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Modeling of Semisolid Flow
Favier, Arts et Métiers ParisTech, Paris, France

Nomenclature
VðÞ – Gradient
D
Dt

ðÞ[ v

vt
ðÞD u $VðÞ Material derivative

V$ðÞ – Divergence
r – Density of the overall semisolid
u – Velocity vector
s – Stress tensor
b – External volume forces
S – Deviatoric part of stress tensor
p – Hydrostatic pressure
trðsÞ ¼ s11 þ s22 þ s33

I – Identity tensor
e – Internal specific energy
D – Strain rate tensor
r – Internal volume heat sources
q – Heat flux vector
h – Specific enthalpy

fs – Volume fraction of solid phase
T – Temperature
h – Viscosity
_g – Shear rate
K, K 0 – Material consistency
m – Strain rate sensitivity parameter
l – Structural parameter describing the degree
of agglomeration of the solid globules

k – Thermal conductivity
cp – Specific heat coefficient
L(s/l) – Latent heat of fusion
hext – Heat transfer coefficient
n; t – Unit normal and tangential vectors
smax – Maximum shear stress in the modified friction

Coulomb’s law
Ks – Permeability of the porous solid phase

Why Model Semisolid Flow?

Numerical simulations are very useful to explore the semisolid flow and heat transfers during processing, predict the zones of defects
and optimize the processing parameters (load, speed, billet, and die temperatures). They are also of great interest to gain new insight
into new technology and new design rules for the best exploitation of semisolid processing. Semisolid processing involves very large
deformations (a cylindrical billet is shaped into an engine suspension mounts, for instance) and solidification phenomena from the
starting semisolid state to the final solid state. The spatial arrangement of the liquid and solid phases, at the microscopic scale (scale
of the microstructure¼ 10 mm) and at the macroscopic scale (scale of the component¼ 10 cm) can strongly change during pro-
cessing. In extreme cases, it results in a liquid–solid phase segregation as observed when a sponge filled with water is pressed.
Numerical simulations do not take into account all the complicated phenomena occurring during semisolid processing. Even so,
they are of great interest to reduce the cost and time-consuming experiments and separately investigate the effect of processing and
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materials parameters on the processing and the final product. Numerical simulations require methods to discretize the studied
system and solve the differential equations of the thermomechanical problem. They require models to represent the thermal and
mechanical behavior of the material. Models require input rheological and metallurgical data from experiments. And last, specific
experiments are needed to verify and validate the numerical simulations. All these items are explained and discussed in the
following sections.

General Purpose

Semisolids are metallic alloys containing solute atoms heated at a temperature between the solidus and the liquidus. They are
constituted of two phases: the liquid and solid phases. The mechanical resistance of the liquid and solid phases is different by about
6–9 orders of magnitude. The behavior of semisolid may change from a liquidlike behavior to a solidlike behavior during pro-
cessing, depending on the solid fraction and spatial distribution of the two phases within the material. That is why both fluid and
solid modeling approaches may be used to simulate semisolid processing. Semisolid during processing is considered as a closed
continuous thermodynamic system. It is able to exchange energy (heat and work) but not matter with the environment. Its response
is controlled by equations of conservation. Fluid and solid approaches are based on the same differential equations of conservation:
conservation of mass, conservation of momentum, and conservation of energy. They mainly differ in the type of constitutive
equations (elastic-viscoplastic for the solid approach and pure viscous for the liquid approach) used to describe the semisolid
behavior and the way to follow a particle throughout a flow: the Lagrangian representation for the solid approach and the Eulerian
representation for the fluid approach. The Eulerian representation is more convenient to describe flow. The Lagrangian represen-
tation is more appropriate when final properties of the component are of interest (1). The choice between these two approaches is
also motivated by the type of semisolid processing. Rheocasting for which the semisolid state is reached by cooling the liquid and
the solid fraction is less than 0.5 is usually simulated by continuous fluid dynamics (CFD) codes. Thixoforming for which the
semisolid state is reached by reheating the material from the solid state and the solid fraction is greater than 0.5 is usually simulated
by solid metal forming–type codes.

Variables such as the density are different for the liquid and solid phases. The velocity of liquid phase is greater than the velocity
of the solid phase in the liquid–solid separation (segregation) case. Accounting for these differences rises to two-phase modeling.
The laws of conservation, the models, and the input material data are given for both phases. Solving the problem called two-phase
modeling is very complicated.

Current commercial codes actually ignore the presence of the two phases at the microscopic scale. The laws of conservation,
the models, and the input material data are thus given for a semisolid element. The resulting modeling is called one-phase
modeling. A semisolid element is a small ‘blob’ of semisolid considered as a homogeneous equivalent medium (HEM), which
has the same properties as the real and heterogeneous material. This blob of size D contains a large number of solid globules of
mean size d to ensure that it statistically represents the material response (Figure 1). If so, the blob is called a representative
volume element (RVE). The size D of the blob must be much lower than the part size L in order to consider the RVE as a material
element for computational mechanics (Figure 1). The macroscopic (component), mesoscopic (RVE), and microscopic (solid
globules) scales are designated as well separated. The fields such as density, velocity, stress tensor, temperature, and enthalpy
associated with the RVE represent the average of the local fields over the liquid and solid volume within the blob. Thermo-
mechanical properties such as viscosity, thermal expansion coefficient, and heat capacity are also associated with the RVE. If the
equations of conservation are universal (i.e., identical for any thermomechanical system), thermomechanical properties are
specific to each material. Since they are associated with the RVE, they are said to be ‘effective’ and are determined using models.
The resulting modeling is called one-phase modeling.

In the following sections, two classes of simulations are distinguished: simulations based on one-phase modeling and two-
phase modeling. Background reading for this chapter are books on fluid and solid mechanics (1–4), numerical modeling in
materials science and engineering (5–7), and more specific books on semisolid processing: Suery and coauthors’ book (8,9), the
book edited by Atkinson from the training school organized for the ‘THIXOSTEEL’ COST 541 consortium on Modeling of Semi-
Solid Processing (10–13), the overview of achievements of thixoforming edited by Gerhard Hirt and Riener Kopp (14,15), and the
book on Semi-Solid Processing of Alloys (16). The literature on numerical models of semisolid processing was reviewed in detail by
Atkinson (17).

One-Phase Modeling

General Equations of the Thermomechanical Problem

Laws of Conservation
Equations of conservation can be written for the whole system (the whole semisolid billet) or locally. In the following sections, the
equations of conservation are written for a semisolid RVE (blob). In one-phase modeling, the solid fraction of the RVE can change
because of solidification/melting phenomena but not because of liquid–solid segregation, which is neglected. In other words, the
velocities of the liquid and solid phases are assumed to be equal. Also, the temperatures of the liquid and solid phases are chosen
equal.



