0.57 35 1.82 0 [63]

Limestone 52.7 40 2.24 1.26 1.78

Short GF 15 60 5.21 2.77 1.88

UP resin 26 0.18 23 3.08 1.03 45 3 2 1 [63]

Limestone 26 40 7 2.8 2.5

China clay 38.3 60 17 8 2.13

Up resin 100 0.02 25 0.66 3.6 20.8 0.18 � [58]

100 2.34 19.5 0.12

Up resin 32 0.02 25 0.29 2.3 21.6 0.13 � [58]

ATH1 Zn Borate 68 100 2.36 13.3 0.18

Polyester resins were made from terephthalic acid, fumaric acid, and butanediol 1,4. D is expressed in cm2/s, S in cm23/Pa, P5D3 SNB: For data from Ref. [58], it

was assumed that EP5ED and ES5 0.



➁ In the presence of oxygen (or in the oxidized layer of bulk materials), alkyl radicals react

with oxygen and lead to peroxyl radicals and later hydroperoxides; the decomposition of which

generating several products among which are chain scissions:

P� 1O2-POO�

POO� 1PH-POOH1P�

POOH-PO� 1HO�

PO�-P5O1 chain scissions

In the case of the irradiation of thick UPR materials, both phenomena can simultaneously occur;

their relative proportion depending on the depth in the irradiated polymer.

Another reason for the heterogeneity in irradiated polymers is the attenuation of irradiation in

the thickness:

I

I0
5 expð2μ3 zÞ (9.34)

where I0 is the initial intensity of γ-ray, I is the intensity of the ray transmitted from a shielding

material of thickness x, and μ is the linear attenuation coefficient.

It was observed that the use of lead monoxide particles (with a weight fraction of about 5%)

made possible the attenuation of a coefficient comparable to concrete for Cs-137 or Ir-192 sources,

but that even highly filled (more than 30%) UPRs could not efficiently shield Co-60 radiations [66].

9.4.4 PHOTOAGING

Polyesters are reported to undergo photolytic processes such as the conversion of fumarates into

maleates, the dimerization and decomposition of maleates (Scheme 9.3) [67], and the photoclea-

vage of esters (Scheme 9.4) [68]:

Photoaging also induces an in-chain radical oxidation mechanism, but in which radicals mainly

come from some side reactions of radicals (such as those created in Scheme 9.4) and the decompo-

sition of peroxides and hydroperoxides.

The relative rate of photolytic and photooxidation processes depends on the temperature, nature,

and intensity of the spectral source, on the molar absorptivity of compounds (and subsequently the

Properties

Dose

High dose rate
(absence of air)

Low dose rate
(presence of air)

FIGURE 9.11

Properties of unsaturated polyester during irradiation [64].



thickness of material) [69], and on the presence of oxygen. For example, according to [70], phtha-

lates and fumarate/maleate groups are responsible for absorption at long wavelength (. 300 nm),

whereas the photooxidation at short wavelength might involve S units as well [71]. In summary:

• radicals are created either from the photolysis of an impurity or of hydroperoxides and ketones:

X-P�

POOH-PO� 1HO�-2P� 1 carbonyls

• they propagate to regenerate hydroperoxides:

P� 1O2-POO�

POO� 1PH-POOH1 P�

O
O

O
O

O
OO

O

O
OO

O

O
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O
O

O
O
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T

FTIR: 1646 cm–1 FTIR: 1641 cm–1

FTIR: 1754 cm–1 FTIR: 1735 and 1788 cm–1

SCHEME 9.3

Mechanisms of photoisomerization and photodimerization of fumarate units.
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• several termination mechanisms can coexist depending on the concentration of oxygen [72]:

P� 1P�-inactive products

P� 1 POO�-inactive products

POO� 1POO�-inactive products

In UPRs, several reactive sites are suspected to be involved. The appearance of yellowing pro-

ducts absorbing at 295�400 nm (similarly to polystyrene) led Michaille et al. [67] to propose a

photooxidation mechanism in which styrene units are the main oxidation site (Scheme 9.5).

Polyester prepolymer can also undergo radical attack depending on the concentration of styrene

as a cross-linking agent [67]. In other words, the tertiary C�H group of S units would be more

oxidizable than poly(propylene glycol maleate) or poly(propylene glycol isophthalate), but at a

low styrene concentration, these later become the predominant sites of propagation. A part of this

“duality” can be explained from the relative kinetics of propagation:

P1OO
� 1P1H-P1OOH1P1

� r11
P1OO

� 1P2H-P1OOH1P2
� r12

P2OO
� 1P1H-P2OOH1P1

� r21
P2OO

� 1P2H-P2OOH1P2
� r22

Here 1 would correspond to styrene units and 2 to prepolymer units. The relative rates of propaga-

tion would be:

r11

r12
5

k11 P1H½ �
k12 P2H½ � (9.35)
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There are some relationships linking structure and sensitivity to oxidation according to which [73]:

logkij 30
�Cð Þ5 16:2� 0:04773BDEj (9.36)

Eij 5 0:553 BDEj � 262
� �

(9.37)

if i is a secondary peroxyl radical and j the broken C�H. While,

logkij 30
�Cð Þ5 15:2� 0:04773BDEj (9.38)

Eij 5 0:553 BDEj � 262
� �

(9.39)

if i is a tertiary peroxyl radical.

