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1 Introduction

From the mechanical point of view, polycrystalline materials have to be considered as
a specific class of composites. They are composed of many grains, with grains size
ranging from nm to cm scales. Grains are generally assembled in a random way, i.e.
their size, shape, and lattice orientation do not depend on the size, shape, and orienta-
tion of the surrounding grains (figure 1). Therefore, the microstructure of polycrystals
can hardly be described exactly. Most of the time, one can only access a statistical
characterization of grain arrangement e.g. with the help of cross-correlation func-
tions. In the Euler orientation space, microstructure description is generally limited to
the distribution of crystal lattice orientations (Orientation Distribution Function, ODF,
or crystallographic texture).

Figure 1: Typical 2D microstructure of a copper polycrystal, imaged by the Electron
Back Scattered Diffraction (EBSD) technique. Average grain size is ∼ 10µm.

The complex behavior of polycrystalline materials comes from the anisotropic behav-
ior at the grain scale, closely related to the symmetry of the crystal lattice. This is
true for all quantities of interest here, such as elasticity, (visco)plasticity, thermal di-
latation, ... Grains exhibiting different lattice orientations react differently to a given
stress level. As far as grain boundaries maintain the cohesion of the material, the local
stress (i.e. inside a grain) differs from the overall one (the applied stress), leading to a
heterogeneous distribution of stress and strain fields within the polycrystal.
Most research efforts in the past years have been focussed on the understanding of the
build-up of these heterogeneities, in relation with the microstructure and local (grain)
behavior, since they greatly influence the overall behavior. For instance, plasticity
in a polycrystal can start far below the macroscopic yield stress; it is sufficient that
the local stress reaches the local yield stress somewhere in the structure where stress
concentration is large enough such as along grain boundaries [1].
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In this chapter, we review (not in an exhaustive way) some experimental, numerical,
and theoretical techniques used for the investigation of the mechanical behavior of
polycrystalline materials. We mostly focus on materials exhibiting micrometric grain
size, so that continuum mechanics still applies. At smaller (e.g. nanometric) grain
size, the volume of grains boundaries becomes non-negligeable compared to the vol-
ume of grains, and thus their specific behavior should be taken into account; this point
will however not be treated here.

2 Experimental characterization of mechanical fields in polycrystals

There has been quite a number of experimental developments during the last decade as
for the experimental characterization of strain and stress fields in deformed polycrys-
tals, at an intragranular scale. A sufficiently large number of adjacent grains (denoted
the Representative Volume Element – RVE) must be scanned simultaneously to cap-
ture the overall material behavior. The complex localization of strain and stress within
specific (part of) grains needs to be described in connection with the local material
microstructure and grain mechanical behavior.

2.1 Displacement and strain fields
The analysis of intragranular strain field in polycrystalline material exhibiting micro-
metric grain size has been significantly developed since ∼ a decade. In fact the local
total strain cannot be measured directly. One has to measure the displacement field
over the Region Of Interest (ROI), and to evaluate the derivative of this displacement
to get the strain field. This derivative is evaluated for a given gage length, e.g. by a fi-
nite difference scheme or with more advanced techniques [2], and therefore the strain
that can be estimated is not exactly a local value but the mean value over the length
used for the derivative. Consequently, strain localization is necessarily smeared out
with this technique, just as for standard strain gages.
Displacement field can be obtained with very good accuracy by Speckle interferome-
try, e.g. [3]. Due to the interference of two in-phase laser beams, the specimen surface
roughness creates a Speckle pattern that is recorded by a camera. Strain field can be
obtained from the modification of this pattern as the specimen is deformed. Displace-
ment resolution can be as good as 20−30nm but spatial resolution is limited to a few
micrometer due to the diffraction in the camera optics. For in situ deformed specimen,
strain increments must be very small to recover the complete strain history.
A good compromise between ease of use, simplicity of sample preparation, displace-
ment accuracy, and spatial resolution is obtained by Digital Image Correlation (DIC),
e.g. see [4, 5] The method consists in taking successive images of the same ROI as the
specimen is deformed. Then, small sub-images (which size is typically 15×15pixels)
of the initial image are selected, and their position is found back in the deformed im-
age, for exemple by maximizing the correlation coefficient between both sub-images.
Subpixel accuracy of DIC, which can reach few hundredths of pixels, is obtained by
an interpolation of gray level allowing subpixel shift and small distorsion of the sub-
image (rotation, deformation) necessary to obtain the best match between both sub-
images. Since the accuracy of DIC is directly correlated with the gray level gradient
of the sub-image, it is often necessary to apply a speckle pattern on the specimen sur-
face, e.g. by projecting black droplets on the white painted surface when millimetric
spatial resolution is enough, or by pulverisation of thin metallic dots or lines (e.g. Au)
by microlithography for micrometric resolution. In the last case, image of the spec-
imen surface can be obtained under Scanning Electron Microscopy. Note that this
DIC method can also be combined with tomography techniques under synchrotron
radiation in order to get 3D displacement fields [4, 6].
Exemple of results obtained by DIC is given in figure 2 in a specimen of ice deformed
plastically under creep. The specimen microstructure has been elaborated specifically
so that grain boundaries (columnar microstructure) and the only available slip plane
for dislocations lie perpendicular to the specimen observation surface. Therefore,
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the plastic deformation is essentially 2D and no in-thickness displacement gradient
is expected. It can be observed that strain is highly localized into bands extending
over several grain sizes, and local strain can reach values as large as 10 times the
macroscopic one. Similar results have been reported for other materials, e.g. see
[7, 8, 9]. Here, the significant intra- and inter-granular strain localization has to be
associated with the huge viscoplastic anisotropy at the grain scale. Figure 2b provides
a quantitative microstructure analysis, i.e. the Schmid factor for the slip plane (note
that there is in ice no privileged slip direction in the slip plane). It can be easily
observed that, contrarily to intuitive models such as the uniform stress bound (static /
Reuss model), large Schmid factors are not always associated to large strains. There
are many grains with large Schmid factor (thus expected to be “soft” grains) that in
fact deform less than grains with small factor (expected to be “hard”). This feature
is associated with the tremendous effect of intergranular mechanical interactions: the
deformation of a specific grain is highly influence by the orientation and behavior of
its surrounding.

