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Chapter 12
Radars in Transport Applications

Rubén Ibáñez Pinillo, Francisco Chinesta, Emmanuelle Abisset-Chavanne,
Erik Abenius and Antonio Huerta

Abstract In the recent years, automotive car industry is evolving towards a new
generation of autonomous vehicles, where decision making is not fully perform by
the driver but it partially relies on the technology of the car itself. Indeed, aCPU inside
the car will process all information coming from the sensors, distinguishing different
scenarios appearing in the real life and ultimately allowing decisionmaking. Since the
CPUwill be confrontedwith plenty of information, tools likemachine learning or big-
data analysis will be a useful ally to separate data from information. These existing
machine learning techniques, such as kernel Principal ComponentAnalysis (k-PCA),
Locally Linear Embedding (LLE) amongmany other techniques, are useful to unveil
the latent parameters defining a given scenario. Indeed, these algorithms have been
already used to perform real-time classification of signals appearing throughout the
road. Selecting the modeling of the electromagnetic response of the radar plays an
important role to achieve real time constraints. Even though Helmholtz equation
represents accurately the physics, the computational cost of such simulation is not
affordable for real-time applications due to high radar operating frequencies, resulting
into a very fine finite element mesh. On the other hand, far field approaches are not so
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accuratewhen the objects are very close due to planewave assumption. In the first part
of this work, the Geometrical Optics method is investigated in this work as a possible
route to fulfill both real-time and accuracy constraints. The main hypothesis under
such model is that waves are treated as straight lines constrained to optical reflection
laws. Therefore, there is no need to mesh the interior of the domain. However, the
accuracy of such approach is compromised when the size of the objects inside the
domain are comparable to the wave lengths or in the vicinity of angular points. The
second part is mainly focused on of the application of manifold learning and big data
analysis into a data set of precomputed scenarios. Indeed, the identification of an
unknown scenario from electromagnetic signals is purchased. Nevertheless, current
research lines are devoted to give an answer to questions such as howmany receptors
do we need to identify unequivocally the scenario, where to locate the receptors, or
which parts of the scenario have a negligible impact in the electromagnetic response.

Keywords ADAS · Data-driven · Dimensionality reduction · Big-data

12.1 Introduction

Automotive car industry ismoving towards a newgeneration of autonomous vehicles,
where the driver is not the main responsible of decision making but the technology
of the car itself. Indeed, a CPU inside the car will process all information coming
from the sensors, allowing to distinguish different scenarios appearing in the real
life. Since the CPUwill be confronted with plenty of information, tools like machine
learning or big-data analysis will be useful to separate data from information. Thus,
Sect. 12.2 provides an state of art of existing machine learning techniques Roweis
and Saul [3]; Scholkopf et al. [4]; Lee and Verleysen [1] which are meant to be useful
when unveiling the latent parameters definining a given scenario.

Regarding the modeling of the electromagnetic response of the radar, even though
Helmholtz equation represents accurately the physics, the computational cost of such
simulation is not affordable for real-time applications due to high radar operating
frequencies, resulting into a very fine finite element mesh. On the other hand, far field
approaches are not so accurate when the objects are very close due to plane wave
assumption. That is the reason why, the Geometrical Optics method is investigated
in Sect. 12.3 to fulfill both real-time and accuracy constraints. The main hypothesis
under such model is that waves are treated as straight lines constrained to optical
reflection laws. Therefore, there is no need to mesh the interior of the domain. How-
ever, the accuracy such approach is compromised when the size of the objects inside
the domain are comparable to the wave lengths or in the vicinity of angular points.

Section12.4 consists of the application of manifold learning and big data analysis
into a data set of precomputed scenarios. Indeed, the identification of an unknown
scenario from electromagnetic signals is purchased. Nevertheless, in our future work
we will try to give an answer to questions such as how many receptors do we need
to identify unequivocally the scenario, where to locate the receptors, or which parts
of the scenario have a negligible impact in the electromagnetic response.