5.10.3.1.1.1 Mass conservation

The law of conservation of mass expresses that the time rate of change of density is balanced by a volume change ðV $ uÞ [1].
D
Dt

rþ rV $ u ¼ 0 [1]

5.10.3.1.1.2 Solute atom conservation

As mass, the overall quantity of solute atoms is conserved during processing. The liquid and solid phases have different solute atom
concentrations at equilibrium so that solute atoms may diffuse from one phase to another. However, semisolid processing is very
rapid, so atom diffusion is usually neglected. The solute atom concentration of RVE is assumed to remain constant over time and is
equal to the overall concentration.

5.10.3.1.1.3 Momentum conservation

The law of conservation of momentum states that the time rate of change of momentum (left-hand side) is related to the resultant
force acting on the RVE [2]. V $ s expresses the internal cohesive forces and r b the external volume forces such as the gravity forces,
which are usually neglected.

r
D
Dt

u ¼ V $sþr b [2]

For isotropic material such as semisolid alloy, it is convenient to separate the stress tensor s into its deviatoric S and hydrostatic
parts �p I.

s ¼ S� pI [3]

p is the hydrostatic pressure written as

p ¼ � 1
3
trðs Þ [4]

Mechanical field

0  

Real 

heterogeneous 

medium

L

D

d

Figure 1 Schematic representation of different scales of analysis (taking here, as an example, a nondendritic semisolid microstructure with globules of
solid-appearing pale and liquid between (and within the globules) appearing darker).



Equation [2] can be rewritten as:

r
D
Dt

u ¼ V $S�V pþ r b [5]

5.10.3.1.1.4 Energy conservation

The total energy of a system is usually stated as the sum of the internal and kinetic energies. The total energy can change when heat is
added to the system and/or work is done by the system. Accounting for the principle of virtual power deduced from the conservation
of momentum, the law of conservation of energy, also known as the first law of thermodynamics ([6]), states that the time rate of
change of internal energy results, from the left to the right of the right-hand side, from the intrinsic dissipation due to deformation
of the continuum, the external volume heat sources (possibly associated with Joule effect or radioactivity but equal to zero in the
semisolid processing case), and the heat exchanges (18).

r
D
Dt

e ¼ s : Dþ r � V$ q [6]

Phase changes (melting or solidification) may take place during semisolid processing. Some heat, called the latent heat, is
released by the material during solidification. As a result, the enthalpy of RVE changes. That is why the enthalpy is preferred to the
internal energy to deal with [6]. The enthalpy and internal energy are related via:

h ¼ eþ p
r

[7]

The change of pressure during semisolid processing is small because the solid and liquid are condensed matter and so very little
compressible in comparison with gas. So the pressure variation effect on the change of enthalpy is neglected. Taking into account the
conservation of mass and eqns [2] and [4] and neglecting external volume heat sources, eqn [6] for semisolid processing can be
rewritten as

r
D
Dt

h ¼ S : D�V$ q [8]

5.10.3.1.1.5 Summary

The thermomechanical problem has 11 unknown variables. They are as follows:

l Three components of the velocity vector from which the six components of the strain rate tensor can be determined by

D ¼ 1
2

�
V uþV T u

�
[9]

l Six components of the stress tensor (or equivalently the hydrostatic pressure and the five components of the deviatoric tensor for
isotropic material).

l Temperature.
l Density.

Solving differential equations with partial time and spatial derivatives requires specifying initial and boundary conditions of the
system. In addition, the number of conservation equations is five (one from [1], three from [2], and one from [8]). Additional
relationships between variables are thus needed to solve the problem. Models are proposed to provide these relationships. They can
be categorized into relationship between density and temperature, mechanical constitutive equations, and thermal constitutive
equations. We mentioned that one-phase modeling ignores the details of the microstructure. However, because the response of the
RVE is controlled by the presence of the liquid and solid phases, it is very useful to incorporate internal variables to describe the RVE
microstructure on average. Thus, the solid fraction is commonly introduced. Other variables, describing, for instance, the degree of
agglomeration of the solid skeleton, may also be used. The current models for semisolid processing simulations are presented in the
next sections.

5.10.3.1.2 Constitutive Equations for Mass Conservation
Density of metal liquid is about 1–10% smaller than density of metal solid. As a result, the density of semisolid changes with
temperature and solidification/melting phenomenon (not with pressure since solid and liquid are condensed matter). The effective
density can be written as a function of temperature or solid volume fraction fs (or liquid fraction fl).

Since,

fs þ fl ¼ 1 [10]

one can write:

r ¼ fsrs þ ð1� fsÞrl [11]



where rs and rl are the density of the solid phase and liquid phase, respectively. When semisolid solidifies, its density increases since
the density of solid in greater than the density of liquid for metal alloys. The conservation of mass [1] requires a volume decrease,
leading to the well-known shrinkage phenomenon.

The temperature dependence of rs and rl is usually neglected. Thus, the temperature dependency of RVE is captured via fs(T) only
fs(T) is thus needed. Since diffusion of solute elements is not taken into account, the solid fraction is assumed to depend on
temperature only. For binary alloys, it results in two limit cases: the lever rule model, for which infinite diffusion is considered in the
solid and liquid phases, and the Scheil model, for which no diffusion takes place in the solid, while it is still infinite in the liquid (6).
Such models can be extended to multicomponent alloys using thermodynamics software (19). Experimental data can also be used.
Since the solid fraction–temperature relationship when the semisolid alloy melts or solidifies is not equal and depends on heating/
cooling kinetics (20), it is important but not so simple to get data under the same conditions as processing.

In practice, the density of semisolid is usually assumed to remain constant during processing. The material is said to be
incompressible.

5.10.3.1.3 Constitutive Equation for Momentum Conservation
The mechanical behavior of semisolid alloy is strongly shear thinning and time dependent (thixotropic). From a modeling point of
view, semisolid is commonly considered as an isotropic, incompressible, nonlinear viscous (also called viscoplastic) material. The
stress tensor is written as [3] and

S ¼ 2hD [12]

where h is the viscosity. The mathematical representation of viscosity is thus crucial to properly describe the mechanical behavior.
Rheological experiments (see Chapter 5.08) showed that viscosity depends on many parameters: solid fraction (temperature), shear
rate, and time, but also on the initial degree of agglomeration of solid phase. Different constitutive equations were developed by
researchers. They are presented with an increasing degree of sophistication.

5.10.3.1.3.1 Constitutive equations for steady-state viscosity

At isothermal conditions, at the equilibrium state, semisolid alloys are strongly shear thinning (the viscosity decreases with
increasing shear rate _g), and the most common descriptions are given in Table 1. The shear rate represents an equivalent strain rate
and can be replaced by the von Mises equivalent strain rate Deq:

_g ¼ ffiffiffi
3

p
Deq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D

q
[13]

The strain rate sensitivity parameter m is equal to 1 for pure liquid (Newtonian behavior) and 0.2–0.3 for pure hot solid (these
values are commonly used for hot forging). The consistency K also depends on solid fraction. Some models, inspired from classical
suspension rheology modeling (21,22), explicitly incorporated the solid fraction in constitutive equations. For instance, the
consistency is assumed to grow exponentially with increasing solid fraction in Joly andMehrabian’s model (23). In practice, K andm
are determined for each solid fraction by matching the calculated value to the steady-state experimental viscosity as illustrated in
Figure 2.

