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a b s t r a c t

Original constitutive modeling is proposed for filled rubber materials in order to capture
the anisotropic softened behavior induced by general non-proportional pre-loading histo-
ries. The hyperelastic framework is grounded on a thorough analysis of cyclic experimental
data. The strain energy density is based on a directional approach. The model leans on the
strain amplification factor concept applied over material directions according to the Mul-
lins softening evolution. In order to provide a model versatile that applies for a wide range
of materials, the proposed framework does not require to postulate the mathematical
forms of the elementary directional strain energy density and of the Mullins softening evo-
lution rule. A computational procedure is defined to build both functions incrementally
from experimental data obtained during cyclic uniaxial tensile tests. Successful compari-
sons between the model and the experiments demonstrate the model abilities. Moreover,
the model is shown to accurately predict the non-proportional uniaxial stress-stretch
responses for uniaxially and biaxially pre-stretched samples. Finally, the model is effi-
ciently tested on several materials and proves to provide a quantitative estimate of the
anisotropy induced by the Mullins softening for a wide range of filled rubbers.

1. Introduction not investigated further for several decades. Only recently,
several studies (Laraba-Abbes et al., 2003; Hanson et al.,
2005; Diani et al., 2006; Itskov et al., 2006; Dargazany
and Itskov, 2009; Machado, 2011; Merckel et al., 2012)
brought to light Mullins softening induced anisotropy by
application of successive non-proportional loadings.

In terms of modeling, one may find a significant number
of models in the literature designed to reproduce the
behavior of Mullins softened rubber-like materials. How-
ever, most of these models are developed for idealized iso-
tropic softening and very few aim at capturing the
softening induced anisotropy. A first representation for
anisotropic hyperelastic behavior was proposed by Weiss
et al. (1979), based on strain invariants which limits its
applicability to simple anisotropies (transverse isotropy
or orthotropy) and excludes its extension to the Mullins
softening. An alternative approach based on directional
behavior laws was proposed by Pawelski (2001), Göktepe

Filled rubbers undergo substantial stress softening and 
possible residual stretch when first loaded. This phenome-
non, first reported by Bouasse and Carrière (1903), was 
studied intensely by Mullins (1947, 1949, 1950, 1969) 
and is now commonly referred to as the Mullins softening. 
By performing successive non-proportional loadings (i.e. 
successive loadings with changing the directions of 
stretching or the type of loading), Mullins (1947, 1949) 
was first to point out softening induced anisotropy. How-
ever, subsequent experimental studies mainly focused on 
proportional loadings and the induced anisotropy was
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and Miehe (2005) and Diani et al. (2006). The directional
laws were shown to capture the Mullins softening induced
anisotropy without major difficulties by considering that
damage evolves independently along each material direc-
tion. Nonetheless, in the existing directional laws, the
residual stretch is constrained by the Mullins softening in-
duced anisotropy, and this is not in complete agreement
with the experimental observations. Actually, the residual
stretch is very dependent of the material viscoelasticity
as shown by the substantial and rapid recovery after
unloading (Mullins, 1949; Diani et al., 2006), whereas the
Mullins softening is commonly considered as irreversible
at room temperature. Additional experimental observa-
tions detailed in the following section support a decou-
pling of the residual stretch with the Mullins softening.
Therefore, both should be accounted for independently.

The pre-cited directional models are based on a physical
interpretation of the Mullins softening. They generally de-
pend on physically motivated elementary strain energy
densities and the Mullins softening is accounted for by
altering the strain energy density parameters. In order to
accurately fit original experimental data, the elementary
strain energy density and the Mullins softening evolution
rule may require substantial modifications according to
the material behavior. Moreover, the strain energy density
and the evolution rule must be guessed a priori, and no
general procedure has been proposed to do so.

In this study, our main motivation is to propose a gen-
eral framework versatile for the modeling of hyperelastic
rubber-like material behavior with a realistic account of
the anisotropic induced Mullins softening. For this pur-
pose, a directional approach is considered with an aniso-
tropic criterion for the Mullins softening activation. At
first, according to experimental evidences, Mullins soften-
ing and residual stretch evolutions are decoupled. Then, in
order to propose a model with the largest flexibility, the
account for the Mullins softening is chosen to avoid
assumptions on the elementary strain energy density or
the softening evolution rule. This is made possible by using
the strain amplification concept proposed by Mullins and
Tobin (1957). Finally, an identification procedure is pro-
posed to assess both the elementary strain energy density
and the Mullins softening evolution rule without postulat-
ing their mathematical forms.

The paper is organized as follows. In the next section,
the experimental setup and experimental results are pre-
sented. The constitutive equations and the identification
procedure are detailed in Section 3, and results are shown
and discussed in Section 4. Finally, concluding remarks
close the paper.

2. Experiments

2.1. Experimental setup

In this study, we used carbon-black filled styrene buta-
diene rubbers (SBR) prepared by Michelin. Materials varied
according to their filler amounts from 30 to 60 phr. Details
of the rubber compositions are listed in Table 1. All mate-
rials were manufactured into 2.5 mm-thick sheet shape.

