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Chapter 4
Kinetic theory models

Discrete techniques (MD or BD), despite their conceptual simplicity, are very of-
ten too expensive from the computational point of view. Kinetic theory approaches
seems in many cases a suitable compromise between the accuracy of finer descrip-
tions and the computational efficiency of macroscopic descriptions.

In this chapter we revisit some kinetic theory models. Even if there is a com-
mon rationale for deriving the different models, in order to emphasize their physical
contents, we are following a diversity of alternative routes to derive them.

4.1 Motivation

As indicated above the atomistic description involves too rich kinematics. The atoms
are vibrating (due to thermal effects) and small particles exhibit an erratic path due
to the continuous impacts that they are enduring. Of course, appropriate averages of
physical interest are most of the time governed by classical deterministic equations.

In the book written by Erwin Schrödinger untitled What is the life? The physical
aspects of the living cells [46], the author states that the sensorial structures of the
living beings need a multi-atomic structure to be protected from any random mono-
atomic event. A living being needs “exact” physical laws and for this reason our
sensorial devices must filter the high frequency information (characteristic of the
atomic behaviors) retaining only averages that evolve with a certain regularity. To
perform this filtering process one needs multiatomic sensorial organs, as found in
the vast majority of the living beings! In this way knowledge becomes simple and
fast.

Kinetic theory losses individuality in favor of corser population descriptions. The
kinetic theory framework will be described in this chapter by focusing on different
physics.
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4.2 Kinetic theory description of simple liquids and gases

In kinetic theory approaches we are interested in averages and not in individual
behaviors anymore. Let N be a population of particles having an electrical charge.
The system could be described by giving the position and velocity of each particle
in the population at any time as it is the case in particles-based approaches. However
this description is too expensive when we are only interested in averages and not in
local effects as for example defaults propagation. In this way, we could introduce
a distribution function giving the fraction of particles that at time t are located in a
neighborhood of point x (x ∈ R3) and having a velocity close to v (v ∈ R3).

Thus, Ψ(x,v, t)dxdv represents the fraction of those particles located inside the
hexahedron [x− dx

2 ,x− dx
2 ]× [y− dy

2 ,y− dy
2 ]× [z− dz

2 ,z−
dz
2 ] whose velocity is also

inside the hexahedron [u− du
2 ,u− du

2 ]× [v− dv
2 ,v− dv

2 ]× [ω− dω

2 ,ω− dω

2 ], where
the components of the position and velocity vectors are given by x = (x,y,z) and
v = (u,v,ω) respectively.

Thus, all the information required to describe the system has been compressed in
a single scalar function, the probability density function – pdf – Ψ(x,v, t) and the
only price to be paid concerns its multi-dimensional character.

Despite the high compactness of such kinetic theory description, it is not use-
ful without an equation governing the evolution of the joint distribution function
Ψ(x,v, t) from the prescribed initial and boundary conditions. The equation govern-
ing the evolution of the distribution function results from the particle conservation
balance in the physical and conformational spaces that reads

∂Ψ

∂ t
+∇x · (qx)+∇v · (qv) = S, (4.1)

where ∇x · (•) and ∇v · (•) denote the divergence linear differential operator in the
physical (space) and conformational (velocity) coordinates respectively, and the
source S is called collision term. The convective fluxes in both spaces, the physi-
cal qx and the conformational qv ones, are given byqx =

.
x Ψ = vΨ

qv =
.
v Ψ = aΨ

, (4.2)

with a the acceleration field. With this notation the balance equation reads:

∂Ψ

∂ t
+∇x · (vΨ)+∇v · (aΨ) = S. (4.3)

Obviously, before solving Eq. (4.3) one needs to specify both the collision term
and the acceleration field, as well as the initial and boundary conditions. The veloc-
ity field v that appears in the second term does not require any specific treatment
because in the present approach the velocity components are in fact coordinates,
like space and time. The collision term depends on the considered physics. In turn



the acceleration field can be derived from the fact that the population that we are
considering consists of a set of particles with electrical charge that are interacting
through the Coulomb’s potential. In the kinetic theory description localized charges
are substituted by the charge distribution

Q(x, t) = Z
∫
R3

Ψ(x,v, t)dv, (4.4)

where Z is the total charge in the system, as the following expression proves:

∫
R3

Q(x, t)dx = Z
∫
R3

(∫
R3

Ψ(x,v, t)dv

)
dx = Z, ∀t. (4.5)

Now, an electrostatic potential V (x, t) can be associated with this charge distri-
bution Q(x, t), that verifies the elliptic partial differential equation

∇
2
xV (x, t) = Q(x, t); ∀t, (4.6)

where ∇x denotes the gradient linear differential operator with respect to the space
coordinates x. From the electrostatic potential that results from the solution of Eq.
(4.6) we can compute the electrical field E(x, t)

E(x, t) =−∇xV (x, t), (4.7)

from which we can easily derive the expression of the force F(x, t) acting on a
volume dΩ located at point x (at time t)