The Ostwald-de-Waele model reproduces quite well the experimental data in the shear-thinning region but is not sufficient to
capture the plateau region found in the case of very high shear rate. This plateau region, associated with a Newtonian behavior, is
captured using the Cross model (24). In the case of very low shear rates, the Ostwald-de-Waele predicts an infinite viscosity for
_g ¼ 0. That is why the Cross model is preferred for industrial applications. However, the Cross model considers that semisolid
behaves like a Newtonian fluid, and there is no clear experimental evidence of such behavior: experimental values are sparse and
missing (17).

The Herschel–Bulkley model differs from the two others in the yield stress sc , which is a property thoroughly discussed in
the literature (14,16,17). The yield stress is the stress below which there is no flow of the alloy. It seems that the experimental

Table 1 Main constitutive equations for semisolid alloy considered as suspension

Ostwald-de-Waele (also known as power or Norton-Hoff
law in solid mechanics)

h ¼ K _gm�1

m : strain rate sensitivity parameter,
m¼ 1 for pure liquids; m¼ 0.2–0.3 for
pure hot solids, K : consistency

Cross (24) h� hN

h0 � hN
¼ 1

1þ K 0 _g1�m

K 0: material parameter
h0, hN: viscosity when _g/0, _g/N

Herschel–Bulkley
(Bingham model is obtained for m¼ 1)

_g ¼ 0 for s < sc; _g ¼ s
h
for s � sc with h ¼ sc

g_
þ K _gm�1

sc: yield stress



evidence and the physical justification of such a yield stress are not clear. The main issue is that the yield stress seems more
related to transient than steady-state response (25). Modigell and coauthors (14,26) suggested to differentiate between
isostructural, dynamic, and static yield stress. Even so, it is very convenient from a computational point of view to include
such a yield stress to account for observations of regions described as unyielded or dead in slurry having experienced
a forming operation (16).

Most numerical simulations used the constitutive equations discussed because they are simple to implement in numerical code
and identify from experiments. However, they describe steady-state response while transient response is involved during semisolid
processing. Academic researchers have developed models accounting for the time dependency of semisolid behavior, namely
thixotropic behavior.

5.10.3.1.3.2 Constitutive equations for thixotropic behavior

The origin of semisolid thixotropic behavior is now well understood. Solid globules tend to agglomerate at rest and disagglomerate
under deformation. Under shear at a given shear rate, the degree of agglomeration of solid phase tends to an equilibrium value
resulting from a balance of agglomeration and disagglomeration. A scalar parameter, also labeled as the internal variable or
structural parameter, is introduced to describe the degree of agglomeration of the solid globules (approach initially suggested by
Cheng and Evans (27) for thixotropic fluids). A fully agglomerated solid phase is usually represented by l¼ 1 and a completely
disagglomerated solid phase, with all the globules separate from each other, by l¼ 0. Thixotropy is introduced mathematically via
the time derivative Dl=Dt ¼ 0. The most general description is given by:

D
Dt

l ¼ að1� lÞb � cl _gd [14]

The driving force for agglomeration is controlled by the difference of the degree of agglomeration from its maximum value, i.e.,
(1�l) raised to a power b. The rate of disagglomeration is given by the product of the current degree of agglomeration and the shear
rate, raised to a power d and, a and c are material constants. At a particular shear rate, the initial degree of agglomeration tends to an
equilibrium value given by Dl=Dt ¼ 0.

The structural parameter was introduced in many constitutive equations. Two examples are given in Table 2 (see also (28,29)
and the review (17)). Modigell and coauthors (14,30) proposed to include the structural parameter in the Herschel–Buckley model
(Table 2). Brown and coauthors (31–33) suggested a physically based modeling considering that deformation mainly takes place
within the solid bonds between the solid globules. Interestingly, Brown and coauthors introduce the concept of effective solid
fraction in their modeling. The effective solid fraction f effs accounts for the solid phase and the liquid entrapped inside the solid
globules and agglomerates. It is written

f effs ¼ fsð1þ 0:1lÞ [15]

The entrapped liquid cannot flow and acts as an additional solid phase from a mechanical point of view (34). To better
understand the role of this effective solid fraction, Perez et al. (35) simulated the solid cluster formation resulting from competing

Figure 2 Cross model fitted to apparent viscosities obtained from various works on Sn15%Pb alloys Reproduced from Atkinson, H. V. Modeling
the Semisolid Processing of Metallic Alloys. Prog. Mater. Sci. 2005, 50, 341–412; Liu, T. Y. PhD Thesis, University of Sheffield, Sheffield, UK, 2002.



kinetics for agglomeration and disagglomeration processes. They calculated the entrapped liquid fraction for different shear rates
and clearly observed a relationship between the semisolid viscosity, the effective solid fraction, and the shear rate.

In order to better correlate the role of entrapped and nonentrapped liquid, solid and solid bonds on the mechanical response of
semisolid, a model, also called micro-macro model, based on micromechanics and homogenization techniques has been proposed
(36,37). TheRVE response is deduced from thebehavior of thedifferent phaseswithin thematerial andmicrostructure. Inotherwords,
the material is considered as a multiphase mechanical system for which the momentum equation is solved assuming homogeneous
boundary conditions. Because it is impossible to have knowledge on every detail of the microstructure, only relevant statistical
information for themicrostructure is incorporated in the definition of RVE. Semisolid is a two-physical phase system. However, from
a mechanical point of view, four mechanical phases can be differentiated: the solid globules, the solid bonds between the solid
spheroids, the entrapped liquid, and the nonentrapped liquid (Figures 3 and 4(a)). As mentioned previously, the viscoplastic
deformation is mainly concentrated in the solid bonds and the free liquid carries the flow. In contrast, the solid globules entrapping
some liquid deform very little, though they strongly contribute to increase the semisolid resistance because of hydrodynamic
interactions among agglomerates. In a statistical representation of the microstructure, this complex system is viewed as a spherical
‘inclusion’ (because of the isotropic spatial distribution of heterogeneities) gathering all the solid globules with entrapped liquid
surroundedby a shell (coating) composedof the solid bonds and the free liquid (Figures 4(b) and4(c)). This representation is used to
emphasize the spatial distribution of solid and liquid and to concentrate the deformation in the solid bonds and the free liquid. As
a consequence, the shell is called the active zone from the deformation point of view. Themechanical response of such representation
is calculated by solving the momentum conservation equation. A constitutive equation given for each phase is required. The solid
phases are taken as pure nonlinear incompressible viscous material. The liquid phases are considered as Newtonian fluid.

The solid fraction in the active zone, which represents the quantity of solid bonds, is taken as structural parameter. Its time
derivative is chosen similar to Dl=Dt ¼ 0 except that it also depends on solid fraction. This dependence offers the possibility to
include the pure liquid or solid case.