In-plane isotropy was verified by testing in uniaxial ten-
sion, samples punched in various directions. However,
due to the manufacturing process consisting in rubber
mixing within a two-roll mill and in pressure molding, full
isotropy is unlikely and we will discuss this aspect in Sec-
tion 2.4. The material labeled A (Table 1) is used as a refer-
ence material to illustrate experimental grounds of the
model and to validate the model and the identification pro-
cedure. Materials B1 to B4 will be used to assess the gen-
eral aspect of the model and to test its interest for
comparing the mechanical behavior of various materials.

Mechanical tests were conducted on two devices. Uni-
axial loadings were performed on an Instron 5882 testing
machine. Biaxial loadings were applied by an in-lab built
planar biaxial testing machine controlled by four perpen-
dicular electromechanical actuators. All tests were run at
a constant crosshead speed chosen in order to reach an
average strain rate close to 10�2 s�1 in the maximum
stretched direction. In order to genuinely characterize the
Mullins softening, virgin material samples of 30 mm long
and 4 mm wide normalized dumbbell shape were submit-
ted to cyclic uniaxial tension tests with increasing maxi-
mum stretch at each cycle. Then, in order to study the
Mullins induced softening, some samples were uniaxially
or biaxially pre-stretched. Uniaxial pre-loadings were ap-
plied on large dumbbell specimens 25 mm wide and
60 mm long, while biaxial pre-loadings were conducted
on cross shape samples. Small dumbbell samples 4 mm
wide and 10 mm long were punched in the pre-stretched
samples and submitted to cyclic uniaxial tensions with
increasing maximum stretch.

During loadings, local stretches were measured by vi-
deo extensometry using four paint marks on the free faces
characterizing the in-plane principal stretches. In the case
of uniaxial tension tests, all three principal stretches may
be measured using two cameras, each one facing one of
the sample free faces. In what follows, the states of stretch
are characterized by the principal stretches which coincide
with the eigenvalues Fii of the deformation gradient F . The
direction of larger stretching will be referenced as direc-
tion 1, directions 2 and 3 are perpendicular to direction 1
and direction 3 lies along the sample thickness. For uniax-
ial loadings, k may conveniently denote the principal
stretch in the tension direction. The Cauchy stress
r11 ¼ F=S is used for uniaxial tension responses, with F
the force and S the current sample cross-section. Let us
note that incompressibility was generally assumed when
computing the Cauchy stress. This assumption will be dis-
cussed in the next section.

Table 1
Material compositions in parts per hundred rubber (phr).

Ingredient A B1 B2 B3 B4

SBR 100 100 100 100 100
Carbon-black (N347) 40 30 40 50 60
Antioxidant (6PPD) 1.0 1.9 1.9 1.9 1.9
Stearic acid – 2.0 2.0 2.0 2.0
Zinc oxide – 2.5 2.5 2.5 2.5
Structol ZEH 3.0 – – – –
Accelerator (CBS) 1.5 1.6 1.6 1.6 1.6
Sulfur 1.5 1.6 1.6 1.6 1.6



2.2. Material incompressibility

In order to reach the uniaxial Cauchy stress, the current
sample cross-section S has to be measured while stretching
the sample. The relation between the current section S and
the initial section S0 is given by S ¼ F22F33S0. In order to
lighten the experimental setup, incompressibility (leading
to S ¼ k�1S0) is conventionally assumed. Nevertheless, sub-
stantial volume changes have been reported within
stretched non-crystallizing filled rubbers (see references
within Le Cam, 2010). Therefore, volume changes upon
stretching was investigated in material A by recording
the three principal stretches.

Fig. 1a shows the volume changes occurring during a
monotonic loading and during a cyclic loading with an
increasing maximum stretch of Dk ¼ 1 at each cycle. One
observes that the material volume does not increase signif-
icantly as long as the material stretching remains below
k � 3:5. The existence of such a stretching threshold has al-
ready been reported by Shinomura and Takahashi (1970)
and Zhang et al. (2012). Fig. 1 also shows that under mono-
tonic tension volume expands with the stretching while
under cyclic loading conditions, no significant volume
changes occur as long as the stretching remains below
the maximum stretch previously applied. Similar observa-
tions have been obtained by dilatometry measurements by
Mullins and Tobin (1958). Therefore, while assuming
incompressibility seems unrealistic upon the first stretch,
it shows to be a fair assumption for subsequent stretchings
below the maximum stretch ever applied (Fig. 1b). Since
this study focuses on Mullins softened behavior, the
unloading Cauchy stress–strain response may be com-
puted using the incompressibility assumption. The model
will be proposed within an incompressible framework.

