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A B S T R A C T

This paper aims to explore the thermal influence on the micro-tribo-mechanical behavior of natural fiber
composites. Nanoindentation and scratch-test are used to characterize flax fibers reinforced polypropylene (PP)
composites. Results show a different thermo-mechanical behavior between flax fibers and PP matrix. While the
stiffness of PP matrix decreases by increasing the sample temperature, the stiffness of flax fibers shows an
increase then a decrease by changing the sample temperature from 25 °C to 100 °C with a maximum at 60 °C.
This attests to a modification of the chemical composition of flax fibers when increasing the temperature. The
specific thermo-mechanical behavior of flax fibers affects their friction comportment at a high sliding speed
which demonstrates that the tribology of NFRP composites is thermo-mechanical-dependent.

1. Introduction

In the context of the circular economy and sustainable development,
the industry increasingly seeks eco-friendly material to meet the en-
vironmental standards [1–6]. Therefore, natural fiber reinforced
polymer (NFRP) composites are emerging as a competitor to the tra-
ditional synthetic glass fiber composites materials in the automotive
and aerospace industries thanks to their efficient mechanical properties
[3,7]. Moreover, natural fibers show pertinent tribological perfor-
mances with NFRP composites by increasing the wear resistance and
reducing the friction coefficient during tribological solicitations [8–13].

Machining processes of NFRP composites have attracted industrial
as well as academic research because these materials require some
machining operations to achieve the finalized product. This is parti-
cularly so for long fiber composites because of the periphery burrs after
the thermocompression operation [14,15]. Nevertheless, machining
processes mechanics for NFRP composites is still not well mastered
because of the complex cellulosic structure that characterizes natural
fibers [16]. Moreover, the machinability analysis of NFRP composites
requires the consideration of an appropriate analysis scale. The perti-
nent analysis scale for NFRP machining is related to the natural fibrous
reinforcement size [17–21] because the tribo-mechanical response of
natural fibers inside composite materials is strongly dependent on the
contact scale [22–24]. However, the machining processes are not purely
based on tribo-mechanical phenomena since the machining operations

induce significant temperature increase due to the high deformation
rate and high tool/material friction [25,26]. Therefore, the induced
thermal effect must be considered because the machining tribo-system
of NFRP composites could be thermo-mechanical dependent.

Thermo-mechanical investigation of the tribological behavior of
NFRP composites is really complicated during the machining process,
especially when micro-analysis scales are required for this kind of
complex materials because the mechanical properties of natural fibers
show a scale effect (which is not the case for the PP matrix) [22,23].
Therefore, the thermo-mechanical data capture and processing in the
case of NFRP machining must be made by a specific tribo-mechanical
approach that allows the reproduction of the cutting contact tribology
at micro-scale, which corresponds to the contact scale between the
elementary flax fiber and the cutting edge radius. Thus, nanoindenta-
tion and scratch-test techniques can address this issue since the me-
chanical contact generated by these two methods can be extrapolated to
the machining contact behavior between the cutting tool edge and the
elementary flax fibers at the beginning of the cutting engagement
[22,23].

In this paper, nanoindentation and scratch-test experiments are
performed on flax fibers reinforced polypropylene (PP) composites at
different sample temperatures (ranging from 25 °C to 100 °C). The
thermo-mechanical data from nanoindentation and scratch-test are
captured and processed in order to get both the Young's modulus and
the dynamic friction coefficient at micro-scale. This will allow
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investigating the tribological behavior of fibers and matrix separately.

2. Experimental procedure

Nanoindentation and scratch-test experiments are performed on
Hysitron TI-950 Triboindenter. The thermal control is achieved using
Hysitron “xSol800” high-temperature stage integrated into the tri-
boindenter [27]. Fig. 1 illustrates the setup of this heating device. The
NFRP workpiece is placed between two resistive heating elements that
produce a uniform heated zone isolated by a thermal shield made from
a low thermal capacity material. The heat transfer to the NFRP work-
piece is assured by thermal conduction between the sample and the
heating element in the micro-environment. With a small sample volume
(10× 4×1mm), the thermal equilibrium is instantaneously reached.
Thus, the temperature tracking is made by thermocouples placed on the
heating elements. The tip indenter reaches the same temperature of the
sample and the heating elements since it is located in the heated zone.
The heat transfer to the tip indenter is assured by convection of the gas
flow and radiation.