5.10.3.1.3.3 How to describe the transition from liquidlike to solidlike behavior?

The main challenge of thixotropic modeling is actually to capture the transition from a solidlike behavior when the solid globules
form a solid skeleton (l¼ 1) to a liquidlike behavior when the globules are separated from each other (l¼ 0). Historically,
constitutive equations developed to describe semisolid behavior resulted from the theory of suspension considered as pure viscous
fluid. In general, solid displays elastic-viscoplastic behavior. Viscoplasticity takes place when the solid is subjected to higher stresses
than its yield stress. Solid usually hardens with plastic deformation. At temperatures close to solidus, the yield stress and hardening
(which decrease with increasing temperature) are negligible. The solid becomes a pure viscoplastic material and its behavior is
commonly described by the Ostwald-de-Waele law, which is called the power or Norton-Hoff law in solid mechanics. So, in this
case (which is the case of semisolid alloy), the solid and liquid approaches join one from each other. In practice, as with yield stress,
it is very useful to introduce an elastic-type behavior to describe the semisolid response in the first stage of the deformation. Figure 5
shows that compression tests (39) exhibit a steep rise of load up to a peak at the beginning of the test. It has been demonstrated that
a pure viscous formalism cannot reproduce such a behavior (37). Additionally, incorporating elasticity offers the possibility to

Free 
liquid

Solid 
bonds

Entrapped
liquid

Solid globules

Figure 3 Microstructure of 7075 alloy after water quenching from the semisolid state with 0.82 solid fraction. Reproduced from Neag, A.; Favier, V.;
Bigot, R.; Pop, M. Microstructure and Flow Behavior during Backward Extrusion of Semi-Solid 7075 Aluminium Alloy. J. Mater. Process. Technol.
2012, 212, 1472–1480.

Table 2 Two examples of constitutive equations incorporating the structural parameter l

Herschel–Bulkleyþ thixotropy (30 )
h ¼

�
sc
g_
þ K _gm�1

�
l

Brown and coauthors (31–33 )

h

hl
¼ AðlÞ

0
BBB@

�
f effs =f cs

�1=3

1�
�
f effs =f cs

�1=3

1
CCCAþ ðn þ 1ÞCðT Þlfshnl _gn�1

hl: viscosity of liquid, A(l): hydrodynamic parameter, C(T ): temperature-dependent parameter, n¼ 1/m
f cs : maximum effective volume-packing solid fraction at a given level of agglomeration



investigate residual stresses after unloading and cooling down to room temperature. A complete model that captures the thixotropic
and temperature-dependent behavior and can degenerate properly to pure solid or liquid behavior as well as free solid suspensions
was proposed (40). However, it has to cope with the issue of model parameter identification.

5.10.3.1.4 Constitutive Equations for Energy Conservation
As mentioned, density and viscosity strongly depend on temperature and solid fraction. The temperature field is given by the
equation of conservation of energy [8]. The internal heat source term comes from intrinsic dissipation. It is calculated from
constitutive equations mentioned (Section 5.10.3.1.3):

S : D ¼ 2hD : D ¼ 3hD2
eq [16]

The heat flux vector is given by the isotropic Fourier law:

q ¼ �kV T [17]

where k is the effective thermal conductivity of semisolid RVE. Conductivity for solid phase is greater than for liquid phase. The
effective conductivity is commonly estimated by using a mixture law:

k ¼ fsks þ ð1� fsÞkl [18]

It may also depend on the connectivity of the solid phase, but this phenomenon is neglected. As far as Dh=Dt is concerned,
additional relationships between enthalpy, solid fraction, and/or temperature are required. When no phase change is involved, for
condensed matter such as semisolids, the specific enthalpy is given by:

hðx; tÞ ¼
Z Tðx;tÞ

0
cpðT 0ÞdT 0 [19]

(a) (b) (c)

HEM

I

A

b
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Solid bonds

Solid globules Entrapped liquid 

Free liquid
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Figure 4 (a) Schematic representation of the semisolid microstructure. (b) Representation of the four mechanical phases distributed in one inclusion
of solid containing entrapped liquid surrounded by a shell of free liquid and solid bonds. (c) Homogenization procedure: the coated inclusion is
embedded into a matrix representing the homogeneous equivalent medium having the effective properties of the real heterogeneous semisolid
material. Reproduced from Favier, V.; Cezard, P.; Bigot, R. Transient and Non-Isothermal Semi-Solid Behaviour: 3D Micromechanical Modeling. Mater.
Sci. Eng. A 2009, 517, 8–16.

Figure 5 Experimental and predicted load–displacement curves comparing an elastic–viscoplastic model, a pure viscoplastic model (both with fraction
solid of 0.7) (Reproduced from Favier, V.; Atkinson, H. V. Micromechanical Modelling of the Elastic–Viscoplastic Response of Metallic Alloys under
Rapid Compression in the Semi-Solid State. Acta Mater. 2011, 59, 1271–1280.), and experimental results (Reproduced from Liu, T. Y.; Atkinson, H. V.;
Kapranos, P.; Kirkwood, D. H.; Hogg, S. C. Rapid compression of aluminum alloys and its relationship to thixoformability. Metallurgical Transactions, A
2003, 34, 1545–1554.) for Alusuisse A356 alloy at 574 �C and a ram speed of 500 mm s�1.



where cp(T) is the specific heat for constant pressure. Note that cp depends on temperature only (and not directly on time and space).
In this case, the equation of energy conservation becomes a simple balance heat equation:

rcp
DT
Dt

¼ V $ðkVTÞ þ S : D [20]

When phase change is involved, enthalpy–temperature curves exhibit a steep rise corresponding to the latent heat of
fusion (Figure 9). In one-phase modeling, an additional internal heat source is introduced and the conservation of energy is
written:

rcp
D
Dt

T ¼ V $ðkVTÞ þ S : DþrLðs=lÞ
D
Dt

fs [21]

As k, cp is the effective specific heat calculated, commonly given by a mixture law:

cp ¼ fscps þ ð1� fsÞcpl [22]

L(s/l) is the latent heat of fusion. If a relationship between the solid fraction and temperature is specified (typically the Scheil or lever

rule models),
D
Dt

fs is calculated via the relation
D
Dt

fs ¼ dfs
dT

D
Dt

T so that [21] is transformed to:

rcEQ
D
Dt

T ¼ V $ðkVTÞ þ S : D [23]

with

cEQ ¼ cp � Lðs=lÞ
dfs
dT

[24]

This method is called the equivalent specific heat coefficient method.

5.10.3.1.5 Boundary and Initial Conditions
5.10.3.1.5.1 Initial conditions

Semisolid processing is very rapid, involving many and strong changes in velocity, pressure, and temperature fields as well as
microstructure. It is labeled as an unsteady-state problem (it involves transient regimes). Numerical simulations require specifying
the starting state of the billet and dies. A simple but not so realistic approach is to consider a uniform initial state; namely, velocity
and temperature fields are the same in the whole billet. Initial temperature is assumed to be the target temperature of the billet.
Initial velocities are taken equal to zero. For CFD code, the initial pressure is taken equal to the atmospheric pressure. For solid
mechanics-based code, the residual stresses are taken equal to zero.