2.3. Mullins softening and residual stretch

When a filled rubber is submitted to cyclic loading con-
ditions, one may notice along with the softening, a residual
stretch that increases with the applied maximum stretch.
Both features are usually pointed out as consequences of
the Mullins effect. However, some experimental evidences
show otherwise. The softening occurring upon first stretch
is an irreversible damage phenomenon at room tempera-

ture (Mullins, 1947). To the contrary, the residual stretch
is very dependent of viscoelasticity and shows an impor-
tant and rapid recovery at room temperature (Mullins,
1949; Diani et al., 2006). Other experimental observations
prove that although residual stretch and material softening
usually occur simultaneously, their evolutions are not nec-
essarily correlated. Various loading histories with identical
maximum stretch may result in substantial residual
stretch changes while the Mullins softening remains unaf-
fected. An example is presented in Fig. 2. A k ¼ 2:5 uniax-
ialy pre-stretched sample is submitted to uniaxial a
cyclic loading with an increasing maximum stretch of
Dk ¼ 0:25 at each cycle after a 72 h stress free recovery.
Fig. 2a shows the loading responses resulting from the cyc-
lic loading. One may notice that the stress-stretch re-
sponses evolve at each cycle from the very first cycle.
However, while representing the loading stress-stretch re-
sponses applying a residual stretch correction, according to
kcor ¼ k=kres, one notices that the loading responses super-
impose well until the maximum previous stretch (k ¼ 2:5)
is reached (Fig. 2b). Then material behavior changes due to
the Mullins softening occurrence are observed for subse-
quent cycles. This demonstrates that in Fig. 2a, the
mechanical behavior of the material does not evolve for cy-
cles below k ¼ 2:5, except for the residual stretches, evi-
dencing a significant residual stretch evolution and a
constant Mullins softening.

Other experimental evidences support the uncorrela-
tion of the residual stretch and of the Mullins softening.
First, the Mullins softening and the residual stretch seem
both quite dependent to the material composition but with
different sensitivities (Mullins, 1949; Dorfmann and
Ogden, 2004; Merckel et al., 2011). Second, some materials
may evidence some large Mullins softening with very little
residual stretch. For instance, a silicone filled rubber stud-
ied by Machado (2011) displays significant Mullins soften-
ing without noticeable residual stretch.

2.4. Anisotropy characterization

When submitting a sample to a uniaxial tension accord-
ing to direction 1, its free faces are submitted to the bound-
ary conditions r22 ¼ r33 ¼ 0, and when the measured
stretches satisfy to F22 ¼ F33, the material shows transverse

(a) (b)

Fig. 1. (a) Material A volume changes while submitted to monotonic and cyclic uniaxial tension. (b) Effect of material A incompressibility loss on its cyclic
uniaxial tension stress-stretch response.



isotropy properties. Therefore in order to illustrate the
material anisotropy, the ratio F22=F33 resulting from a cyc-
lic proportional uniaxial tension test (loading shown in
Fig. 1) is plotted with respect to the stretch k in Fig. 3a.
The ratio F22=F33 appears different from 1, highlighting
the material initial anisotropy resulting from the manufac-
turing process. The material appears stiffer along the plate
thickness direction than in any in-plane direction (keep in
mind that the in-plane isotropy has been verified). More
interestingly, the F22=F33 evolution seems to follow the
same path for every cycle, evidencing the same anisotropy
throughout the test.

The anisotropy characterization method is now applied
to a small uniaxial dumbbell sample punched in a k ¼ 2:5
equi-biaxially pre-stretched specimen. Results are shown
in Fig. 3b. The F22=F33 evolution follows the same path as
long as the sample is stretched below the maximum
stretch previously applied (k ¼ 2:5). Then the anisotropy
evolves at each cycle and the ratio F22=F33 slowly evolves
toward a similar path than the path displayed by the virgin
material in Fig. 3a. The introduced material anisotropy
characterization will provide an additional element to val-
idate the relevance of the modeling.

2.5. Equilibrium response

In the current paper, the material viscoelasticity is not
considered and our focus is set on the equilibrium

responses only. Once the Mullins softening has been evac-
uated, the loading and the unloading responses are fairly
close and both responses may be used to characterize the
material softened behavior (Fig. 4a). In order to remain
consistent with previous modeling works proposed by
the authors (Diani et al., 2006), the unloading responses
are favored, and the material mechanical behavior evolu-
tion due to the Mullins softening is illustrated by the
stress–stretch responses in Fig. 4b.

The next section presents the theoretical and the com-
putational aspects of the modeling.

3. Modeling

3.1. Hyperelastic framework

Experimental observations reported in Section 2.3 sup-
port a decoupling of the residual stretch from the Mullins
softening. Therefore, we use a kinematic approach decom-
posing the total deformation gradient F into an elastic part
Fe and an inelastic part Fp,

F ¼ FeFp ð1Þ

The inelastic deformation gradient tensor Fp changes the
initial reference configuration into a stress-free intermedi-
ate configuration accounting for the residual deformation,
while the elastic deformation gradient tensor Fe changes
the stress-free configuration into the current configuration
and therefore accounts for the elastic deformation. It is

(a) (b)

Fig. 2. Uniaxial tensile cyclic test performed after a 72 h stress-free recovery on a 2.5-uniaxialy pre-stretched material. (a) Stress-stretch (k;r) loading
responses. (b) Residual stretch corrected stress-stretch (k=kres;r) loading responses.