Figure 2: (left) Distribution of equivalent strain measured by DIC in a specimen of
columnar ice deformed by creep under uniaxial compression. Grain boundaries are
indicated in black. (right) Map of corresponding Schmid factor for the basal slip
system. Grain size is centimetric. Overall deformation is ∼ 1%. From [10]

2.2 Stress field
The stress field in polycrystalline materials cannot be measured directly. Instead, one
can measure the elastic strain related to the applied or residual stress, and make use
of Hooke’s law to calculate the stress. Elastic strain can be efficiently measured at
different scales by diffraction techniques, but we will see that going from the measured
elastic strain to the desired stress is not always an easy task; this step generally requires
having estimated the 6 components of the elastic strain tensor for the ROI.

2.2.1 From diffraction data to strain distribution The elastic strain (distribution)
can be best measured by diffraction techniques [11]. Let consider an incident parallel
and monochromatic beam which wavelength λ is of the order of magnitude of in-
teratomic distances of the specimen. The beam, that can be composed of electrons,
neutrons, or photons (X-rays from laboratory or synchrotron sources), interacts with
the specimen and is diffracted in different directions. The diffraction volume (denoted
Ω) can range from few hundreds of nm3 for electron diffraction up to ∼ c m3 for neu-
trons. Penetration depth of the beam also ranges from nm to ∼ c m depending on the
kind of radiation used. There are therefore a large spectrum of possible experimental
setup, leading to analyses at different scales.
We denote ki and kd the incident and diffracted wave vectors (their norm is ki = kd =
1/λ) respectively. When the beam hits a large single grain that does not contain lattice
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defects (i.e. a perfect crystal), the intensity of the outgoing beam has non-vanishing
value only for very specific directions θ = θB (2θ is the angle between incident and
diffracted beams) given by Bragg’s law

1
dhkl

=
2 sin θB

λ
(1)

with dhkl the distance between lattice planes of Miller indices {hkl} and θB the Bragg
angle. This property can also be written g = K with g the reciprocal lattice vector (its
norm is g = 1/dhkl) of the considered crystal and K = kd −ki the diffraction vector.
In other words, introducing vector s such that K = g + s, the intensity diffracted by
a large and perfect crystal vanishes unless the diffraction vector corresponds to s = 0
(figure 3).

hkld

g K

s

ki
kd

2

Figure 3: Reciprocal lattice vector g corresponding to the lattice plane (hkl), and
diffraction vector K. For perfect and large crystals, diffraction occurs only for K = g.

However, for heterogeneously deformed materials of interest here, Bragg’s law does
not strictly applies. Individual grains generally contain a large density of lattice de-
fects (such as dislocations), and lattice plane distances vary between grains but also
inside individual grains due to the heterogeneous stress field. Let u(x) be the dis-
placement field inside the material, measured from the initial stress free configuration.
The diffracted intensity has a non-zero value in the vicinity of reciprocal lattice nodes
g. Considering intensity distribution in the direction K ‖ g, the Fourier transform
Î(n) of the diffracted intensity I(s) reads

Î(n) = I0〈exp(2πKniε̄K,n)〉Ω (2)

where 〈.〉Ω denotes the volume average over the diffraction volume Ω, and i the imag-
inary unit. Here, n corresponds to a physical distance in the material (typically a few
tens of nm) in the investigated direction (i.e. parallel to K), and ε̄K,n(x) is the mean
elastic strain at a position x, in direction K, and averaged over a distance n

ε̄K,n(x) =
∆u.K
nK

(3)

with ∆u the relative displacement between two atoms separated by a vector n. It
can be noted that the (real) axial elastic strain εKK(x) in direction K, usually called
“lattice strain”, is simply the limit of ε̄K,n(x) as the gage length tends to 0

εKK(x) =
1

K2
K.ε.K = lim

n→0
ε̄K,n(x) . (4)
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Interestingly, the distribution of εKK can be determined from the diffracted intensity.
Corresponding relations can be obtained by using the standard property relating the
successive derivatives of Î(n) at n = 0 with the moments µ(m)[I(s)] =

∫
smI(s)ds

of degree m of I(s). They read

〈εKK〉Ω = − 1
K

µ(1)

µ(0)
, 〈ε2

KK〉Ω =
1

K2

µ(2)

µ(0)
. (5)

Moments of the (directional) elastic strain can thus be estimated accurately. One must
however keep in mind that optical abberations associated with the diffractometer setup
have to be considered for proper quantitative analyses, in particular when high order
(m ≥ 2) moments are of interest [12].
Diffraction analyses can thus be considered as field measurements, with two setup of
particular interest for micromechanical studies. (i) When the gage volume is smaller
than the grain size, spatial heterogeneities of elastic strain can be mapped. (ii) When
gage volumes have similar size than the RVE, spatial resolution is lost but hetero-
geneities of the average strain field can be mapped in the orientation (Euler) space.