NFRP workpieces (Fig. 2(a)) are composites of unidirectional flax
fibers (40% vt) embedded in a polymer matrix of polypropylene (60%
vt). The worksurface is taken perpendicular to the fiber orientation in
order to work on the fibers cross-sections as shown in Fig. 2(b). In this
figure, flax fibers show a random shape, random diameter, and random
distribution. Flax fibers are either presented as elementary fibers or as
technical fibers (i.e. bundle of elementary fibers). The considered NFRP
samples are manufactured and supplied by “Composites Evolution –
UK”. More technical data about the NFRP samples in Ref. [21]. All the
NFRP worksurfaces are polished with the same grit size (∼3 μm) in the
same conditions to have identical initial surface states.

The tip indenter used in this study is a Hysitron Sapphire xSol probe
on polycarbonate (ref. AA06031502) which is pyramidal Berkovich

probe designed for high temperature use. The tip radius is 150 nm. The
tip calibration is performed on a fused quartz sample to obtain the
contact area function.

During the nanoindentation experiments, a progressive force is ap-
plied toward the tip indenter after its engagement on the worksurface to
reach a maximum value (Fmax) that allows the tip indenter to penetrate
the material (i.e. flax fiber or polypropylene matrix) as shown in
Fig. 3(a). Penetration and withdrawal actions of the tip indenter gen-
erate a loading-unloading curve that can be used to calculate the
Young's modulus of the indented material as explained in details in our
previous work [22,23].

During the scratch-test experiments, the scratching length is chosen
as 10 μm to work on fibers cross-sections and matrix separately. The tip
is first engaged in the middle of the scratching line. Then, the tip is
moved to one extremity of the cutting line before applying a maximum
load of 500 μN as illustrated in Fig. 3(b). The scratching occurs by
moving the tip to the other extremity of the scratching line with a
constant applied load. The scratching time (Δt in Fig. 3(b)) is controlled
to modify the sliding speed. The friction coefficient is thus calculated as
the ratio between the friction force and the normal force.

3. Results and discussion

3.1. Thermal effect on NFRP mechanical behavior

Fig. 4 shows flax fiber cross-sections after indentation. At the same
applied load, the indentation traces are more obvious at room tem-
perature and becomes less visible when increasing the sample tem-
perature. On the other side, the indentation traces of polypropylene
matrix become more obvious by increasing the sample temperature as
shown in Fig. 5. By measuring the indentation size after scanning (ΔD in
Figs. 4 and 5), it can be seen that the indentation size on polypropylene

Fig. 1. Schematic depiction of the thermal setup in TI-950 Triboindenter.

Fig. 2. (a) photograph of the NFRP sample. (b) Scanning Electron Microscope image of the NFRP worksurface showing the elementary fibers, the technical fibers, and
the PP matrix.
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matrix increases significantly by temperature increase at the considered
thermal range, while the indentation size on flax fiber cross-sections
decreases by temperature increase up to 60 °C. Above 60 °C, the in-
dentation size on flax fibers does not show an important variation.
Therefore, flax fibers and polymer matrix do not have the same in-
dentation response as the temperature is varied.

Fig. 6 illustrates the loading-unloading curves acquired from the
indentation experiments. Unlike the polypropylene matrix where the
contact depth increases by increasing the sample temperature
(Fig. 6(b)), flax fibers show a specific thermal behavior in terms of
contact depth of the tip indenter (Fig. 6(a)). Indeed, for flax fiber cross-
sections, the contact depth decreases with the sample temperature in-
crease until reaching 60 °C. Then, beyond a sample temperature of
60 °C, the contact depth starts to increase with temperature rise to be
equivalent or slightly greater that the contact depth values at room
temperature (25 °C). This is a sign that the thermo-mechanical response
of flax fibers is different from that of polypropylene matrix. In-
vestigating the Young's modulus behavior of the two materials under
the considered thermal conditions should qualitatively validate this
hypothesis.

Fig. 7 presents the Young's modulus behavior of polypropylene
matrix in function of the applied sample temperature. It can be seen
that increasing the sample temperature decreases significantly the
stiffness of PP matrix (Fig. 7(b)). Moreover, increasing the sample
temperature increases the indentation contact depth at identical ap-
plied load (Fig. 7(a)). This shows that the temperature affects strongly
the softening of PP matrix. On the other side, the thermal effect on flax
fibers is completely different as shown in Fig. 8. Indeed, in the

temperature range of [25–60 °C], the Young's modulus of flax fibers
increases by temperature increase. However, in the temperature range
of [60–100 °C], the Young's modulus of flax fibers decreases by tem-
perature increase.