The hypothesis of uniform initial state is right when the semisolid is obtained from the liquid state. When the billet is
reheated from the solid state in an induction furnace, heat losses caused by convection and radiation at the lateral surface of the
slug and by heat conduction at the surface bottom occur. Consequently, a large difference between the core and the edge
temperature exists (41,42). The transportation of the billet from the reheating to processing place involves also some temper-
ature gradients (43).

5.10.3.1.5.2 Boundary conditions

Industrial thixoformed or rheoformed components have complex 3D shapes. The 3D numerical simulations are required to
simulate their processing and the boundary conditions are set at the billet boundaries. In the case of components having symmetry
that is conserved during processing such as axisymmetric cups or wheels, 2D simulation can be used and specific boundary
conditions apply on axis symmetry (6).

5.10.3.1.5.2.1 Thermal boundary conditions

Thermal exchanges at the billet surface (air/billet or die/billet) are usually represented by:

q $ n ¼ hextðT � TextÞ [25]

hext is the heat transfer coefficient. It relates the heat flux density to the temperature difference between the billet and the envi-
ronment, commonly chosen as room or die temperature. hext takes into account the overall heat exchanges: conduction, convection,
and radiation. It changes during the processing due to solidification, change in semisolid viscosity, and contact area between the die
and the billet. Knowledge of hext is still a big challenge. It is usually estimated using an inverse method (6,42). Thermocouples are
fixed in the tool and possibly in the billet (42,44). The experimental temperature values are compared with simulated curves
considering the tool as thermoelastic to determine the heat transfer between forming material and tool. In practice and for industrial
applications, the tools are considered as rigid bodies because the computational time is about 10 times longer with thermoelastic
than rigid tools. Since the definition of rigid dies has an influence on the heat flow compared with the experimental values, the heat
transfer coefficient has to be readjusted (42).

In the solid mechanics approach, heat due to friction at the die wall/billet is accounted for using thermal boundary conditions,
while in CFD it is incorporated in the internal heat source term via [16]. In the solid mechanics formalism, it is calculated by the



product of the tangential stress at the wall/billet interface and the tangential component of the difference between the material and
tool velocity vector.

q $ n ¼ 	
t $S $ n


� 	
t $
	
u� utool




[26]

Expressions of quantities involving in [26] are given by [30] and [31].

5.10.3.1.5.2.2 Mechanical boundary conditions

Figure 6 shows the principle of a thixoextrusion test studied by Becker et al. (43) at two instants in time. The die was axisymmetric, so
a 2D axisymmetric simulation is appropriate. This example is used to illustrate the various types of mechanical boundary conditions
that are commonly implemented in numerical simulation of semisolid processing. In general, a stress (or pressure) or velocity vector
can be applied at the billet boundaries. To simulate the effect of gas pressure Pgas in the dies, the boundary condition is:

n $s $ n ¼ �Pgas [27]

where n is the unit normal vector at the gas/billet interface. In Figure 6, the gas pressure is equal to the atmospheric pressure. For billet
surface in contact with a moving tool such as the piston, the normal velocity of the tool and billet at the interface is assumed equal.

ð u� utoolÞ$ n ¼ 0 [28]

What about the tangential velocity? When fluid mechanics is used two limit cases can be differentiated: no-slip condition
(perfect adhesion)

u ¼ utool [29]

and slip condition
t $S $ n ¼ �f t $ð u� utoolÞ [30]

where f is a friction coefficient. Its determination is very difficult since it depends on many parameters such as surface roughness,
temperature, contact pressure, and so on f¼ 0 expresses a perfect slip (perfect lubrification). Wall slip effects can take place in
semisolid processing related to the presence of a thin film of liquid at the wall/billet interface (45,46). These effects are very difficult
to model. Similar laws are used in the solid mechanics approach. In addition, the role of contact pressure is explicitly taken into
account via the modified friction Coulomb’s law:

t $S $ n ¼ f n $s $ n for f n $s $ n � smax

t $S $ n ¼ smax others [31]

Finally, for 2D axisymmetric numerical simulations, the boundary conditions at the axisymmetric axis are:

u $ n ¼ 0 [32]

5.10.3.2 Simulation and Validation

Semisolid shows time, strain-rate, and temperature-dependent response during processing. Large deformation, solidification/
melting, and coupled thermomechanics phenomena take place. Commercial software currently used to deal with semisolid pro-
cessing can be classified using three main criteria:

l The solid or fluid approach to represent material constitutive equations and momentum conservation equation.

Figure 6 Schematic representation of a thixoextrusion test at two instants in time studied in Becker et al. (Becker, E.; Favier, V.; Bigot, R.; Cézard, P.;
Langlois, L. Impact of Experimental Conditions on Material Response during Forming of Steel in Semi-Solid State. J. Mater. Process. Technol. 2010,
210, 1482–1492; Becker, E.; Bigot, R.; Langlois, L. Thermal Exchange Effects on Steel Thixoforming Processes. Int. J. Adv. Manuf. Technol. 2010, 48,
913–924.). Illustration of mechanical boundary conditions.



l The method to follow the flow: the Lagrangian or Eulerian representation. Currently mixed Lagrangian and Eulerian approaches
are being developed.

l The discretization method used to approximate the set of the differential equations of the system: finite differences, volume
differences, and finite elements.

Models and software based on solid body mechanics result from generic software or more specific codes dedicated to solid
forming processes. They use the finite element method and the Lagrangian representation. The mesh used to spatially discretize the
system is attached to material volume elements (or RVE). It is strongly distorted because of the large deformation involved resulting
in strong calculation errors. This drawback is partly coped with using arbitrary Lagrangian-Eulerian (ALE) representation, which
often needs to be complemented by a remeshing method, which is computationally time consuming. The main advantage of these
models comes from the fact the thermomechanical history of the RVE is followed over the processing time and residual stresses can
be estimated. Thus, transient response that is dominant for semisolid processing is straightforward to analyze. In addition, the
knowledge of the final state of the component can be very useful to predict the in-life response of the component and optimize the
processing routes with respect to final target properties (5,7).

Models and software based on CFD result from generic software or more specific codes dedicated to liquid casting or foundry.
They use the finite volume or difference method and the Eulerian representation. The mesh used to spatially discretize the system is
attached to space volume elements. It is fixed in space. Mesh distortions are thus avoided and the flow behavior is much easier to
obtain than using the Lagrangian representation. However, the knowledge of the thermomechanical history of RVE is not
straightforward and free surfaces are not described. This drawback is partly solved using an appropriate strategy for the tracking of
the material–air interfaces (47).