12.2 State of Art Manifold Learning

In this section, and for the sake of completeness, two widely employed manifold
learning techniques are revisited: Principal Component Analysis (PCA) and the
Locally Linear Embedding (LLE) Roweis and Saul [3]; Lopez et al. [2].

12.2.1 Principal Component Analysis

Let us consider D observed variables defining the vector y ∈ RD . These are com-
monly referred as the snapshots of the system: nodal values of the essential field
throughout time in usual finite element modeling. We assume that these variables are
therefore not uncorrelated and, notably, that there exists a linear transformation W
defining the vector ξ ∈ Rd , where d < D represents the unknown so-called latent
variables, according to

y = Wξ. (12.1)

The transformation W, D × d, is assumed to verify the orthogonality condition
WTW = Id, where Id represents the d × d-identity matrix (WWT is not necessarily
ID). The existence of such a transformation is precisely at the origin of PCAmethods.

We assume the existence of M different snapshots y1, . . . , yM, that can be stored
in the columns of the D × M matrix Y. The associated d × M reduced matrix !

contains the associated vectors ξi, i = 1, . . . ,M .
We assume that both observed and latent variables are centered, that is

{∑M
i=1 yi = 0∑M
i=1 ξi = 0

. (12.2)

If it is not the case, prior to proceed, observed variables must be centered by
removing the expectation of E{y} to each observation yi, i = 1, . . . ,M . Since the
exact expectation is unknown, one commonly accepted procedure is to substitute it
by the sample mean.

PCA is able to calculate both d—the necessary number of members in the basis
of the reduced-order subspace—and the transformation matrixW. PCA proceeds by
guaranteeing maximal preserved variance and decorrelation in the latent variable set
ξ. From a statistical point of view, therefore, it can be assumed that the latent variables
in ξ are uncorrelated (no linear dependencies among them) or mutually orthogonal,
thus constituting a basis. In practice, this means that the covariance matrix of ξ,
defined as

Cξξ = E{!!T}, (12.3)

is diagonal.



However, the observed variables are expected to be correlated. The goal of PCA
is then to extract the d uncorrelated latent variables in υ, according to

Cyy = E{YYT } = E{W!!TWT} = WE{!!T }WT = WCξξWT, (12.4)

that by pre-multiplying and post-multiplying byWT andW respectively, and taking
into account thatWTW = I, leads to:

Cξξ = WTCyyW. (12.5)

The covariance matrix Cyy can then be factorized by applying the singular value
decomposition,

Cyy = V"VT, (12.6)

withV containing the orthonormal eigenvectors and" the diagonalmatrix containing
the eigenvalues assumed in descending order.

Substituting the factorized expression of the covariance matrix (12.2) into
Eq. (12.1) it results

Cξξ = WTV"VTW. (12.7)

This equality holds only when the d columns of W are taken collinear with d
columns of V. If the PCA model is fully respected, then only the first d eigenvalues
in " are strictly larger than zero; the other ones are zero.

The eigenvectors associated with these d nonzero eigenvalues must be kept:

W = VID×d , (12.8)

yielding
Cξξ = Id×D"ID×d . (12.9)

This shows that the eigenvalues in " correspond to the variances of the latent
variables (the diagonal entries of Cξξ).

In real situations, some noise may corrupt the observed variables. As a conse-
quence, all eigenvalues ofCξξ are larger than zero, and the choice of d columns inV
becomes more difficult. Assuming that the latent variables have larger variances than
the noise, it suffices to choose the eigenvectors associated with the largest eigenval-
ues. This is the common practice in finite element model order reduction procedures.
A number of columns of V are kept so as to preserve a chosen amount of the energy
of the system.

From a geometrical point of view, the columns of V indicate the directions in RD

that span the subspace of the latent variables ξ. The name PCA then arises naturally
from the fact of keeping the components associated with the largest variance.