(a) (b)

Fig. 3. In-plane (2,3) anisotropy changes. (a) Proportional cyclic uniaxial tension loading. (b) Cyclic uniaxial tension loading performed on a 2.5-biaxially
pre-stretched sample.



assumed that Fp does not evolve during the unloading re-
sponses shown in Fig. 4b.

In order to describe the material deformation, the right
Cauchy-Green tensor C ¼ F tF and the left Cauchy-Green
tensor F ¼ F tF are introduced (superscript t denotes trans-
position). The state of the material is assumed to be de-
scribed by the strain energy W written in terms of Ce and
Bp. Considering a strain energy with decoupled effects of
the elastic and inelastic deformations leads to,

WðCe;BpÞ ¼ WeðCeÞ þWpðBpÞ ð2Þ

and the second Piola–Kirchhoff stress tensor in the stress-
free configuration derives from the second law of
thermodynamics,

S ¼ 2
@WeðCeÞ
@Ce

ð3Þ

Elastomeric materials can be represented as three-
dimensional networks of very long flexible macromolecules
randomly oriented in all directions of space. In directional
approaches, the strain energy densityWe is evaluated from
the summation of elementary strain energy contributions
w over all considered directions. An idealized representa-
tion introduced by Treloar and Riding (1979) is the full-
network model, which considers a continuous spatial
distribution of directions leading to an integration over
the unit sphere,

WeðCeÞ ¼
ZZ
S
wðuÞdS ð4Þ

with unit vectors u ¼ ðcosðhÞ; sinðhÞ cosðuÞ; sinðhÞ sinðuÞÞ
characterized by the polar angles ðh;uÞ and
dS ¼ 1=ð4pÞ sinðhÞdudh.

In such a directional representation, anisotropy may be
accounted for by considering uneven elementary strain en-
ergy contributions w, according to the direction u. As pre-
viously noticed by Diani et al. (2004, 2006) and Göktepe
and Miehe (2005), such an account for anisotropy may lead
to uncontrolled residual stresses in the free-strain state.
Therefore, in order to circumvent undesired residual stres-
ses, and to satisfy to a stress-free undeformed state, the
constitutive equation, Eq. (3), is modified into (Diani
et al., 2004),

S ¼ 2
@WeðCeÞ
@Ce

� 2
@WeðCeÞ
@Ce

����
Ce¼I

ð5Þ

The elastic extension along each direction u; Ke, is ob-
tained from the right elastic Cauchy-Green tensor as,

Ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u � Ce � u

p
ð6Þ

Let us note that @Ke=@Ce ¼ ðu� uÞ=2Ke, hence the elastic
energy density partial derivative comes as

@We

@Ce
¼ 1

2

ZZ
S

u� u
Ke

@w
@Ke

dS ð7Þ

The Cauchy stress tensor r is obtained by pushing for-
ward the Piola–Kirchhoff stress tensor S from the relaxed
configuration to the current configuration via Fe. Substitut-
ing Eq. (7) in Eq. (5) and assuming material incompressibil-
ity yield to the following expression for the Cauchy stress
tensor,

r ¼ Fe

ZZ
S
gðuÞ ðu� uÞdS

� �
F t

e � pI ð8Þ

where p is an arbitrary hydrostatic pressure introduced to
account for incompressibility and gðuÞ a directional scalar
that writes,

g ¼ f ðKeÞ
Ke
� f ð1Þ ð9Þ

with f the elementary force-extension relation in the direc-
tion u defined as

f ðKeÞ ¼
@wðKeÞ
@Ke

ð10Þ

While the full-network model initially proposed by
Treloar and Riding (1979) uses a specific inverse Langevin
function based form for f, the above formulation is not re-
stricted and can be applied to any directional force-exten-
sion f ðKeÞ. Therefore, we do not assume any specific
mathematical form for f since the latter will unfold upon
experimental data fit.

The full-network framework is not efficient for numer-
ical implementations due to the numerical integrations
and in order to circumvent the time-consuming computa-
tional integration task, discrete integrations are usually

(a) (b)

Fig. 4. Material stress-stretch response to a uniaxial tensile cyclic test with maximum stretch increasing at each cycle. (a) Entire response. (b) Unloading
responses.



preferred. For this purpose, a finite number of directions is
considered. For instance, Göktepe and Miehe (2005) and
Diani et al. (2006) used sets of 42 and 32 directions respec-
tively, based on Bazănt and Oh (1986) numerical integra-
tions. We followed this path but many other methods
may be found in the literature.

In the next section, account for the Mullins softening is
introduced.

3.2. Mullins softening

Recently, Merckel et al. (2012) conducted an extensive
experimental study on the Mullins softening. It was shown
that the latter evolves when at least one material direction
is stretched above its maximum stretch. Therefore, the
criterion proposed by Diani et al. (2006) for anisotropic
Mullins softening has been validated by Merckel et al.
(2012) experimental work. It writes as,

9uðh;uÞj K�Kmaxð Þ ¼ 0 ð11Þ

with K being the total extension along direction u

KðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u � C � u
p

ð12Þ

and Kmax the maximum of K over the loading history

KmaxðuÞ ¼max
s2½0;t�

Kðu; sÞ½ � ð13Þ

with t the current time. It is noteworthy that the criterion
Eq. (11) is based on the total extension and not only on its
elastic component. This particular aspect of the criterion is
supported by the fact that a softened material may recover
some of its residual stretch without recovering any of its
Mullins softening as shown in Section 2.3. Once the crite-
rion defined, the damage variable which provides the soft-
ening in the stress–strain responses remains to be
introduced.