2.2.2 Stress field in the cartesian space Stress field in the cartesian space can be
obtained if the beam cross section and penetration depth is smaller than the grain size.
There are different possible setup for this:

One solution consists in focussing a polychromatic X-ray beam down to
(sub)micrometric cross section by means of a pair of mirrors (Kirkpatrick-Baez
optic). This focussed beam hits part of a single grain in the polycrystal, and
the so-generated Laue diffraction pattern is recorded by a 2D detector. Dedi-
cated setup are available at synchrotron facilities such as ESRF (France), APS,
or ALS (USA). Exemple of results are shown in figure 4. Since the shape of
Laue pattern is closely related to that of the crystal lattice, local elastic strain
can be identified [13].

A second solution is based on the precise analysis of Kikuchi pattern formed
by the back scattered electrons in a Scanning Electron Microscope (SEM). As
for Laue, the geometry of Kikuchi pattern can reveal lattice distorsion with high
accuracy. Example of applications of this high-Resolution EBSD technique can
be found application in [14, 15, 16].

Another solution consists in using Kossel patterns formed in a SEM when the
energy of the incident electron beam energy is large enough. The diffuse X-ray
source generated in the specimen diffracts within the grain [17]. Fluorescence
radiation is also generated at the same time, limiting thus the signal-to-noise
ratio to values close to 1.

2.2.3 Stress field in the orientation space Stress field in the Euler space can be
advantageously characterized by means of highly penetrating radiation, such as neu-
trons or very hard X-rays for which the penetration depth far exceed standard grain
sizes. If the beam cross section is large enough, the mechanical response of a whole
RVE can be investigated.
For the analysis of data, one of the issues is related to the identification of the source
of the measured elastic strain. For macro-homogeneous materials (no microstructure
nor composition gradient in the investigated volume), there are basically two sources
of strain:

1. The uniform stress σ̄ applied at the specimen surface generates a heterogeneous
stress field σ(x), and the associated field of elastic strain ε(x). Here, σ̄ is the
volume average of local stresses, σ̄ = 〈σ〉.
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Figure 4: Modification of the Laue pattern of an individual grain of a tungsten poly-
crystal (grain size ∼ 5µm) deformed in situ. (left) Pattern at the initial state, i.e. for
σ̄ = 0MPa, (center) for σ̄ = 500MPa, and (right) relative motion of Laue spots on
the detector between initial and deformed configurations, determined by image pro-
cessing (arrows are enlarged by a factor 50). Data obtained at beamline BM32 of the
ESRF.

2. Upon complete unloading of the specimen (σ̄ = 0), local stresses do not vanish.
The field of residual stress σres is such that 〈σres〉 = 0.

The local stress at any physical point (x) thus reads

σ(x) = B(x) : σ̄ + σres(x), (6)

with B the stress localization tensor of the purely elastic problem. The combination
of (4), (6), and Hooke’s law gives the general expression for the lattice strain [18, 19]

〈εKK〉Ω =
K ⊗ K

K2
〈S : B〉Ω : σ̄ + 〈S : σres〉Ω (7)

with S the elastic compliance of grains. In metallurgy, X-ray diffraction is often used
for “stress analysis”, i.e. the overall stress σ̄ is determined from the measurement of
many lattice strain 〈εKK〉Ω in different directions. From (7), it can be seen that this
is possible only when 〈S : σres〉Ω can be neglected, which is not always a reasonable
assumption. For example, after plastic deformation, it has been shown that intragran-
ular stress heterogeneity in zirconium alloys is ∼ 100MPa, i.e. of the same order of
magnitude than the macroscopic yield stress [20]. In that case, the determination of
σ̄ is inaccurate unless the precise distribution of σres (in that case due to plasticity) is
known.
The “sin2 ψ law” generally used for stress analyses, and implemented in most com-
mercial softwares as a standard method, can be obtained from (7) when taking
σres(x) = 0 ∀x and isotropic elastic properties at the grain scale (leading to B = I).
Unfortunately it is not uncommon to see in the literature applications of this method
to cases for which these conditions are not met.

3 Modeling

We discuss now actual possibilities to reach, to estimate, or to bound the mechanical
behavior of polycrystalline aggregates by means of theoretical or numerical models.
We consider polycrystals exhibiting a stationary microstructure (e.g. no microstruc-
ture gradient at the scale of a RVE) and submitted to homogeneous boundary condi-
tions. There are basically two strategies to get the mechanical response: mean-field
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and full-field approaches. For both of them, the key issue is the estimation of the stress
or strain localization tensors, in relation with the microstructure and local behavior of
grains. Basically, the problem to be solved is to find an equilibrated stress field, related
to a compatible strain field with the local constitutive relation, both fields fulfilling the
applied boundary conditions. Once localization tensors are known, the most difficult
part of the problem is solved.