Comparisons between experiments and simulations are very useful to assess the reliability of the modeling and to improve the
understanding of the processing. In situ visualization of the semisolid flow during processing is complex since the dies are closed and
opaque. The main recent work with transparent glass sided dies to film die filling is that by Ward et al. (48) and Hufschmidt et al.
(49). These two examples are selected to illustrate numerical simulations of semisolid processing and comparisons with experi-
ments. Hufschmidt et al.’s works are presented in the next section dedicated to two-phasemodeling. Figure 7 shows a 3D view of the
filling system similar to the one used in Ward et al. experiments (50). The billet is first pushed into a vertical die, compressed by the
upper part of the die, and then turns 90� to enter into a 60mm square plate 7.5mm thick, tapered to triangular overflow. An
obstacle was placed symmetrically in the die. Experiments were conducted on isothermal conditions. The material under study is an
A357 aluminum alloy with a solid fraction of about 0.5.

Numerical simulations were performed with the solid mechanics-based software FORGE2009�. The Lagrangian representation
and the finite element method with remeshing were used. The thixoextrusion test displays a symmetric surface so that the half of the

Figure 7 Numerical simulation of the experiments of Ward et al. (Wang, P. J.; Atkinson, H. V.; Kirkwood, D. H.; Chin, S. B. Final Report for Engineering and
Physical Sciences Research Council Project ‘Modeling Thixotropic Flow of Metal Alloys into a Die’ (GR/M17334/01), 2002) http://www.le.ac.uk/engineering/
staff/atkinson_files/modeling_final_report.pdf)). The filling test has a 90� flow path change. (a) viscosity (Pa.s); (b) solid fraction in the active zone, which
describes the quantity of solid bonds in the micro-macro model (Reproduced from Favier, V.; Cezard, P.; Bigot, R. Transient and Non-Isothermal
Semi-Solid Behaviour: 3D Micromechanical Modeling. Mater. Sci. Eng. A 2009, 517, 8–16; Favier, V.; Atkinson, H. V. Micromechanical Modelling of the
Elastic–Viscoplastic Response of Metallic Alloys under Rapid Compression in the Semi-Solid State. Acta Mater. 2011, 59, 1271–1280.). The blue and
red colors are associated with the smallest and greatest values, respectively. Courtesy: Neag, A. “Simulation of Filling Test with 90� Flow Path Change.”
Private Communication, 2012.

http://www.le.ac.uk/engineering/staff/atkinson_files/modeling_final_report.pdf
http://www.le.ac.uk/engineering/staff/atkinson_files/modeling_final_report.pdf


system was modeled. Consistently with experiments, isothermal simulations were carried out. The piston (in gray in Figure 7) is
considered as a rigid body andmoves with a constant speed of 250mm s�1. The boundary condition at the piston–billet interface is
described by [30]. The glass die sides are represented by rigid tools. The friction between the glass die and semisolid is considered
very small. It is represented by the modified friction Coulomb’s law with f¼ 0.075 [31]. The boundary condition at the air–billet
interface is described by [27] with P¼ 0MPa. The semisolid is considered as incompressible and its viscosity is described by the
micro-macro model (see Section 5.10.3.1.3.2). The solid fraction is 0.5. Parameters of the constitutive models were identified on the
load–displacement curves obtained for rapid compression tests (39).

The predicted viscosity was found to strongly decrease at the entrance of the horizontal plate (Figure 7(a)). This steep decrease is
related to the breakdown of the solid agglomerates because of strong shear within solid bonds (the quantity of solid bonds is
represented by the solid fraction in the active zone). Figure 8 compares the experimental and calculated flow front without (a) and
with (b) obstacle. In the horizontal plate, the flow is parallel, resulting in insufficient spreading of the slurry to fill the ‘shoulders’
before the slurry had reached the end of the die. The presence of an obstacle improved the filling pattern as the slurry was pushed
into the shoulders. Calculated results capture quite well the observed phenomena.

5.10.3.3 Conclusion for One-Phase Modeling

The previous example pointed out that one-phase modeling is able to predict die filling behavior in terms of flow front in
a reasonable range. As a result, it is of great interest to optimize die geometry: adding an obstacle improves the filling in the
shoulders in the previous example. However, it cannot express liquid–solid segregation that may take place under some processing
conditions. As a result, an obvious drawback of one-phase modeling is that it cannot help you avoid these phenomena! More
complex modeling incorporating the different response of the liquid and solid phase in the equations of conservation and the
couplings between them is required. Basic concepts of such modeling, the so-called two-phase modeling, are presented in the next
section.

5.10.4 Two-Phase Modeling

Semisolid alloy is considered as a solid skeleton saturated with liquid. There are two mechanisms responsible for liquid–solid
segregation: the pressure gradient and the compressibility of the porous solid phase (11). In the following, we explain how two-phase
modeling captures these phenomena. Two-phasemodels for semisolids are inspired frommechanics of saturated porousmedia (51).

5.10.4.1 General Equations of the Thermomechanical Problem

5.10.4.1.1 Laws of Conservation
Two-phase modeling results from the multiphase continuum theory (52–55). The RVE is viewed as the superposition of two
continuum media, the solid and liquid phases, and is characterized by solid fraction. Conservation equations are written and
provide density, velocity, and pressure (stress tensor) for each phase. The effective RVE response results from the response of the
liquid and solid phase and also interactions between the two phases. Consequently, conservation equations are similar to those in
classical continuum mechanics (eqns [1],[5], and [8]) but have an additional term to take into account these interactions. Solving
the complete problem is complex. In the following, conservation equations and constitutive models commonly used for semisolid
processing numerical simulations are presented. Contrary to the micromechanical model, the RVE and liquid and solid phase
constitutive models are not deduced from the solid and liquid intrinsic constitutive models and so specific models for solid and
liquid phases and RVE are required. It is more convenient to write conservation equations for the RVE and liquid phase instead of
solid and liquid phases. The transition from RVE to solid equation is easily obtained by an averaging procedure applied on field
variables (density, velocity vector, temperature, etc.).

Figure 8 Comparison of experimental and predicted flow front without (a) and with (b) obstacle. Simulations show the von Mises equivalent strain rate
[12]. Courtesy: Ward, P. J.; Atkinson, H. V.; Kirkwood, D. H.; Chin, S. B. Final Report for Engineering and Physical Sciences Research Council Project

‘Modeling Thixotropic Flow of Metal Alloys into a Die’ (GR/M17334/01), 2002, http://www.le.ac.uk/engineering/staff/atkinson_files/modeling_final_report.pdf
and Neag, A. “Simulation of Filling Test with 90� Flow Path Change.” Private Communication, 2012.

http://www.le.ac.uk/engineering/staff/atkinson_files/modeling_final_report.pdf


5.10.4.1.1.1 Mass conservation

The conservation of mass for the RVE is written as [1]:

D
Dt

rþ rV $ u ¼ 0 [33]

r is given by [11] and u is written as:

u ¼ fsus þ ð1� fsÞul [34]

The intrinsic densities of the liquid rl and solid rs phases are assumed to remain constant over time. However, the density of the
liquid phase over the RVE (1�fs)rl may change because of volume change of the liquid phase and source/sink of liquid due to
melting/solidification phenomena. The conservation of mass for the liquid phase within the RVE is written as:

�rl
D
Dt

fs þ ð1� fsÞrl V $ul ¼ rsourcel [35]

rsourcel can be calculated by the Scheil or lever rule model as in (56) or taking into account the nature of liquid–solid
interface (6):

rsourcel ¼ �rl
dfs
dT

D
Dt

T [36]

Equation [35] is rewritten as:

D
Dt

fs � ð1� fsÞV $ul ¼
dfs
dT

D
Dt

T [37]

5.10.4.1.1.2 Momentum conservation

The conservation of momentum for the RVE is written as (gravity forces are neglected for the sake of writing simplicity):

r
D
Dt

u ¼ V $S�V p [38]

The RVE is commonly assumed to exhibit an isotropic incompressible nonlinear viscous behavior. Its constitutive equation is
represented by [3] and [12].

s ¼ S� pI [39]

S ¼ 2hD [40]

As for liquid-saturated porous media treated in soil mechanics (57), the pressure p in the RVE (and solid phase) results from the
liquid pressure due to the compression of the porous skeleton (interstitial pressure). The effective viscosity can be described via the
various models explained in Section 5.10.3.1.3.

The intrinsic behavior of liquid is considered as Newtonian, characterized via [12] with a constant viscosity hl. The behavior of
the liquid phase in the RVE is given by the intrinsic liquid behavior weighted by the liquid fraction:

S over RVE
l ¼ ð1� fsÞS l ¼ ð1� fsÞ2hlD l

[41]

The momentum conservation of the liquid phase in the RVE may change because of internal cohesive forces within the liquid
and volume forces coming from the solid Msource:

rl
D
Dt

ð1� fsÞul ¼ V $ð1� fsÞS l
� ð1� fsÞV pþMsource [42]

Msource can be viewed as a specific interface friction force proportional to the slip velocity difference:

Msource ¼ ð1� fsÞ
fs

hl

Ks
ðu�ulÞ [43]

For high solid fractions, the momentum conservation equation of the liquid phase reduces to Darcy’s law:

ðus � ulÞ ¼
Ks

hl
V p5ðu�ulÞ ¼ Ks

fshl
V p [44]

Ks is the permeability of the solid phase, which depends on fraction and morphology of the solid phase (9,56).
The earliest two-phase models assumed that the liquid acted only via the interstitial pressure and its viscosity was neglected

(58,59). Later, models taking into account the viscous flow resistance of the liquid were developed (14,49,56,60) as expressed in
[40]. Instead of postulating the RVE constitutive equation, the solid phase behavior can be modeled. The intrinsic solid behavior is
assumed as incompressible nonlinear viscous, but the porous solid phase is viewed as a nonlinear viscous compressible medium. Its
constitutive equation relates an equivalent strain rate to an equivalent stress that depends on the first two invariants of the stress



tensor to incorporate pressure effects (61). A parameter (which may be related to the degree of cohesion of the solid phase) is
introduced (62–64). These models provide a not-symmetric behavior under tension and compression as shown experimentally (see
Chapter 5.08).

5.10.4.1.1.3 Energy conservation

Solving the complete thermal problem is complex. To simplify it, temperatures in the solid and liquid phases are assumed equal.
This hypothesis is justified because the heat transfer at the solid–liquid interface is strong and rapid. As a result, the equation of
energy conservation is written for the RVE only.

It is written as in [8] or equivalently (for mass conservation system) as (6):

D
Dt

ðrhÞ ¼ S : D�V$ q [45]

where rh is the average enthalpy per unit volume (Figure 9):

rh ¼ fs

Z T

Tref

rscpsðT0ÞdT0 þ ð1� fsÞ
Z T

Tref

rlcplðT0ÞdT0 þ ð1� fsÞrLðs=lÞ [46]

Two methods are commonly used to deal with solidification/melting phenomena. The first method uses the equivalent specific
heat coefficient cEQ as explained in Section 5.10.3.1.4. The second method uses directly [45] and [46]. For constant cps, cpl, rs, rl, an
explicit enthalpy–temperature relationship is obtained (56). fs is used as an independent variable and derived from mass conser-
vation [37]. This choice allows additional complicated equations to describe temperature–enthalpy relations for metals in the
semisolid state to be avoided. More details and issues concerning the numerical implementation of these two methods are given in
(11,56).

5.10.4.1.2 Simulation and Validation
Common commercial codes considering two-phase modeling to simulate semisolid processing do not currently exist. Development
and numerical implementation of two-phase modeling considering thixotropy, heat transfer, and liquid–solid segregation are still
ongoing (14,56,59,60,63,65–67). They are applied to various semisolid processing routes such as thixoextrusion (66), thixoforging
(56), and thixocasting (68). Liquid–solid segregation takes place at isothermal conditions and is magnified at nonisothermal
conditions. The selected example for comparison between experiments and simulations is a die filling of a simple T-shape (14,49).
As mentioned previously, the specially designed die filling permits the continuous observation of the flow pattern. In addition, it is
probably the only case for which one-phase and two-phase modeling but also isothermal and nonisothermal simulations were
performed.

5.10.4.1.2.1 Isothermal conditions

5.10.4.1.2.1.1 Investigation of the semisolid RVE response ( 69)
Using micromechanics and a homogenization method of periodic structures, Geindreau and Auriault (69) determined the
RVE response for semisolid considered as a porous medium constituted by a viscoplastic skeleton and saturated by an
incompressible Newtonian liquid. The homogenization process permits the validation of the structure of constitutive laws
proposed in the phenomenological way and discussed in Section 5.10.4.1.1.2. They also clarified conditions to get (or avoid)

Figure 9 Typical relationship between enthalpy and temperature for a metallic alloy. TL is the liquidus temperature. The temperature at the end of
solidification is the solidus temperature TS, or the eutectic temperature TE if a eutectic phase forms in the end of solidification, as shown here. From Rappaz,
M.; Bellet, M.; Deville M. Numerical Modeling, Materials Science and Engineering, Springer Series in Computational Mathematics; Springer-Verlag: Berlin, 2003.



liquid–solid segregation. They define two dimensionless parameters expressing the ratio of liquid and solid pressures and the ratio
of liquid and solid viscosities. They demonstrated that at small processing speed (resulting in strain rate ranging between 10�4 and
10�1 s�1), liquid ejection takes place. Indeed, the intrinsic solid viscosity lies between 108 and 104 Pa.s and ismuch greater than the
intrinsic liquid viscosity. When the porous solid deforms, the liquid has time to flow to accommodate the overall deformation and
the liquid pressure remains small. At high processing speed (strain range greater than 10 s�1), the intrinsic solid viscosity ranges
from 103 to 1 Pa.s. It is small and close enough to the liquid viscosity to suppress the relative displacement between the liquid
and the solid; that is, segregation does not exist. As a result, when the porous solid deforms, the pressure of the liquid phase
increases. Both findings are in good agreement with experiments. Kang et al. (70) also pointed out that the liquid–solid
segregation is smaller with increasing strain rate. Suery and Flemings (71), Valette-Brives (72), and Rouff (73) suggested the
existence of a critical strain rate above which homogeneous flow was observed. Geindreau and Auriault’s analysis is given for
the RVE. Liquid–solid segregation also depends on die geometry. When the liquid fluidity is high enough, an increase of the
flow front surface area is easily accommodated by the liquid, promoting liquid–solid segregation (38).