The strain amplification concept, early introduced by
Mullins and Tobin (1957), and based on experimental evi-
dences reproduced by Klüppel and Schramm (2000) and
Merckel et al. (2011) for instance, supports the idea that
the stress–strain responses of softened filled rubbers
evolve due to the amplification of the strain undergone
by softened materials compared to virgin materials at sim-
ilar stress. This may be written as,

logðKeÞ ¼ X logðKvirgin
e Þ ð14Þ

when the logarithmic strain is chosen. The strain amplifi-
cation factor X satisfies to XðuÞP 1 along each direction
u. The stretches Kvirgin

e and Ke characterize the directional
stretch in the virgin material and the directional amplified
stretch respectively. The strain amplification factor con-
cept is introduced within the hyperelastic framework pro-
posed in Section 3.1 by substituting Ke as a function of X
and Kvirgin

e (Eq. (14)), in g (Eq. (9)). Such a concept was al-
ready used in a similar fashion by Qi and Boyce (2004).

At this point, the model is fully defined. The residual
stretches are captured by Fp in the decomposition Eq. (1).
The Cauchy stress response, for a general full-network
directional framework, is given by Eq. (8). The Mullins cri-
terion is a directional criterion, defined by Eq. (11), provid-
ing possible induced anisotropy. Finally, the Mullins

softening is accounted for by substituting Eq. (14) in g
(Eq. (9)), the enhanced directional stretches Ke depending
on the directional amplification factors XðuÞ. In order to
describe and predict the material softening depending on
the loading history, two material functions remain to be
determined: X and f. Therefore the next section draws
attention to the identification procedure.

3.3. Identification of the elementary force-extension function f
and the Mullins softening rule X

The elementary force-extension function and the Mul-
lins softening evolution rule are built incrementally in or-
der to obtain a good fit of the experimental unloading
responses from a cyclic uniaxial tension test with increas-
ing maximum stretch at every cycle as shown in Fig. 4.
Since for every mechanical test, the material stress-stretch
response depends on both f and X, an original method is
defined guaranteeing simultaneous identification of both
functions.

The main difficulty stands in the uneven evolution of
the softening according to the spatial directions. Actually,
the maximum directional extension KmaxðuÞ depends on
the direction considered ranging from 1 to kmax (the maxi-
mum stretch in the uniaxial stretching direction). Fig. 5
illustrates Kmax directional evolution for uniaxial tension
tests.

When unloading the sample, the Mullins softening and
the residual stretch evolutions are both stabilized. The
inelastic part Fp (see Eq. (1)) coincides with the residual
stretch kres and the elastic part ke may be extracted from
the measured stretch kmeas using,

ke ¼
kmeas

kres
ð15Þ

The material anisotropy evolves upon stretching only.
Therefore, when the incompressible material is assumed
as initially isotropic, the relation F22 ¼ F33 ¼ k�0:5 is ob-
tained for uniaxial stretching in direction 1. Constitutive
equations Eq. (8), simplify into:

Fig. 5. Directional evolution of Kmax during a cyclic uniaxial loading,
projected in the sample plane (u1;u2). The initial state is emphasized by
dashed line.



r11 ¼
ZZ
S
g u2

1k
2
e �

u2
2

ke

� �
dS ð16Þ

with gðuÞ depending on KeðuÞ; XðuÞ and f (Eqs. (14) and
(9)).

On one hand X increases with the increase of the max-
imum stretch submitted and remains constant during
unloadings. On the other hand, f is independent of the soft-
ening, and remains the same for any cycle. The identifica-
tion strategy is based on a resolution of the implicit Eq.
(16). From a given experimental couple (r11; ke) and know-
ing the Mullins softening governing parameter spatial den-
sity KmaxðuÞ illustrated in Fig. 5, local values X and f may be
computed numerically. Therefore, discrete definitions for f
and X may be built by putting into practice the procedure
synopsized in Fig. 6.

The identification procedure starts from the first (and
smallest) cycle. Initial conditions Xð1Þ ¼ 1 and f ð1Þ ¼ 0
are naturally chosen, then X and f are progressively ex-
tended. In the first cycle (i ¼ 1), the identification process
is initialized according to the procedure reported in Table
2 in order to compute X for Kmax 2 ½1; kði¼1Þ

max � and f for
ke 2 ½1; kði¼1Þ

e max�. It is worth noting that a small cycle is ad-
vised for the initialization.