The thermo-mechanical behavior of PP matrix shown in Fig. 7 is
well known in the literature as a thermoplastic polymer [28,29].
Moreover, the thermo-mechanical effect is more obvious on PP matrix
because its glass transition temperature (Tg) is much lower than the
ambient temperature (between −23 and −10 °C) [30]. Thermoplastic
matrices soften under the effect of heat and become malleable at high
temperatures with a significant decrease of the viscosity [31].

The specific behavior of flax fibers under thermal nanoindentation
may be due to the chemical composition of their cellulosic structure.
Indeed, natural fibers are composed of a stack of cell walls with a
central channel called lumen which is responsible for water and nu-
trient transportation [32] (Fig. 9). Each cell wall is itself a composite
structure of cellulose microfibrils embedded in natural amorphous
polymers of hemicellulose and lignin. In addition to this chemical
composition, water molecules are added because all natural fibers are
hydrophilic and tend to absorb moisture from the environment [33].
Therefore, when indenting flax fibers from 25 °C to 60 °C, increasing
temperatures lead to water release which is acting as a plasticizer into
the fiber structure [34]. This thermal effect on moisture content of flax
fibers can explain the stiffness increase when heating flax fibers in the
temperature range [25 °C–60 °C]. Above 60 °C, glass transition tem-
peratures of the amorphous polymers inside the flax fiber are reached
which make the fiber softer. Concretely, the glass transition tempera-
ture is 40 °C for hemicelluloses, 50 °C–100 °C for lignin, and above

Fig. 3. (a) Load function for nanoindentation experiments. (b) Load function/tip displacement for scratch-test experiments.

Fig. 4. Typical scanning probe image of flax fiber cross section after indentation with 500 μN of applied load showing the indentation size (ΔD) and the average
surface roughness (Ra). (a) at 25 °C, (b) at 60 °C and (c) at 100 °C.
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100 °C for cellulose [35]. Therefore, increasing the temperature above
60 °C leads to exceeding the Tg of lignin which is responsible for the
rigidity of the cell wall as shown in Fig. 9 and, consequently, the ri-
gidity of fiber decreases when heating flax fibers in the temperature
range [60 °C–100 °C].

3.2. Thermal effect on NFRP friction behavior

Fig. 10 presents typical scratching grooves with 10 μm of length for
both flax fiber and PP matrix at different temperatures with different
identified regimes. For flax fibers, the only regime is a region of rubbing
and plowing with no chip formation. The traces depths of flax groove
are deeper and larger at 25 °C and 100 °C than at 60 °C. This observation
corresponds to the mechanical response obtained with flax indentation

because the elastic modulus of flax fibers shows its highest value at
60 °C (Fig. 8) which leads to have the lowest plastic deformation when
scratching. For PP matrix, two regimes are identified whatever the
tested temperature. The first of these is a region of rubbing and plowing
with no chip formation where the scratching traces are roughly parallel
to the longitudinal scratching direction. The second region is where the
transition occurs with chip formation initiation and a transverse trace
starts to appear. Since the scratching length is low (10 μm), the
scratching depth has not reach the minimum critical value to start an
effective chip formation.

Fig. 11 illustrates the friction coefficient resulted from scratch test
experiments on flax fibers and PP matrix separately. Globally, PP matrix
generates lower friction than flax fibers. For the PP matrix, the friction
coefficient decreases with temperature increase and it is not affected by

Fig. 5. Typical scanning probe image of polypropylene matrix after indentation with 500 μN of applied load showing the indentation size (ΔD) and the average
surface roughness (Ra). (a) at 25 °C, (b) at 60 °C and (c) at 100 °C.

Fig. 6. Typical nanoindentation curves with 500 μN of applied load for (a) flax fibers and (b) polypropylene matrix.

Fig. 7. Young's Modulus values obtained from nanoindentation of Polypropylene matrix at different sample temperatures, (a) with 500 μN of applied load, and (b) for
different applied load values.
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the change of the sliding speed. On the other side, the friction coeffi-
cient of flax fibers shows a different behavior depending on the sliding
speed. Indeed, the friction coefficient of flax fibers decreases by heat
increase at low sliding speed (2 μm/s) as shown in Fig. 11(a). While
increasing the sliding speed (10 μm/s), the friction coefficient of flax
fibers increases with rise in temperature ranging from 25 °C to 60 °C and
decreases by heating the samples even further from 60 °C to 100 °C as
shown in Fig. 11(b).