3.1 Full-field modeling
The goal of full-field approaches is to find complete stress and strain fields within the
polycrystal. The polycrystal is meshed with a mesh size smaller than the grain size
in order to capture intragranular strain heterogeneities, and the problem is then solved
numerically. Stress concentration next to grain boundaries, or the mechanical interac-
tion between two specific grains, can thus be investigated. The main advantage of this
approach is the generation of an “exact” (within numerical inaccuracies) solution for
the problem. However, there are basically three difficulties to overcome.
As detailed previously, polycystal microstructures are complex since they exhibit spe-
cific random features. On the other hand, the use of full-field approaches requires
the precise knowledge of the microstructure to be meshed and solved. There are two
strategies to deal with this issue. (i) When the specimen is adapted (a small sample
comprising a small number of poorly deformed grains, random crystallographic tex-
ture, ... ), the exact 2-D microstructure can be measured e.g. by diffraction and contrast
X-ray tomography [21]. Grains can then be meshed explicitly and the problem solved.
(ii) But most of the time, the above conditions are not met, and the microstructure to
be solved numerically has to be guessed. There are many models in the literature as
for the generation of random microstructures exhibiting specific statistical properties
[22]. As noted by [23], simple Voronoi tesselations are not well adapted owing to a
limited grain size distribution compared to standard real microstructures.
To get the effective behavior of a polycrystalline material, the microstructucture to be
solved should be of size equal or larger than the RVE size. Although RVE size can
be adjusted depending on the desired result accuracy, it usually comprises too many
grains so that the associated numerical full-field problem cannot be solved at once
with standard computer capacities. This issue can be solved assuming ergodicity. In
that case, volume average can be substitute by ensemble average. This means that the
solution can be obtained by solving numerically many random microstructures, each
of size smaller than the RVE, and then performing ensemble averages over all of these
smaller microstructures [24]. The number of “small” microstructures can be deter-
mined depending to the desired result accuracy, the kind of result of interest (effective
behavior, or stress/strain distributions, etc...), and the size of these microstructures.
With actual computer capacities, it is generally of the order of a few tens.
As for the numerical scheme to be used for solving microstructures, although calcu-
lations are possible using the Finite Element Method [24, 25, 26, 27], a numerically
more efficient method based on Fast Fourier Transforms (FFT) has been proposed re-
cently [28, 29], and applied to polycrystals [30]. The method is limited to periodic
microstructures and, unlike FEM, it can solved the case of incompressible behavior as
well as composites exhibiting an infinite mechanical contrast between the phases (such
as composites with rigid inclusions). Briefly, the method is based on the fact that the
local mechanical response of a periodic heterogeneous medium can be calculated as
a convolution integral between the Green function of a linear reference homogeneous
medium and a polarization field. Since such integrals reduce to a simple products in
the Fourier space, efficient Fast Fourier Transform algorithms can be used to trans-
form the heterogeneity field into the Fourier space and, in turn, get the mechanical
fields by transforming that product back to real space. An iterative scheme must be
implemented to obtain, upon convergence, a compatible strain field and a stress field
in equilibrium, see [29, 31] for details. Recent comparisons between FEM and FFT
performance and results can be found in [32].
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3.2 Mean-field modeling
3.2.1 Linear thermo-elasticity In fact, it is not necessary to know the full field of
localization tensors in order to get the effective behavior of polycrystalline materials.
For reasons that will become evident in the sequel, let us consider the case of thermo-
elastic polycrystals. Local and effective constitutive relations read respectively

ε(x) = S(x) : σ(x) + ε0(x), ε̄ = S̃ : σ̄ + ε̃0 , (8)

with ε0 a thermal strain occurring stress free due to temperature changes. Symbols .̃
and .̄ = 〈.〉 denote the homogenized (or effective) property and the volume average
over the whole polycrystal volume, respectively. It can be shown that the effective
stiffness S̃ and the effective thermal strain ε̃0 read

S̃ = 〈S(x) : B(x)〉, ε̃0 = 〈ε0(x) : B(x)〉 . (9)

Since, for thermo-elastic polycrystals, the elastic compliance and the thermal dilata-
tion are uniform properties inside grains, the quantities S(x) and ε0(x) in equation
(8a) can be replaced by the corresponding homogeneous values S(r) and ε(r)

0 of the
considered phase (r). Similar substitution can be made in equation (9) leading to

S̃ =
∑

r

c(r)S(r) : B(r) , ε̃0 =
∑

r

c(r)ε(r)
0 : B(r) (10)

with .(r) indicating the average over the volume of phase (r), e.g. B(r) = 〈B(x)〉(r),
and c(r) the volume fraction of phase (r). Here, a mechanical phase (r) denotes the
set of all grains of the polycrystal having the same crystal orientation; those grains
have different shape and environment but their elastic and thermal properties are iden-
tical. From (10), it can be observed that the sole knowledge of the mean (phase av-
erage) values B(r) is sufficient to estimate the overall polycrystal behavior. It can be
anticipated that, if the quantities B(r) can be calculated without having to know the
complete field of B(x), computation will be way faster. Hence the denomination of
“mean-field” approaches.
With the effective behavior in hand, statistical averages over crystal orientations (r)
can be estimated. Basically, two quantities can be obtained from mean-field ap-
proaches:

1. The phase average stress (or first moment) σ(r) expresses

σ(r) = B(r) : σ̄ + σ(r)
res , (11)

with σ(r)
res the average residual stress of phase (r). The knowledge of σ(r) for

all phases (r) allows investigating the so-called interphase heterogeneities, i.e.
the variation of the phase average stress with respect to the crystal orientation.

2. Deeper insight into the stress distribution can be obtained from the second mo-
ment 〈σ ⊗ σ〉(r) of the stress (⊗ denotes the dyadic product), which is simply
the tensorial expression for the mean of the square of the stress. It can be ob-
tained by a derivation of the effective energy with respect to local compliances,
see [33, 34, 35, 36].