Once X and f have been initialized, they are extended by
fitting each unloading response as illustrated in Fig. 6. At
cycle (i), the beginning of functions X and f have previously
been determined, and the next identification action is per-
formed in two steps. At first, the force-extension f is known
for values of Kvirgin

e corresponding to macroscopic stretches
ranging in 1 < ke < kði�1Þ

e max, and therefore is used to compute
XðKðiÞmaxÞ. In a second step, XðKmaxÞ being defined for the en-
tire cycle (i), f is extended for values of Kvirgin

e correspond-
ing to ke 2 ½kði�1Þ

e max; k
ðiÞ
e max�. Computational details for both

steps are provided in Tables 3 and 4 respectively. When
both X and f have been determined for cycles up to (i),
the identification strategy is iterated for cycle (iþ 1). Let
us note that intermediate values for f and X are given by
a linear interpolation.

During the identification procedure described above,
evolutions of X and f are defined by experimental data only.
However, it was noticed that the following restriction,

f ðKvirgin
e 6 1Þ ¼ 0 ð17Þ

was favorable for a good comparison between the model
and the experimental data in terms of induced anisotropy.
While proof of such a restriction will be discussed in the
next section, it may be noticed that this restriction may
be interpreted as if directions in compression do not sus-
tain stress but only stretched directions do. Anyhow,
accounting for Eq. (17) within the proposed framework
does not lead to any adjustment in the constitutive equa-
tions or the identification procedure previously presented.

The proposed identification procedure was tested on
material A. A first cycle is performed up to kði¼1Þ

max ¼ 1:1, then
for each cycle, the maximum stretch was increased with a

Fig. 6. Identification procedure.

Table 2
Identification procedure initialization.

Experimental data First cycle maximum stretch kði¼1Þ
max

Couples (r11; ke)
Initial conditions Xð1Þ ¼ 1

f ð1Þ ¼ 0
Mullins criterion Compute the directional governing

parameter KmaxðuÞ

KmaxðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u � Cðkði¼1Þ

max Þ � u
q

Model Relationship between (r11; ke) and (X; f )

r11 ¼
R R
Sg u2

1k2
e � u2

2=ke

� �
dS

with g ¼ f ðKeÞ=Ke � f ð1Þ, and

logðKeÞ ¼ X logðKvirgin
e Þ

Numerical resolution Compute XðKmaxÞ for Kmax ¼ kði¼1Þ
max and

f ðKvirgin
e Þ for ke ¼ kði¼1Þ

e max with a local square
minimization of r11

Compute few intermediate values of

f ðKvirgin
e Þ for ke 2 ½1; kði¼1Þ

e max� with a local
square minimization of r11 and the
computed X value



step of D logðkÞ ¼ 0:1. The interest of such a loading stands
in smaller first few cycles before the difference between
two successive cycles becomes significant. Therefore, the
loading is well suited for the identification, with a short cy-
cle for initialization (Table 2) and stretch intervals increas-
ing at each cycle for the computation of f (Table 4). Model
fit of the experimental unloading responses used for iden-
tification is shown in Fig. 7. Experimental responses appear
to be successfully represented.

Fig. 8a shows the elementary force-extension relation,
f ðKvirgin

e Þ, resulting from the identification procedure. One
may notice that f presents the classic features of a filled
rubber behavior, with a low stiffness and a quasi-linear re-
sponse at small stretch, then a sharp upturn followed by an
asymptotic vertical at larger stretch when the material
limit extensibility is reached.

The Mullins softening rule, XðKmaxÞ, is shown in Fig. 8b.
Considering the maximal stretch undergone by the mate-
rial before failure, the dependence of X to the maximum
extension is well approximated by,

X ¼ a logðKmaxÞ ð18Þ

with a a material parameter characterizing the softening
evolution rate. For material A, one gets a ¼ 8:8. The loga-
rithmic evolution of X with respect to the maximum exten-
sion is consistent with previous results aiming at

characterizing the Mullins softening (Merckel et al.,
2011). Furthermore, softening evolution rules defined in
order to converge toward a saturation limit are used in
other models, for instance Miehe and Keck (2000), Klüppel
and Schramm (2000) and Qi and Boyce (2004) among
others.

4. Results and discussion

4.1. Prediction of non-proportional loading resulting behavior

This section aims at illustrating the model predictive
capabilities. For this purpose, the force-extension relation,
f ðKvirgin

e Þ, and the Mullins softening law, XðKmaxÞ, previ-
ously identified for the material A are used to represent
the responses of material A when submitted to cyclic uni-
axial tension post non-proportional pre-stretchings.

Samples submitted to cyclic uniaxial tension tests are
now small dumbbell samples punched in larger samples
already submitted to a uniaxial or biaxial pre-loading. Be-
tween both the pre-loading and the loading experiments,
an important residual stretch recovery induced by the
material viscoelasticity occurs. The material viscoelasticity
is not accounted for here and the experimental data are
corrected according to Eq. (15) and the modeling condition
Fp ¼ I is set.