PCA constitutes a polyvalent method, developed, discovered and re-discovered
many times in different branches of applied science and engineering. It deter-
mines data dimensionality, builds an embedding accordingly, and extracts the latent



Fig. 12.1 Geometrical interpretation of PCA

Fig. 12.2 PCA limits in presence of strongly-nonlinear manifolds

variables. However, PCA is still based upon one critical assumption: the linear depen-
dency expressed by Eq. (12.1) between observed and latent variables (in other words,
between the reduced-order and full-order models).

From a geometrical point of view, the columns of V indicate the directions in
RD that span the subspace of the latent variables. We illustrate this interpretation
in Fig. 12.1 where at left we can appreciate points that apparently belongs to R2,
however, it is easy to see that all these points belong to a slow one-dimensional
manifold. PCA find an alternative coordinate system given by V (axes in red) in
which all these points are described from a single coordinate.

Frequently, latent variables posses a manifold structure, and therefore it simply
does not exist a basis able to construct a projection such as that in Eq. (12.1). This is
the case, for instance, in non-linear, large strain solid dynamics. Nonlinear methods
are often more powerful than linear ones, because the connection between the latent
variables and the observed ones may be much richer than a simple matrix multipli-
cation. This situation is sketched in Fig. 12.2 where it can be noticed that no-rotation
allows to extract the one-dimensional slow manifold. Thus, PCA seems informing
that the different points belongs to a two-dimensional space, with the risk of con-
cluding that the closest point (using the 2D euclidean distance) to the red point is in
fact one that is very far from it when using the more appropriate geodesic distance
on the one-dimensional slow manifold. Thus, the extraction of the slow manifold is
compulsory and PCA is unable to accomplish the job.

Local-PCA-lPCA—applies standard PCA locally, that is, at each data-point and
its closest neighbors. It is sketched in Fig. 12.3. The main issue related to its practical



Fig. 12.3 Sketch of
local-PCA

implementation is the alignment of the local bases unfolding the slow manifold, as
discussed in many papers, e.g. Zhang and Zha [5].

12.2.2 Locally Linear Embedding

We consider the different points yi ∈ RD , i = 1, . . . ,M , and proceed in two steps:

1. Each point yi , i = 1, . . . ,M is linearly interpolated from its K nearest neighbors
(“locally linear”). In principle K should be greater that the expected dimension
d of the underlying manifold and the neighbors should be close enough so as
to ensure the validity of linear approximation. In general, a small but enough
number of neighbors K and a large-enough sampling M ensures a satisfactory
reconstruction. For each point yi we can write the locally linear data reconstruc-
tion as:

yi =
∑

j∈Si

Wi jy j , (12.10)

where Wi j are the unknown weights and Si the set of the K -nearest neighbors
of yi . If we perform this locally linear interpolation for every data point in the
high dimensional space, the set of weights that best approximates the manifold
structure of the data will be obtained by minimizing the functional

F(W) =
M∑

i=1

∥∥∥∥∥∥
yi −

M∑

j=1

Wi jy j

∥∥∥∥∥∥

2

, (12.11)

where Wi j is zero if y j does not belong to the set of K -nearest neighbors of yi .
2. We assume now that each linear patch around yi , ∀i , is mapped onto a lower

dimensional embedding space of dimension d ≪ D. To maintain the neigh-
borhood structure of the set weights are assumed to remain unchanged in the



low-dimensional, embedding space. The problem thus becomes the determina-
tion of the coordinates of each point yi in the low dimensional embedding space,
ξi ∈ Rd . For this purpose a new functional G is introduced, that depends on the
searched coordinates ξ1, . . . , ξM

G(ξ1, . . . , ξM) =
M∑

i=1

∥∥∥∥∥∥
ξi −

M∑

j=1

Wi jξ j

∥∥∥∥∥∥

2

, (12.12)

where now the weights are known and the reduced coordinates ξi are unknown.
Theminimization of functional G results in aM × M eigenvalue problemwhose
d-bottom non-zero eigenvalues define the set of orthogonal coordinates in which
the manifold is mapped.
It is important to note that functional G(ξ1, . . . , ξM), with the different coor-
dinates ξi already calculated as just described, offers an error estimator on the
locally linear embedding capacity, and even a local estimator can be derived by
considering

E(ξi ) =

∥∥∥∥∥∥
ξi −

M∑

j=1

Wi jξ j

∥∥∥∥∥∥
. (12.13)

Thus, if we consider the introduction of a new point ξ in the embedding spaceRd after
identifying its neighbors set S(ξ) and calculating the locally linear approximation
weights, we can come back to RD and reconstruct y from its neighbors yi , i ∈ S(ξ).