The standard deviation of the stress distribution within a given crystal orientation (r)
can be estimated from these two moments as the square root of < σ ⊗ σ >(r) −
< σ >(r) ⊗ < σ >(r); it is related to the width of the stress distribution in crystal
orientation (r), and account for both the heterogeneity of stress distribution inside
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grains but also the heterogeneity between grains of identical orientation but exhibiting
different shapes and having different neighborhood. Similar relations can be derived
for the strain statistics.
Unlike full-field approaches, mean-field methods are based on a statistical description
of the microstructure of the polycrystalline aggregate. The microstructure is described
by several n-points correlation functions, so that the exact position and shape of a spe-
cific grain with respect to its neighbors is not known. However, as already introduced,
all grains exhibiting the same crystallographic orientation are treated as a single me-
chanical phase. Owing to the random character of the microstructure with all grains
playing geometrically similar roles, the Self-Consistent (SC) scheme [37, 38, 39] is
especially well suited for polycrystals. This model, which provides a relatively sim-
ple expression for B(r), relies on specific microstructures exhibiting perfect disorder
and infinite size graduation [40]. It is attained for example when the space is filled
with spheres of different diameters until full compacity is reached. The SC scheme
has often been described as if the interaction between each grain and its surrounding
could be approximated by the interaction between one ellipsoidal grain with the same
lattice orientation as the original grain and a homogeneous equivalent medium whose
behavior represents that of the polycrystal, taking thus advantage of the analytical
solution of [41] for the inclusion/matrix interaction. This reasoning led to the con-
clusion that the SC scheme implicitly considers uniform stress and strain-rate inside
grains. This interpretation turns out to be incorrect, since intraphase stress and strain
heterogeneities do not vanish as explained above, see [35] for a review.

3.2.2 Case of nonlinear behavior The mean-field estimate of nonlinear materials
is significantly more complex than the thermo-elastic case treated above. For simplic-
ity, let us consider the case of a viscoplastic polycrystal in which grains are deforming
by glide of dislocations on specific slip planes having Miller indices (hkl)[uvw], and
a power-law behavior

γ̇(x)
γ̇0

=
∣∣∣∣
τ(x)
τ0

∣∣∣∣
n−1 τ(x)

τ0
, (12)

τ(k)(x) = µ(r)
(k) : σ(x) being the resolved shear stress acting on slip system (k),

γ̇(k)(x) the corresponding shear rate, and τ0 and γ̇0 two constants expressing the re-
sistance of the slip system (indices (k) and (r) have been omitted above for sake of
clarity). The local strain-rate is given by a combination of shear rates

ε̇(x) =
∑

k

µ(r)
(k)γ̇(k)(x) (13)

with µ(r)
(k) = 1

2 (n⊗b+b⊗n) the (purely geometric) Schmid tensor depending on the
orientation of the slip system, n and b being the slip plane normal and slip direction
(parallel to the Burgers vector) in that plane, respectively. Obviously, the viscous
compliance relating ε̇(x) and σ(x) is not uniform within a phase, owing to the stress
sensitivity n > 1 and the non-uniform distribution of σ (leading to a heterogeneous
distribution of τ(k)) in the phase. Consequently, (9) cannot be replaced with (10).
The basic method to deal with such nonlinear behavior is to define a Linear Com-
parison Polycrystal (LCP) having the same microstructure as the real nonlinear poly-
crystal, and to which the linear homogenization scheme applies. Of course, the so-
estimated effective behavior remains nonlinear since the definition of the LCP depends
on the applied macroscopic stress. The difficult part of the problem consists of find-
ing the best linearization procedure leading to the optimal selection of the LCP. Since
decades, there has been quite a number of propositions in the literature dealing with
this issue.
First, two very basics model can be derived, namely static and Taylor models. They
are constructed by considering respectively uniform stress and uniform strain-rate
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states throughout the polycrystal; they lead to vanishing intragranular stress and strain
heterogeneities. These models violate strain compatibility and stress equilibrium, re-
spectively, and are of limited accuracy when the local behavior is highly nonlinear
and/or highly anisotropic, as it will be illustrate in the next section. The main interest
or static and Taylor models relies on their bound character, since they provide, respec-
tively, a lower and an upper bound for the effective stress potential. These are also
the most restrictive bounds that be derived when one has not more microstructural in-
formation than just the volume fraction of the different phases. Sharper bound, such
as the Hashin-Strikman ones, can be derived when additional information about the
spatial repartition of the phases (here isotropy) is taken into account.

Figure 5: Schematic representation of the linearization.

More accurate estimations of the effective behavior rely on a generalization of the SC
scheme for nonlinear behavior. The local constitutive relation given by equations (12)
and (13) has to be linearized in a suitable way to obtain a form similar to (8a), with
S and ε̇0 uniform per phase (and where ε is replaced everywhere by ε̇). Generally
speaking, the linearization can be expressed in the form depicted in figure 5 [42]

γ̇(k)(x) = α(r)
(k)τ(k)(x) + ė(r)

(k), (14)

thus leading to the following expressions for S(r) and ε̇(r)
0

S(r) =
∑

k

α(r)
(k)µ

(r)
(k) ⊗ µ(r)

(k) , ε̇(r)
0 =

∑

k

ė(r)
(k)µ

(r)
(k) , (15)

where the shear compliance α(r)
(k) and stress-free shear-rate ė(r)

(k) can be easily expressed

with respect to two reference shear stresses τ̌ (r)
(k) and τ̂ (r)

(k) , see figure 5. The optimal
choice (from the point of view of the variational mechanical problem) of those refer-
ence stresses is not straightforward; this is the main reason why several extensions of
the SC scheme have been proposed in the literature. Obviously, all of them reduce to
the same SC model in the linear case n = 1.
Following [43], Masson et al. [44] proposed the so-called “affine” (AFF) linearization
scheme which is based on the simple idea of a linear behavior (14) tangent to the
nonlinear one (12) at the mean shear stress, leading to

τ̌ (r)
(k) = τ̂ (r)

(k) = 〈τ(k)〉(r), α(r)
(k) =

∂γ̇

∂τ

∣∣∣∣
τ=τ̌(r)

(k)

. (16)