First, the experimental procedure is applied for k ¼ 2:5-
uniaxial stretch pre-loading, and small dumbbell samples
are cut at 45� and 90� from the pre-loading stretching
direction. The cyclic uniaxial tension is performed with
maximum stretches increasing of Dk ¼ 0:25 at each cycle.
According to criterion Eq. (11), the Mullins softening is
activated in some directions from the very first cycle, and
it evolves differently according to the directions. Compari-
son between the experimental unloading responses and
the model predictions are shown in Fig. 9. One may notice
that the experimental unloading curves are well approxi-
mated for small and large cycles and this without using
any adjusting parameter or further identification but by
using the material functions f and X identified earlier on
a virgin sample only (Section 3.3). Therefore, the model is

Table 3
First identification step at cycle i.

Experimental data Cycle i maximum stretch kðiÞmax

Couples (r11 ; ke) for ke < kði�1Þ
max

Initial conditions XðKmaxÞ known for Kmax 2 ½1; kði�1Þ
max �

f ðKvirgin
e Þ known for ke 2 ½1; kði�1Þ

e max �
Mullins criterion Compute the directional governing

parameter KmaxðuÞ

KmaxðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u � CðkðiÞmaxÞ � u

q
Model Relationship between (r11; ke) and (X; f )

r11¼
RR
Sg u2

1k2
e �u2

2=ke

� �
dS

with g ¼ f ðKeÞ=Ke � f ð1Þ, and

logðKeÞ ¼ X logðKvirgin
e Þ

Numerical resolution Compute XðKmaxÞ for Kmax ¼ kðiÞmax with a
mean square minimization of r11 on the

interval Kmax 2 ½kði�1Þ
max ; k

ðiÞ
max�

Table 4
Second identification step at cycle i.

Experimental data Couples (r11 ; ke) for ke > kði�1Þ
max

Initial conditions XðKmaxÞ known for Kmax 2 ½1; kðiÞmax�
f ðKvirgin

e Þ known for ke 2 ½1; kði�1Þ
e max �

Model Relationship between (r11; ke) and (X; f )
using

r11¼
RR
Sg u2

1k2
e �u2

2=ke

� �
dS

with g ¼ f ðKeÞ=Ke � f ð1Þ, and

logðKeÞ ¼ X logðKvirgin
e Þ

Numerical resolution Compute few values of f ðKvirgin
e Þ for

ke 2 ½kði�1Þ
e max ; k

ðiÞ
e max � with a local square

minimization of r11

Fig. 7. Model ability to fit the Mullins softened behavior of material A.



able to capture the material anisotropy induced by the
Mullins softening resulting from a uniaxial pre-loading.
Let us note that such a Mullins softening observed at the
very first cycles in Fig. 9a and b, could not be represented
with an isotropic Mullins criterion, which would have pre-
dicted Mullins reactivation at k ¼ 2:5 only.

Second, the same experimental procedure is applied to
samples submitted to biaxial pre-loads. Two pre-loading
conditions were chosen, F11 ¼ F22 ¼ 2:5 equi-biaxial

pre-stretching and F11 ¼ 2:5 and F22 ¼ 1:75 biaxial pre-
stretching. The small dumbbell samples were cut in the
direction of maximum stretching (direction 1). According
to criterion Eq. (11), the Mullins softening should not acti-
vate until k ¼ 2:5 was reached. Experimental responses
and model estimates are compared in Fig. 10. Apart from
the viscoelasticity exhibited by actual samples at the very
beginning of the unloadings that cannot be reproduced, the
model predictions appear to be accurate below and above

(a) (b)

Fig. 8. Identification results for material A. (a) Elementary force-extension relation. (b) Mullins softening rule.

(a) (b)

Fig. 9. Model prediction for 2.5-uniaxially pre-stretched material. Sample cut in directions (a) 45� and (b) 90� compared to direction of pre-stretching.

(a) (b)

Fig. 10. Model prediction of the uniaxial stress-stretch responses of samples biaxially pre-stretched material up to (a) F11 ¼ F22 ¼ 2:5 and (b)
F11 ¼ 2:5; F22 ¼ 1:75 and cut along the maximum pre-stretched direction.



the Mullins activation for both pre-loading conditions. The
softening induced by a biaxial loading appears to be also
well captured by the model.

Results shown in Fig. 10 yield to important conse-
quences in terms of material behavior modeling and iden-
tification. The mechanical tests performed in order to
obtain the experimental data involved a multiaxial loading
path, but the Mullins softening evolution rule XðKmaxÞ was
chosen as dependent of the maximal directional extension
only. The prediction abilities shown by the model proves
that X does not require complex account of the loading
multiaxiality and its complete identification may be per-
formed on a mere cyclic uniaxial tension test.

The following section aims at studying the actual mate-
rial anisotropy evolution and its model prediction. The

anisotropy is then characterized by measuring and com-
paring the stretches according to the principal stretching
directions.

4.2. Estimate of the induced anisotropy

The ratio F22=F33 evolution was introduced Section 2.4
to characterize the anisotropy changes during cyclic uniax-
ial tests. Fig. 11a shows the ratio F22=F33 model prediction
for a cyclic uniaxial loading performed on a 2.5-equi-biax-
ially pre-stretched material. As long as k ¼ 2:5 is not
reached, the Mullins softening does not evolve and
F22=F33 path remains identical. Once the Mullins softening
is re-activated, changes occurs and at each cycle, the path
slowly converges on a proportional uniaxial loading path

(a) (b)

Fig. 11. Model prediction for the anisotropy changes in-plane (2,3). (a) With Eq. (17) condition. (b) Without Eq. (17) condition.