12.3 Geometrical Optics

In this part, the basic concepts behind geometrical optics phylosophy are revisited.
This approach combines optical reflection plus a balance of energy based on a loss
of energy each time a reflection is produced. Figure12.4 represents how a laser is
reflected inside a closed surface (∂Ω), the reflections will stop when the energy
carried by the ray becomes zero. Each time a reflection occurs, a given amount of
energy is lost according to the absorption coefficient of the surface. Therefore, if
a given laser is thrown with a initial energy (Eext ) from a initial point (x0), such
energy will be distributed along the surface (Eint ) according to the geometry and the
absorption coefficient distribution, as shown in Eq. (12.14).

Eext (x0) = Eint (x), x ∈ ∂Ω (12.14)

Hence, our main goal is to build a system of equations able to give us the spatial
distribution of the absorbed energy Eint (x) for a given source located at the position
x0 with an intensity that may depend on the angle of departure (θd ), so Eext (x0,αd).

Figure12.5 shows the convention for the angle of departure, it is measured from
the local normal direction. A counterclockwise rotation of the normal direction will



Fig. 12.4 Closed surface
(∂Ω), laser ray (red) thrown
from x0

Fig. 12.5 Angle departure
criterium

generate a positive angle of rotation, whereas a clockwise rotation will provide a
negative angle. Indeed, all angular measurements will remain local since they depend
on the local normal direction.

When discretizing the element source x0 into D-angular directions where the
received energy could be stored, it will give an energy vector whose size is [D].

Es =

⎡

⎢⎣
Eα1
x0
...

EαD
x0

⎤

⎥⎦ (12.15)

where Eα j
x0 is the energy absorbed in x0, with an angle of arrival α j .

The balance of energy between the energy going out from the source (x0) and the
energy coming back to the same point, could be written as a system of Eq. (12.16).

Es = Mf (12.16)

where (i, j) component of the matrix M is the energy coming back to the source
with an discretized arrival angle αa = i∆α, which has been thrown from an angle



Fig. 12.6 Balance of energy
for one ray

of departure αd = j∆α and f is the external energy of the source. The size of M is
the angular discretization points ([D × D]).

Figure12.6 exemplifies how a column ofmatrixM is constructed. Imagine that the
source has five discretized angles. Equation (12.17) describes the balance between a
source located at x0 with angle of departure α4 and the received energy at the same
element with an angleα2. The r coefficient takes into account the energy absorptions
due to reflection that the ray has suffered till it arrives to the same departure point.

Eα4
ext = r Eα2

x0 (12.17)

If the same process is repeated for any possible angle of departure, the system of
equations (12.16) is obtained. Moreover, any possible source could be described as
the addition of unitary impulsional sources multiplied by their magnitude since the
problem is linear. (i.e. the absorption coefficient does not depend on the magnitude
of the incident wave.)

It is important to recall that all reflections that occurwhile the ray is traveling along
the domain are analytical, thus the only kind of discretization error is the angular
discretization of the source. That is the reason why, a convergence analysis in terms
of angular discretization is crucial in this case.

12.3.1 Convergence Results

Figure12.7 shows the domain where the algorithm is tested. There are four obstacles
which have an absorption coefficient of 0.5, whereas the external wall has an absorp-



Fig. 12.7 Scenario used to test the convergence results

tion coefficient of 1. The source is located at the middle point of the south external
wall.