The microscopic friction behavior of PP matrix in this study is in
good agreement with the sliding friction of PP reported in literature at
macroscale by standard tribometers where the sliding friction of PP
polymer decreases with temperature increase [36] which is due to the
polymer softening that leads to the decrease of the tangential scratching
force.

However, the microscopic friction behavior of flax fibers is influ-
enced by the increase of the sliding speed. The friction behavior of flax
fibers at low sliding speed (2 μm/s) has the same trend as that of the PP
matrix. At high sliding speed (10 μm/s), the flax fibers friction seems to
be affected by the thermo-mechanical behavior of flax fibers shown in
Fig. 8(b) where increasing the fiber stiffness at the temperature range of
[25 °C–60 °C] increases the fiber friction and decreasing the fiber stiff-
ness at the temperature range of [60 °C–100 °C] decreases the fiber
friction. This specific effect of sliding speed on the flax fiber's friction
could be due to the time scale, which is important in the case of visco-
elasto-plastic materials such as plant fibers [37]. Increasing the sliding
speed increases the deformation rate when scratching which may

induce a visco-elastic contribution that is related to the thermo-
mechanical behavior of flax fibers. In this context, the role of water
release by heating could be significant since water molecules act as a
plasticizer [34].

It is important to note that the micro-contact of the scratch could
induce an additional thermal contribution on the contact zone. Indeed,
the average temperature increase (ΔT) in the micro-contact is given by
the following formula [38]:

= × × × ×T µ E l V0.2 (1)

where μ is the friction coefficient, E is the elastic modulus, l is the root
mean square of the height distribution, V is the sliding speed and λ is
the thermal conductivity.

To keep this flash temperature (heat induced by friction) as low as
possible for a contact between the diamond indenter and the bio-
composite, and assuming that the parameter “l” has not a high variation
at microscale, the work-material should have a low elastic modulus and
a high thermal conductivity. In the case of flax fibers and PP matrix, the
elastic modulus of flax fibers is largely higher than that of PP matrix as
shown in section 3.1. Moreover, the thermal conductivity of flax fibers
(around 0.04W/mK [39–41]) is largely lower than that of PP matrix
(around 0.2W/mK [42]). Therefore, the flash thermal contribution
when scratching flax fibers is more important than that of scratching PP
matrix, especially when increasing the sliding speed which increases
more the heat induced by friction. This thermal phenomenon may

Fig. 8. Young's Modulus values obtained from nanoindentation of flax fibers at different sample temperatures, (a) with 500 μN of applied load, and (b) for different
applied load values.

Fig. 9. Schematic illustration of flax elementary fiber and its chemical composition [32].
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Fig. 10. Typical scanning probe images of scratching traces at V=10 μm/s on flax fibers (a,b,c) and PP matrix (d,e,f) at different temperatures. (a,d) T= 25 °C, (b,e)
T= 60 °C and (c,f) T= 100 °C. Yellow arrows show the scratching direction. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 11. Dynamic friction coefficient obtained by scratch-test of flax fibers and PP matrix for two siding speed values: (a) 2 μm/s and (b) 10 μm/s.
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contribute to the specific effect of sliding speed on the flax fiber's
friction.

4. Conclusions

This paper deals with the thermal effect on the tribo-mechanical
behavior of flax fiber reinforced polypropylene composites using na-
noindentation and scratch-test experiments at different thermal condi-
tions from room temperature (25 °C) to 100 °C. The following conclu-
sions can be drawn:

• Increasing the NFRP sample temperature have not the same effect
on the thermo-mechanical behavior of flax fibers and PP matrix:
- Heating the composite sample in the considered temperature
range decreases the stiffness of the PP matrix by increasing the
material softening.

- Heating the composite sample increases the stiffness of flax fibers
in the temperature range of [25 °C–60 °C] and decreases it in the
temperature range of [60 °C–100 °C]. The stiffness increase at the
first heating step could be due to the water release inside ele-
mentary fibers while the stiffness decrease at the second heating
step may be due to the softening of the amorphous structure of flax
elementary fibers.

• Flax fibers induce higher friction than PP matrix regardless of the
thermal conditions
• The friction coefficient of PP matrix decreases by temperature in-
crease without significant influence of the sliding speed.
• The friction coefficient of flax fibers decreases by temperature in-
crease at low sliding speed and behave similarly to the mechanical
comportment at high sliding speed. The thermo-mechanical beha-
vior of flax fibers affects their friction behavior at high sliding speed.
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