F(x, t) = E(x, t)Q(x, t)dΩ , (4.8)

that gives the acceleration

a(x, t) =
F(x, t)

ρ(x, t)dΩ
=−∇xV (x, t)

Q(x, t)
ρ(x, t)

, (4.9)

where ρ(x, t) is the density,

ρ(x, t) = M
∫
R3

Ψ(x,v, t)dv, (4.10)

with M the total mass in the system.
Thus, the model can be summarized by the following equations





∂Ψ

∂ t +∇x · (vΨ)+∇v · (aΨ) = S

a(x, t) =−∇xV (x, t)Q(x,t)
ρ(x,t)

Q(x, t) = Z
∫
R3 Ψ(x,v,t)dv

ρ(x, t) = M
∫
R3 Ψ(x,v, t)dv

∇2
xV (x, t) = Q(x, t)

. (4.11)

This model has been widely applied for modeling quantum gases (plasma) and it
is known as the Vlasov-Poisson-Boltzmann model.

If the particles are not charged the acceleration vanishes, i.e. a(x, t) = 0 except
during the instantaneous collisions, then the steady solution results in the Maxwell-
Boltzmann distribution which is considered as the equilibrium distribution Ψeq.

In fact, the equilibrium distribution allows to define, within the so-called BFK
(Bhatnagar-Gross-Krook) model, the collision term as

S =−νre f (Ψ −Ψeq), (4.12)

where νeq is the inverse of a characteristic time. Now, in absence of electrical charge,
the equation governing the evolution of the distribution could be written in the form:

∂Ψ

∂ t
+∇x · (vΨ) =−νeq(Ψ −Ψeq). (4.13)

From this analysis we can conclude that the use of extremely large populations
of particles characteristic of discrete simulation techniques (MD or BD) can be re-
placed by the solution of a continuous model. However the solution of the resulting
partial differential equation is a tricky issue because of its hyperbolic character and
its multidimensionality. In [21] authors considered the use of separated representa-
tions for alleviating the just referred difficulties.

Lattice-Boltzmann approaches can be viewed as an attempt to circumvent both
difficulties and they attracted the interest of many researchers in the last decades.
A brief summary is given in Section 4.2.2, and for additional details the interested
reader can refer to [48] and the references therein.

4.2.1 Hydrodynamic equations

When considering the Boltzmann equation

∂Ψ

∂ t
+∇x · (vΨ) = S(x,v, t), (4.14)



its solution Ψ(x,v, t) allows to define the macroscopic quantities ρ(x, t) and u(x, t),
the density and the macroscopic velocity respectively, from

ρ(x, t) =
∫
R

Ψ(x,v, t)dv, (4.15)

and
ρ(x, t)u(x, t) =

∫
R

vΨ(x,v, t)dv. (4.16)

The pressure tensor P, that contains the scalar pressure and the viscous stress
results from

P(x, t) =
∫
R
(v−u(x, t))⊗ (v−u(x, t))Ψ(x,v, t)dv, (4.17)

that leads to

P(x, t) =−ρ(x, t) u(x, t)⊗u(x, t)+
∫
R

v⊗v Ψ(x,v, t)dv. (4.18)

The mass and momentum conservation imply{ ∫
R S(x,v, t)dv = 0∫
R vS(x,v, t)dv = 0 . (4.19)

Now, in order to obtain the first hydrodynamic equation it suffices to integrate
the Boltzmann equation as follows∫

R

(
∂Ψ

∂ t
+∇x · (vΨ)−S

)
dv = 0, (4.20)

that implies
∂ρ

∂ t
+∇x · (ρu) = 0, (4.21)

that corresponds to the standard continuity equation. Now, by multiplying the Boltz-
mann equation by v and then integrating in the velocity space it results∫

R
v
(

∂Ψ

∂ t
+∇x · (vΨ)−S

)
dv = 0, (4.22)

that operating and making use of the previous definitions becomes

∂ (ρu)
∂ t

+∇x · (ρu⊗u)+∇x ·P = 0. (4.23)

In order to make explicit the macroscopic expression of the pressure tensor P the
simplest route consists in using the Chapman-Enskog expansion that expresses the
distribution function Ψ(x,v, t) from the asymptotic expansion



Ψ =
∞

∑
i=0

ε
i
Ψ

(i). (4.24)

Then this expansion is injected into the Boltzmann equation using the BFK
model of the collision term according to

∂ (Ψ (0)+ εΨ (1)+ · · ·)
∂ t

+v ·∇x

(
Ψ

(0)+ εΨ
(1)+ · · ·

)
=(

Ψ (0)+ εΨ (1)+ · · ·
)
−Ψ eq

τ
, (4.25)

with εΘτ . By identifying the terms at the different orders we obtain:

• Order ε−1:
Ψ

(0) =Ψ
eq (4.26)

.
• Order ε0:

∂Ψ (0)

∂ t
+v ·∇xΨ

(0) =Ψ
(1). (4.27)

• Order ε1:
∂Ψ (1)

∂ t
+v ·∇xΨ

(1) =Ψ
(2), (4.28)

and so on for the next orders.