Equation (12.18) defines the total energy coming back to the radar from the source,
it is a constant scalar quantity. For this convergence analysis, the source and the
receptor will be located at the same region.

ET =
∫ π

2

− π
2

∫ π
2

− π
2

E(αd ,αa)dαddαa (12.18)

where αd and αa are the departure and arrival angles, respectively.
On the other hand, quantities giving a glimpse of directional energy such as

Eqs. (12.19), (12.20), (12.21) are interesting, since the total energy (ET ) could be a
poor descriptor sometimes.

ED(αd) =
∫ π

2

− π
2

E(αd ,αa)dαa (12.19)

EA(αa) =
∫ π

2

− π
2

E(αd ,αa)dαd (12.20)



Fig. 12.8 Energy coming back to the radar as a function of departure and arrival angles, EDA

EDA(αd ,αa) = E(αd ,αa) (12.21)

where ED is the energy coming back to the radar as a function of the departure angle,
EA is the energy coming back to the radar as a function of the arrival angle and EDA

is the energy coming back to the radar as a function of both arrival or departure
angles.

Figure12.8 shows the EDA function for the tested scenario. As it can be seen in
the EDA, there is a primal reflection occuring at an angle of 40◦, caused by the blue
car. Furthermore, there are more secondary reflections coming from the interaction
with the other cars. Functional EDA is the indicator that contains more information
since it keeps track of both departure and arrival angles. Indeed, if we have EDA,
building the other two indicators is just a mere integration into a given direction.

Equation (12.22) defines the energetic error. Where EH
T is the total energy coming

back to the radar for the most refined solution and EL
T is the total energy coming

back to the radar for a less refined solution.

E = ||EH
T − EL

T ||
EH
T

(12.22)

Figure12.9 shows the energetic error in logarithmic scale varying the angular
discretization. The reference solution is constructed with 8000 discretized angles.
As it can be seen, there is a fast convergence at the beginning. However, beyond 500
discretized angles, the solution starts to saturate, giving a relatively slow convergence



Fig. 12.9 Convergence
analysis in terms of the
angular discretization

slope. It is important to notice that the solution is already quite good since we are in
4 digits of accuracy.

12.3.2 Black-Boxing the Scenario

The convergence results shown so far are based on relatively easy obstacles. Indeed,
only four straight sideswere required to replicate a square-like obstacle. Let’s imagine
for a single moment that our object in the scenario is hard to replicate i.e. a real car,
an extrange pedestrian, etc. Therefore, a lot of elements will be required to represent
accurately the real geometry of the obstacle, compromising the computational cost
of the algorithm.

Black-Boxing consists of computing the response of an obstacle off-line, gen-
erating a library with all possible objects and defining a transfer function for each
one of them. Then, if we know the obstacles inside our scenario, we will not have
to reproduce the exact geometry but replace it with a Black-Box having a transfer
function characteristic of the object inside. Figure12.10 schematizes such procedure.

This transfer function consists of knowing three variables: the ratio of dissipated
energy and both the location and angular direction of the outgoing ray. These three
ingredients are functions of both the location and angular direction of the incoming
ray. Figure12.11 shows how a circle is black-boxed. As it can be seen, only two
parameter, the box arclength (χ) and the income angular direction (αin), suffices to
characterize the three variables defining the transfer function.

Figure12.11 shows the transfer function generated with a circle. As it can be seen,
the energy ratio subplot gives information of how many reflection the ray has done
before going out of the domain. Indeed, the yellow region corresponds with a ray
that has not touched the circle, whereas the blue region corresponds with a single
reflection since the absorption coefficient was set to 0.5. The other two subplots



Fig. 12.10 Black-Boxing procedure

Fig. 12.11 Three variables definining the circle transfer function of a circle obstacle

making reference to the output length and the angular deviation give information
about the location and angular direction of the outgoing ray, respectively.

Figure12.12 shows the transfer function generated with a star. It is important to
note that the energy ratio is smaller than 0.5 since primary, secondary and terciary
reflections occurs between the star peaks.