One can easily verify that:

• the competition between each propagation reaction depends on the concentration of the reactive

sites (propylene glycol or styrene), and

• using reasonable values of BDE (375 for S C�H, 395 kJ/mol for propylene glycol ones),

propagation rate constants can cross, that is, that k312 . k321 at moderate temperatures and k321
. k312 at higher temperatures.

In other words, it can be concluded that the oxidative degradation of UPR must be described by

a cooxidation model [74], which requires a complex stage of kinetic parameters estimation.

Those equations linking reactivity (the rate constant) with structure (the bond dissociation

energy) also permit for the confirmation of why neopentyl glycol permits a decrease in the oxida-

tion effects compared to propylene glycol [70] because of the absence of tertiary (weak) C�H

bonds.

One of the most undesired consequences of photoaging and photooxidation is the yellowing of

the material. Several processes might be responsible including:

1. Photolytic processes (i.e., occurring without oxygen) can induce a strong change in the aspect

of UP materials, featuring gloss, and color changes. Michaille et al. [70] pointed out that the

photolysis of phthalate is identical to that observed in the photolysis of polybutylene

terephthalate (PBT) [75] (Scheme 9.6).
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Mechanism of photodissociation.



Then radicals recombine to give several kinds of benzophenones responsible for yellowing:

C

O

O C

O

The work of Geuskens also revealed the role of polyenes formed during the photolysis of

polystyrene absorbing at 280�450 nm [71]:

CH2 C CH CH

n < 4

2. Under oxygen, radicals formed in S units can react with oxygen and generate benzalacetophe-

none (Scheme 9.7) or α-β-unsaturated ketone (Scheme 9.8).

According to Sampers [76], it seems that:

• yellowing is, in particular, caused by interactions between UV radiations below 360 nm

displaying a strong absorption with the prepolymer itself (meanwhile polystyrene sequences and

some cobalt accelerator seem to display a very limited absorption).
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Formation of benzalacetophenone.

CH2 C

H

CH2 C

H

CH2C

H

CH2 C

H

CH2 C

H

CH2C

O
OH

CH2 C

H

CH2 C

H

CH2C

O°

H2C C

H

CH2 C

H

CH2CH2 C
O

CH2 C CH2 C

H

CH2 CH2 C C C

H

CH2

O
°

1. X°

2. O2
3. PH

SCHEME 9.8

Formation of α-β-unsaturated ketone.



• color changes seem to be driven rather by the photolysis of the polyester sequences compared to

styrene unit sequences where the effect of oxygen is relatively limited. The oxidation of

structures formed by photolysis results in less absorbent groups.

Identically to thermal and radiolytic aging, the photochemical degradation of UPR is

accompanied by the formation of an oxidized layer. Interestingly, the thermal degradation of UP is

characterized by a lower oxidation rate than photochemical one so that the thickness of the oxidized

layer was observed to be about 600 μm for thermal oxidation at 160�C versus only 140 μm in

the case of photooxidized UP (despite the fact that photochemical aging is performed at lower tem-

peratures than thermal aging).

It has been observed that photodegraded UPR can undergo cross-linking [70]. Several mechan-

isms are responsible including

the dimerization of phthalate units (similarly to PBT photolysis under vacuum [75]) and the

double bond opening of unsaturated structures formed by the photolysis of S units (Scheme 9.9):

9.5 CONCLUSION

This chapter described the aging mechanisms of UP-based materials. Degradation mechanisms

were first addressed from the structure�properties involved to describe the consequences of aging

on mechanical properties.

Physical aging mechanisms were presented. UPs are sensitive to some chemicals, but engineers

have at their disposal rules for predicting compatibility and avoiding undesirable permeation

effects. Water is, in essence, poorly soluble in UPs but its diffusion is accompanied by the hydroly-

sis of ester groups which is an an aggravating factor.
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SCHEME 9.9

A possible mechanism of cross-linking.



Chemical mechanisms (hydrolytic, radiochemical, photochemical, and thermal) were thus pre-

sented together with some models predicting the rate of hydrolysis or the thickness of degraded

layers, etc.). The main complexity for implementing them is the nonideal structure of UP where

several reactive sites exist and whose reactivity depends on their chemical environment.
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