The main limitations of this procedure are discussed in detail in [44, 45]. One of them
is the violation of rigourous upper bounds for the effective behavior. More generally,
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the affine extension is known to overestimate the overall viscosity, i.e. to predict an
effective behavior that is too stiff. This negative feature can be alleviated by means of
the energy formulation originally proposed by [43] (see [46]).
Alternative, more sophisticated ways to generalize the SC scheme have been proposed
by Ponte Castañeda and co-workers during the last decade. The basic idea of these
methods is to guide the choice of the properties of the LCP by a suitably designed
variational principle. An “optimal” solution has been obtained in the context of the
so-called “variational” procedure (VAR) [47], which was extended to polycrystals by
De Botton and Ponte Castañeda [48], leading to the choice

τ̌ (r)
(k) = 0, τ̂ (r)

(k) =
[
< τ2

(k) >(r)
]1/2

. (17)

Since ė(r)
(k) = 0, this procedure can be interpreted as a “generalized secant” lineariza-

tion [49]. In addition, it has been shown to provide a rigourous bound for the effective
potential.
More recently, the “second-order” (SO) method of Ponte Castañeda [50], extended to
polycrystals in [42], has been proposed. It is based on the same variational procedure
as VAR, except that the chosen LCP is not of the generalized secant type, but of a
generalized affine type, not requiring the ė(r)

(k) to vanish. The reference shear stresses
now read

τ̌ (r)
(k) = 〈τ(k)〉(r), τ̂ (r)

(k) = τ̌ (r)
(k) ±

[
< (τ(k) − τ̌ (r)

(k))
2 >(r)

]0.5
(18)

where the + sign in the second equation has to be taken when τ̌ (r)
(k) > 0, and the −

when τ̌ (r)
(k) < 0.

The main differences between AFF, VAR, and SO models may be summarized as
follows. The AFF estimate can be regarded as a relatively simple model, allowing
rapid computations which can even be rather accurate for polycrystals with weak grain
anisotropy and small stress sensitivity. However, its predictions can become unrealis-
tic (e.g. bound violation) at strong anisotropy or nonlinearity. Contrarily to AFF for
which linearization only account for the phase average stress, VAR and SO procedures
account for both the phase average stress and intraphase standard deviation (first and
second moments) to build the LCP. They can therefore provide better estimate in cases
for which stress distribution is highly heterogeneous, such as for strongly nonlinear or
anisotropic polycrystals. The VAR method provides a rigourous bound for the effec-
tive behavior, and can therefore improve on the AFF estimate at high anisotropy and
nonlinearity. Applications of the VAR procedure to polycrystals with grains having
cubic or hexagonal crystallographic structures can be found in [51, 52]. On the other
hand, the SO procedure has been constructed to provide the best estimate of the effec-
tive behavior. In particular, by construction, it always complies with the VAR bound.
It is therefore physically a more satisfying formulation.
Finally, the “tangent” (TGT) extension of the SC scheme [53, 54] is based on the
same tangent linearization (16) as the AFF method. But, unlike the AFF extension,
this procedure takes advantage of the fact that, for power law polycrystals with a single
stress exponent n, the tangent behavior (14) can be replaced by a secant-like relation,
with ė(r)

(k) = 0 and α(r)
(k) replaced by nα(r)

(k). The same procedure is further applied at
the macroscopic level, leading to an inconsistent definition for the stress localization
tensor B(r) that combines a secant description for the local and global behaviors but a
tangent analysis for the inclusion/matrix interaction [44]. When expressed in the form
of tangent expressions, it can be shown that ˙̃ε0 differs from the exact relation given in
(10).
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3.3 Full-field vs. mean-field solutions
In this section, we are showing how predictions from mean-field approaches com-
pare to reference results obtained with full-field numerical modeling. More detailed
discussions can be found e.g. in [55, 56].
We consider the case of a polycrystal made of grains exhibiting orthorhombic lattice
symmetry, such as Olivine (a mineral from the Earth mantle), see [57, 58] for details.
Grains deform by glide of dislocations on several slip planes but with only two types
of Burgers vectors, parallel either to lattice directions [100] or [001]. Since the slip
plane normal n is normal to b, it can be easily checked that components µ11, µ22, and
µ33 of the Schmid tensors (when expressed in the crystal lattice frame) vanish. Thus,
grains cannot deform axially along directions [100], [010], and [001]. In order to
have adjustable grain anisotropy, we introduce another family of slip systems, namely
{111} < 110 >, which allows accommodating any strain. We further define

M =
τ{111}<110>
0

τ (010)[100]
0

(19)

where (010)[100] is the softest slip system considered (i.e. lowest τ0). The scalar M
can be viewed as an anisotropy factor at the grain scale. A value of M close to 1
means that {111} < 110 > exhibits a strength similar to (010)[100]; therefore grains
can be submitted to any kind of strain-rate, i.e. axial deformations along directions
[100], [010], and [001] is allowed. As M increases, grain resistance increases for axial
strain-rates along those directions.

Figure 6: Full-field vs. mean-field behavior for linear isotropic orthorhombic poly-
crystals, as a function of the anisotropy factor M . (left) Effective polycrystal re-
sponse. (right) Standard deviation of equivalent stress and strain-rate (polycrystal
average). Full-field results have been generated for 50 random microstructures, and
ensemble average has been performed. Mean-field results have been obtained with the
SC scheme.