(a) (b)

(c) (d)

Fig. 12. Model prediction for material (a) B1, (b) B2, (c) B3, (d) B4.



(i.e. F22=F33 ¼ 1). This modeling result is to be compared
with experimental observations presented Fig. 3b. Note
that the discrepancies between Figs. 3a and 11 are due to
the model initial isotropy assumption, which does not
match the actual material initial anisotropy. Nonetheless,
the trend of the material anisotropy evolution is well cap-
tured by the model.

In the modeling section, the condition Eq. (17) was
introduced for the elementary force-extension. When
releasing this condition, the fitting procedure drives to a
function f reaching negative values for k < 1. The resulting
ratio F22=F33 computed with the function f obtained with-
out applying condition Eq. (17) is shown in Fig. 11b. During
the equi-biaxial pre-loading, the material is softened in
direction 2 while remaining virgin in direction 3. Since
the material stiffness is higher in direction 3, boundary
conditions r22 ¼ r33 ¼ 0 should yield to F22=F33 > 1. This
is obviously not the case in Fig. 11b. Moreover, one may
notice in Fig. 11b that the anisotropy intensity increases
with kmax while it is expected to decrease. The result is
obviously unrealistic and validate the condition Eq. (17),
which supports the physical picture of directions in com-
pression not sustaining the stresses.

4.3. Other model interest: Study of the effect of filler amount

Hitherto, only the reference material labeled A in Table
1 was used to develop the mechanical behavior model and
the identification procedure. This section aims at applying
the model on various materials in order to validate the
identification procedure and to investigate the effect of
the filler amount. Materials B1, B2, B3 and B4 described
in Table 1 were submitted to cyclic uniaxial loadings with
a maximum stretch increasing at each cycle of
D logðkÞ ¼ 0:1 step and up to failure. The evolution rules f
and X were computed for each material performing the
identification procedure detailed in Section 3.3. The model
responses and experimental data are favorably compared
in Fig. 12. Therefore, the model and the identification pro-
cedure was successfully extended to several materials,
exhibiting distinct mechanical behaviors and distinct sen-
sitivities to the Mullins softening.

In order to investigate dependencies to the filler
amount, evolution rules f and X are compared in Fig. 13.

Fig. 13a shows the filler amount effect on the identified
elementary force-extension relations. Every material
exhibits a quasi-linear virgin response followed by a pla-
teau ended by a sharp upturn. The main dependences of f
to the filler amount are the initial stiffness increase and
the upturn stretch decrease with the filler amount. These
observations are consistent with former results from the
literature. Actually, the reinforcing effect of filler volume
fraction on the initial stiffness is well known (Einstein,
1906; Guth and Gold, 1938).

The effect of the amount of fillers on X is illustrated
Fig. 13b. As expected, the Mullins softening rate increases
with the amount of fillers, see for instance Mullins and
Tobin (1957), Bergström and Boyce (1999), Klüppel and
Schramm (2000), Dorfmann and Ogden (2004) and Merc-
kel et al. (2011) among others. One may notice that for
every material the evolution of X is quasi-linear with re-
spect to the logarithm of the maximum directional stretch
Kmax. The same property was observed and shown in
Fig. 8b for material A, therefore the Mullins softening evo-
lution rule introduced in Eq. (18) may well be general.

5. Conclusion

This contribution aimed at proposing a constitutive
model for the mechanical behavior of filled rubbers with
Mullins softening. The constitutive equations were
grounded on an thorough analysis of original experimental
data. Basic uniaxial tensile tests and unconventional non-
proportional tensile tests including uniaxial and biaxial
loading paths were used to produce the necessary experi-
mental data. The model was based on a directional ap-
proach in order to capture the anisotropy induced by
general non-proportional pre-loading histories. The Mul-
lins softening was accounted for by the strain amplification
concept and was activated by a directional criterion. The
framework was developed in order to avoid any a priori
assumption of the mathematical forms of the elementary
strain energy density and of the Mullins softening evolu-
tion rule. An original identification procedure was pro-
posed in order to build both functions from a cyclic
tensile stress-stretch response. An accurate fit of the exper-
imental data provided by a cyclic proportional uniaxial
tensile test illustrated the model ability to capture the

(a) (b)

Fig. 13. Identification results for material with different amount of fillers. (a) Elementary force-extension functions. (b) Mullins softening rules.



material stress-softening. Once identified on a proportional
cyclic test, the model was shown to successfully and accu-
rately predict uniaxial stress-stretch responses for non-
proportional uniaxially or biaxially pre-stretched samples.
Finally, the model and the identification procedure were
applied on various filled rubber materials evidencing dif-
ferent mechanical behaviors and sensitivities to the Mul-
lins softening. The results showed favorable comparisons
and illustrated the model flexibility to apply to a wide
range of rubber-like materials.
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