Fig. 12.12 Three variables definining the circle transfer function of a star obstacle

12.4 The Scenario Manifold

Imagine that a lot of different scenarios are precomputed a priori (off-line) and then
they are placed into a dataset as shown in Fig. 12.13, which constitutes the scenario
manifoldMS . Hence, each electromagnetic response (E) depends on the variables to
identify our scenario i.e. geometrical parameters defining both position and orienta-
tion of the obstacles. For instance, if a 2D square needs three variables to be identified
(i.e. the vector position and the orientation angle), each point in the scenariomanifold
with N obstacles will be composed of p = 3 × N coordinates. Comparing scenarios
involving different number of obstacles is possible by means of a nested representa-
tion i.e. defining the maximum number of obstacles and completing the coordinates
of a scenario with less obstacles. Furthermore, if angles and positions have to be
compared, the angle should be a dimensionalized with respect to a characteristic
obstacle length.

Once the scenario manifold is generated, inferring the obstacle positions and
orientations knowing a new electromagnetic response constitutes the main industrial
interest. Equation (12.23) sets a minimization problem on the data set such that a
similar electromagnetic response on the manifold is seeked.

argmin
(
||E(α;pn) − E(α;pi )||

)
∀ pi ∈ MS (12.23)



Fig. 12.13 Scenario
manifold

where subindex n makes reference to a new electromagnetic response whose asso-
ciated scenario is unknown.

However, the consideration of diverse scenariosmay lead to a drastic increment on
the cardinality of the parametric space (p). At this point,manifold learning techniques
like the ones explained in Sect. 12.2 will be of crucial importance to define a reduce
set of parameters (ξ), where the physics of the problem take place as shown in
Eq. (12.24).

argmin
(
||E(α; ξn) − E(α; ξi )||

)
∀ ξi ∈ MS (12.24)

Another point of critical importance is how to define the electromagnetic response
in such a way that the scenario is identified unequivocally. The first inference is done
just by knowing the electromagnetic response at one receptor which is located at the
same position than the radar, both of them being located at the middle point of the
bottom side of the square. Multiple solutions were found to the minimization prob-
lem (12.23). Indeed, there are several scenarios that share the same electromagnetic
response, being different from a geometrical point of view. Figure12.14 (left) shows
the a priori unknown scenario (top-left) together with 5 other candidates sharing the
same electromagnetic response composed with one receptor. As it can be seen, blue,
yellow and purple obstacles varies along the different candidates, whereas the orange
location and orientation is consistent along the candidates. Indeed, if a correlation of
the obstacles taking into account the different candidates is done, the orange obstacle
is the one presenting the most correlated value.

The same procedure is repeated but using three receptors instead of one. All
three receptors are placed at the bottom side of the square between point 1 and 2.
Once again, the minimization procedure gives several candidates which are shown in
Fig. 12.14 (right). As it can be seen, the position of the orange obstacle is identified
properly since this obstacle is the one causing most of the electromagnetic signal.
Moreover, the blue obstacle correlation has slightly increased with respect to the



Fig. 12.14 Different candidate scenarios sharing one receptor (left) and three receptor (right)
electromagnetic response

single sensor case. Finally, yellow and purple obstacles remain uncorrelated since
they do not cause any electromagnetic variation to the sensors located in the south
part of the domain.

12.5 Conclusions

Fast scenario identification is a topic with a huge impact from an industrial point of
view. Three different ways of reducing the computational time are being investigated.
The first one regards the set of equations employed to solve the problem. Geometrical
optics has been investigated as an alternative route to Helmholtz/Maxwell equations
to handle high frequency radar signal simulations. The second procedure consists of
generating off-line the transfer functions associated to different obstacles, speeding
up the on-line computations. The third methodology makes use of manifold learning
techniques to extract the relevant information defining the scenario from a electro-
magnetic point of view. Questions like the number and position of the sensors to
identify in the best possible way the scenario constitutes a current research line.
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