First of all, we consider the case of linear viscous behavior, corresponding to n = 1 in
(12). In that case, the local behavior has the form (8a) with ε̇0 = 0 (and ε replaced by
ε̇ everywhere). For full-field computations, random periodic Voronoi microstructures
have been considered (see figure 7a). Each of them comprises 32 grains, and ensemble
average over 50 random microstructures has been performed to get good statistics. Mi-
crostructure calculation has been performed with the FFT method introduced above.
Figure 6 shows how predictions from the SC scheme compare to full-field results, for
both the effective flow stress and the overall standard deviation of stress and strain-
rate. These standard deviations are calculated for the whole polycrystal volume, i.e.
they account for both intragranular and intergranular heterogeneities. It can be ob-
served that the agreement is almost perfect, even at large grain anisotropy (i.e. large
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M ). The SC scheme not only predicts the correct effective behavior, but also accu-
rately captures the field heterogeneities within the polycrystal. Such results are in fact
surprisingly good since the microstructure implicitly considered in the SC scheme is
different from Voronoi tesselations; but it could indicate that microstructural details
are probably not crucial for polycrystal modeling, at least in standard cases. Simi-
lar agreement have been obtained for Voronoi and EBSD 2-D microstructures under
antiplane shear [23].
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Figure 7: (left) Typical periodic random microstructure based on Voronoi tesselation,
used for full-field modeling. (right) Associated field of equivalent strain-rate, normal-
ized by the effective equivalent strain-rate, obtained for nonlinear viscoplasticity.

Figure 7 illustrates the intragranular strain-rate heterogeneity obtained in the nonlin-
ear case for conditions n = 3.5 and M = 100. It can be observed that the equivalent
strain-rate is highly localized, mostly (but not always) at grain boundaries; local values
can exceed overall ones by more than one order of magnitude. As noted in [10, 59],
local strain-rates and stresses in a given grain do depend on the grain orientation but
they are also significantly influenced by the neighborhood of the grain (i.e. orienta-
tion, shape, and deformation of neighbor grains). Figure 8 provides the comparison
between the behavior predicted by full-field and mean-field approaches. It suggests
the following comments:

As the static lower bound, the TGT linearization significantly underestimates
the effective flow stress and the overall stress heterogeneities in the polycrystal.
In particular, these two approaches predict a finite flow stress as M → ∞,
in disagreement with FFT reference results; they incorrectly predict that the
polycrystal can deform without the need to activate {111} < 110 > systems at
all.

At large M , the Taylor bound provides a flow stress proportional to M , although
stress heterogeneities are underestimated. This bound significantly overestimate
the activation of {111} < 110 > at large M values.

The AFF linearization provides a better trend, although the predicted macro-
scopic response is still too stiff.

Only the SO linearization predicts accurate results, both qualitatively and quan-
titatively. In particular, the rapid increase of stress heterogeneities with M is
correctly captured. This originates from the consideration of the first and sec-
ond moments of the intraphase stress distribution in the definition of the LCP,
which allows capturing large intraphase stress fluctuations. It means that this ap-
proach is accurately handling the mechanical interactions between grains. One
important corollary is that it allows investigating effects of local deformation
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mechanisms on the polycrystal behavior and field statistics. Note also that com-
puter capacities (CPU and RAM) required by the SO model are several orders
of magnitude smaller than those for the FFT.

Figure 8: Full-field vs. mean-field behavior for nonlinear isotropic orthorhombic poly-
crystals, as a function of the anisotropy factor M . (left) Effective polycrystal response.
(right) Standard deviation of the equivalent stress (polycrystal average). Mean-field
results are given for various extensions of the SC scheme (AFF, SO, TGT lineariza-
tions), and for static and Taylor bounds.

4 Application to elastic thin films

We provide in this section an example of application of the above techniques to the
case of elastic polycrystals with nanometric microstructures [60]. We are consider-
ing W/Cu multilayers thin films deposited on a 127.5µm thick polyimide (Kapton)
substrate. We report results for a specimen comprising 20 periods of 24nm each,
composed of 6nm W and 18nm Cu (Figure 9), for which lattice strain was inves-
tigated by X-ray diffraction during in-situ tensile tests under synchrotron radiation
(see [61] for experimental details). Bragg peaks were recorded for various orienta-
tions of the diffraction vector with respect to the applied stress. Since grain size is
here much smaller than the X-ray beam cross section (which is typically 100µm),
and X-ray attenuation length being much larger than the specimen thickness, mea-
surements are statistically relevant and representative of the whole specimen volume
(RVE). W presents the advantage of exhibiting a high X-ray scattering factor, while
Cu was chosen because of its immiscibility with W under thermodynamic equilibrium
conditions. W and Cu exhibit very different elastic behaviors: at the grain scale, W is
isotropic whereas Cu grains exhibit a significant anisotropy, and Young’s modulus for
W is globally 3 times stiffer than for Cu. The multilayer is thus a composite material
with high mechanical contrast between the constituents. The structure of the speci-
men was carefully analyzed by several experimental techniques, showing in particular
a pronounced {111} (resp. {110}) crystallographic texture for Cu (resp. W) layers.
There are two contributions to the local elastic strain in the material. The first one
is due to the localization of the applied macroscopic stress in the different grains,
associated to the purely elastic response of the specimen, which is the quantity of
interest here. The second contribution is associated to the residual stress generated
during the elaboration process, which is not known. The advantage of performing
in situ tensile tests is that once this second contribution has been characterized in
the unloaded state, the purely elastic response of the specimen can be investigated,
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i.e.

in situ

Figure 9: STEM image of a W/Cu multilayer specimen, deposited on the polyimide
substrate. Respective layer thicknesses are 6nm and 18nm. Lateral grain size is
similar to layer thickness.