5.10.4.1.2.1.2 Investigation of the semisolid billet response during die filling (10,14,49)
Numerical simulations were performed with Petera and coworkers with ‘home-made’ two-phase modeling software (56). The
Lagrangian representation and the finite element method were used. The T-shape die realizes abrupt changes in flow direction as
well as changes in cross section, because the cross section of the semisolid billet in the container is bigger than the cross section of
the inlet at the bottom of the vertical duct (Figure 10). It displays a symmetric surface so that the half of the system was modeled
(Figure 11). Consistently with experiments, isothermal simulations were carried out. The piston velocities were 10, 50, and
100mm s�1. The pressure is measured with a pressure sensor, which is placed near the inlet of the vertical bar. The material under
study is tin-15%lead alloy and the solid fraction is 0.52. Two-phase modeling was implemented. The RVE viscosity [40] is described
by a Herschel-Buckley-based law modified to incorporate thixotropy (see Table 2) and solid fraction. In addition, a viscosity
associated with the liquid suspended by noninteracting globules was introduced to take into account the case of completely dis-
agglomerated solid phase (l¼ 0). Parameters of the constitutive models were identified on step change in shear rate experiments as
well as ramp experiments. The parameters associated with the transient behavior and the permeability of the solid phase were
adjusted using an inverse method and taking into account the flow front contour, the solid fraction distribution, and the filling
pressure for various piston velocities. One-phase simulation using the Herschel–Buckley law coupled with thixotropy (Table 2) was
also performed.

Figure 11 shows that the experimental flow front is well reproduced with both one- and two-phase simulations for the three
piston velocities. A single set of parameters was used for two-phase simulations. However, the model parameters for one-phase
simulation had to be readjusted to achieve satisfactory results for different piston velocities. In addition, the one-phase simulation
gives no reliable results for pressure. It predicts a nearly constant pressure while experiments and two-phase simulations show an
increase of pressure until the end of the filling process (Figure 12). Figure 13 compares the experimentally obtained solid fraction
and the solid fraction using the two-phase simulation. Both demonstrate liquid–solid segregation: the flow front is formed by

Figure 10 T-shape die: cross section of the billet¼ 72 mm; cross section of the vertical duct¼ 20 mm. Reproduced from Modigell, M.; Pape, L. In One
Phase Fluid Dynamics Modeling, Modeling of Semi-Solid Processing; Atkinson, H. V., Ed.; Shaker-Verlag: Germany, 2008; pp 51–75 (chapter 3).



Figure 11 Isothermal experiments, one- and two-phase simulations: flow front comparison. Reproduced from Modigell, M.; Pape, L.; Vasilic, K.;
Hufschmidt, M.; Hirt, G.; Shimahara, H.; Baadjou, R.; Bühnig-Polaczek, A.; Afrath, C.; Kopp, R.; Ahmadein, M.; Bünck, M. In Modeling the Flow Behavior of

Semi-Solid Metal Alloys, Thixoforming: Semi-Solid Metal Processing; Hirt, G., Kopp, R., Eds.; Wiley-VCH Verlag GmbH pp 167–217 (chapter 6).

Figure 12 Measured and simulated (one-phase and two-phase) pressure at the inlet of the T-shaped die. Reproduced from Modigell, M.; Pape, L. In One
Phase Fluid Dynamics Modeling, Modeling of Semi-Solid Processing; Atkinson, H. V., Ed.; Shaker-Verlag: Germany, 2008; pp 51–75 (chapter 3).

Figure 13 Segregation effects for the processing of semisolid alloys; right: experiment, left: two-phase simulation. Reproduced fromModigell, M.; Pape, L.
In One Phase Fluid Dynamics Modeling, Modeling of Semi-Solid Processing; Atkinson, H. V., Ed.; Shaker-Verlag: Germany, 2008; pp 51–75 (chapter 3).



material with a low solid fraction. Consequently, the densification of solid phase in the inlet at the bottom of the vertical duct leads
to a continuous increase in pressure.

5.10.4.1.2.2 Nonisothermal conditions

During semisolid processing, another important issue is solidification occurring on contact of the material with the die walls.
Nonisothermal experiments and two-phase simulations of T-shape die filling were carried out (Figure 14). Experiments revealed
that at the beginning, the semisolid flows as a thin jet with almost no contact. The flow front is less smooth and reaches the upper
wall of the die earlier than in the isothermal case. Two-phase simulations qualitatively reproduce the difference for isothermal and
nonisothermal cases with an optimized set of parameters. Solidification occurs in contact with the cold walls. The solidified layer
reduces the free cross section, considerably increasing liquid–solid segregation. This study proves that liquid–solid segregation is
magnified at nonisothermal conditions. A critical temperature above which liquid–solid segregation takes place seems to exist
(43,74). This critical temperature is not an intrinsic material property since its value depends on heat transfer at the wall–material
interface (43).

5.10.5 Conclusion

Numerical simulation of semisolid processing can be carried out using one- or two-phase modeling. They are extensively developed
to design the mold or the die and to determine the optimum forming conditions. One-phase modeling considers that the velocity of
the solid and liquid phases are equal so cannot express solid–liquid segregation. However, for homogeneous flow conditions, it is
useful to predict the flow front. More discrepancies appear on attempting to predict the forming load. Thixotropy, shear thinning,
and solidification/melting phenomena can be incorporated. In practice, most commercial codes are based on the description of the
steady-state semisolid response while semisolid processing involves highly transient situations. The issue of characterizing the
transient regime is responsible for this difficulty. Two-phase modeling is very promising to predict and avoid liquid–solid segre-
gation and defects located at under pressure regions. But there is still much work to be done to introduce them in computer codes.
Whatever modeling, they have to cope with the issue of model parameter identification, and further specific experiments and
measurements achieved on both material and processing are required.
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Figure 14 Flow pattern during T-shape die filling of tin-15%lead alloy. Top: isothermal experiments (left) and two-phase simulation (right). Bottom:
nonisothermal experiments (left) and two-phase simulation (right); piston velocity¼ 50 mm s–1, initial solid fraction¼ 0.52 corresponding to a material
temperature of 192 �C, die temperature¼ 40 �C (for nonisothermal test). Reproduced from Modigell, M.; Pape, L.; Vasilic, K.; Hufschmidt, M.;
Hirt, G.; Shimahara, H.; Baadjou, R.; Bühnig-Polaczek, A.; Afrath, C.; Kopp, R.; Ahmadein, M.; Bünck, M. In Modeling the Flow Behavior of Semi-Solid Metal

Alloys, Thixoforming: Semi-Solid Metal Processing; Hirt, G., Kopp, R., Eds.; Wiley-VCH Verlag GmbH pp 167–217 (chapter 6).
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