independently on the residual stress level and distribution. In practice, this is achieved
by measuring the shift of each Bragg peak with respect to its position in the unloaded
configuration [19].
Figure 10 shows the X-ray strain measurements as a function of the total applied stress
for both W and Cu sublayers. The measured lattice strain is either negative or positive
depending on the orientation of the diffraction vector with respect to the specimen
surface and applied load direction. Strain is found to be proportional to the applied
stress, indicating that deformations remain elastic, whereas the slight waviness of the
data is attributed to experimental uncertainties.
To interpret these experimental results, the use of a micromechanical model is un-
avoidable owing to the complex microstructure of the material. Our goal is to con-
struct a simple model that captures the main features of the material microstructure
and that provides accurate and statistically relevant results. Neglecting the probable
different stiffness at interfaces (grain boundaries), which may become important at
very small grain sizes, three characteristic scales can be distinguished: the scale of
the grain (nm), the scale of the Representative Volume Element (µm) of each layer,
comprising a large number of grains, and the macroscopic scale of the specimen (m m)
with its laminate structure. The two last scales are related to in-plane dimensions of
the film. Since the three scales differ by several orders of magnitude, the mechanical
problem can be split in a first approximation into two easier scale transition problems.
The first scale transition consists in evaluating the effective behavior of each (iso-
lated) layer according to its microstructure and to the elastic behavior of grains. As
discussed above, the anisotropy of the local elastic stiffness C = S−1 leads to the
building of mechanical interactions between grains upon macroscopic loading, result-
ing in heterogeneous distributions of stresses (and associated elastic strains) inside
and between grains. Within W layers, the problem simplifies considerably owing to
the elastic isotropy of W grains so that, from the mechanical point of view, W layers
are made of a uniform isotropic material exhibiting homogeneous stress and strain,
independently of the actual microstructure. The stress localization tensor B thus ex-
actly reduces to identity. Concerning Cu layers, the average of 〈S : B〉Ω has to be
estimated in (4) accounting for the strong elastic anisotropy of Cu grains. Here, for
sake of simplicity, we make use of the SC model although the microstructure it im-
plicitly considers does not really match the one of individual layers (with one grain in
the layer thickness). Besides its simplicity, the advantage of the SC scheme is that it
allows considering the crystallographic texture for the estimation of the effective layer
behavior.
The second scale transition consists of approximating the actual specimen by a lam-
inate structure, replacing the layers containing W and Cu grains by infinite homoge-
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neous layers with behavior the one predicted by the SC scheme. In doing so, the exact
solution for laminate structure (e.g. see [62]) can be applied.
Model results are shown in Figure 10. Globally a good match to experiments is ob-
tained, with however slightly superior results for W sublayers than for Cu. This shows
that (i) the average stress level predicted for each sub-layer is accurate, and (ii) within
each sublayer, the average localization of the stress in grains with different crystallo-
graphic orientations is well estimated by this simple model. It is also worth mention-
ing that much worse results (not shown here) are obtained when applying the Reuss
bound instead of the SC scheme.
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Figure 10: X-ray strain measurements (points) and elastic strain estimations based
on the micromechanical SC model (dotted lines) for the sublayers versus the uniax-
ial stress applied to the multilayer/kapton composite. (left) W sublayers, (right) Cu
sublayers.

The better results obtained for W sublayers may likely be a consequence of the larger
elastic anisotropy of Cu grains as compared to W. This anisotropy renders the effective
behavior of Cu sublayers sensitive to the actual microstructure, i.e. to crystallographic
texture, grain shape and grain arrangement within the layer. Here, the real crystallo-
graphic texture of Cu sublayers could not be fully taken into account. This component
shows a complex texture pattern, with dominant {111} fiber, but other minor texture
components such as probably {100} may also be present.
One way to verify the general validity of the simple proposed model is a systematic
comparison with results of a full-field scheme, as discussed above. Such calculations
are reported in [60] where full-field results for a periodic composite comprising 2
layers of one grain thickness each have been obtained by the Finite Element method,
and performing ensemble average over 100 random microstructures. Results have
been obtained for various elastic anisotropy of Cu-like grains, and a good match to
the simple mean-field solution is obtained for moderate anisotropy of the Cu layer.
At least one difference between mean-field and full-field models is the estimation of
field heterogeneities in each layer. By construction, the mean-field model leads to
uniform stress in W layers, whereas stress heterogeneity is evidenced in the full-field
approach; it comes from the heterogeneous deformation of Cu layers, associated to
the elastic anisotropy of Cu grains, interacting with the homogeneous elastic W layer
and generating thus some strain heterogeneities in W.
We emphasize that a more rigorous and more accurate mean-field model is still lacking
at present for multilayer polycrystals. A possibility could be to make use of recent
developments obtained for the homogeneization of heterogeneous plates, e.g. [63].
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5 Conclusion

In this chapter, we have reviewed some recent experimental, theoretical, and numerical
methods for the investigation of the mechanical behavior of polycrystalline materials.
We have emphasized the role of strain and stress heterogeneities, which are crucial
to be characterized experimentally and taken into account in the models. The use
of simplistic or ad hoc micromechanical model should be avoided since there are
many essential features for polycrystal deformation that are far from being intuitive
and therefore they are not captured by such models. The topic was illustrated for
elastic and viscoplastic polycrystals, but similar methods can be used for the more
general case of thermo-elasto-visco-plasticity. The validity of the local constitutive
relation was not discussed. For plastic deformations based of dislocation glide, it
can be advantageously identified by calculations at a smaller scale e.g. performed
by Dislocations Dynamics as detailed in a companion chapter of this volume. At
nanometric sizes, the volume fraction of grain boundaries may become non-negligible
compared to the volume fraction of grain interior. Since grain boundaries may exhibit
a different behavior than grain interiors, this specific microstructure may be taken into
account for estimating the mechanical behavior.
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