The first order approximation of the pressure tensor P(0) is obtained by consider-
ing the zero order distribution function Ψ (0) that according to the Chapman-Enskog
expansion just discussed corresponds to the equilibrium Maxwell-Boltzmann distri-
bution Ψ eq(v) and consequently

P(0)(x, t) =
∫
R
(v−u(x, t))⊗ (v−u(x, t))Ψ

eq(v)dv = KbT ρ(x, t), (4.29)

that injected into Eq. (4.23) leads to the Euler equation.
The second order approximation proceeds from

P(1)(x, t) =
∫
R
(v−u(x, t))⊗ (v−u(x, t))Ψ

(1)(x,v, t)dv, (4.30)

that according to the Chapman-Enskog expansion just discussed results

Ψ
(1) =

∂Ψ (0)

∂ t
+v ·∇xΨ

(0), (4.31)

with Ψ (0) =Ψ eq. It finally results

P(1)(x, t) = 2KbT ρτ(∇xu+(∇xu)T ). (4.32)



Defining the viscosity µ = KbT ρτ , and considering P = P(0) + P(1) into Eq.
(4.23) the Navier-Stokes equation is obtained.

4.2.2 The Lattice Boltzmann Method – LBM

The use of the LBM provides many of the advantages of molecular dynamics, in-
cluding clear physical pictures, easy implementation, and fully parallel algorithms.
The basic premise for using this simplified kinetic-type method for macroscopic
fluid flows is that the macroscopic dynamics of a fluid is the result of the collective
behavior of many microscopic particles in the system and that the macroscopic dy-
namics is not sensitive to the underlying details in microscopic physics. The LBM
ancestor is the lattice gas automata which is constructed as a simplified, fictitious
molecular dynamic in which space, time, and particle velocities are all discrete. It
consists of a regular lattice with particles residing on the nodes. Starting from an
initial state, the configuration of particles at each time step evolves in two sequen-
tial sub-steps: (i) streaming, in which each particle moves to the nearest node in the
direction of its velocity, and (ii) collision, which occurs when particles arriving at a
node interact and change their velocity directions according to specified rules. The
lattice Boltzmann method considers a number of velocity directions depending on
the considered cell and a velocity value associated to each one of these directions
allowing to reach the neighbor location in the considered time step.

We consider the Botzmann equation within the BFK (Bhatnagar-Gross-Krook)
modeling of the collision term,

∂Ψ

∂ t
+∇x · (vΨ) =−νeq(Ψ −Ψeq), (4.33)

and consider a regular grid, the so-called lattice, of size ∆x. For the sake of sim-
plicity we consider the two-dimensional model where the particles are constrained
to occupy the nodes of the lattice. This fact constitutes the first simplification. The
second assumption restricts a particle to stream in a finite number of possible di-
rections, 9 when considering the lattice node illustrated in Fig. 4.1, usually referred
as D2Q9. These velocities are denoted by vectors ei, i = 1, · · · ,8. The reduction
accomplished is quite impressive: an infinity of points x, each of them having an in-
finity of directions and magnitude of the possible velocities, has been reduced to the
nodes in the lattice, with only 8 possible directions and only one velocity magnitude
associated to each direction, 1 for directions 1 to 4 and

√
2 for directions 5 to 8.

Now, we denote by Ψi(x, t) the probability of streaming in direction ei with its
associated velocity at the lattice point x and time t. The two steps in the Lattice-
Boltzmann simulations are the streaming and the collision that combined read, ∀i

Ψi(x+ c∆ tei, t +∆ t)−Ψi(x, t) =−νeq
(
Ψi(x, t)−Ψ

eq
i (x, t)

)
, (4.34)



Fig. 4.1 D2Q9 lattice node

where the left-hand side represents the streaming while the right-hand side the col-
lision, and c is the so-called lattice speed, c = ∆x

∆ t .
The macroscopic density ρ and velocity u read

ρ(x, t) =
8

∑
i=0

Ψi(x, t), (4.35)

and

u(x, t) =
1

ρ(x, t)

8

∑
i=0

cΨi(x, t)ei, (4.36)

respectively.
Now, when considering single phase flows, the D2Q9 lattice and the BGK colli-

sion term, the equilibrium distribution Ψ
eq

i reads

Ψ
eq

i = ρωi +ρsi(u(x, t)), (4.37)

where

si(u) = ωi

(
3

ei ·u
c

+
9
2
(ei ·u)2

c2 − 3
2

u ·u
c2

)
, (4.38)

with the weights given by

ωi =


4
9 i = 0
1
9 i = 1, · · · ,4
1

36 i = 5, · · · ,8
. (4.39)

To obtain these expressions it suffices to define an equilibrium distribution which
fulfills the macroscopic definitions ∑iΨ

eq
i = ρ , ∑iΨ

eq
i (cei−u) = 0, etc, and from

them, to identify the different terms Ψ
eq

i .
The simulation algorithm can be summarized as follows:

1. Initialize Ψi, and from it compute ρ , u and then Ψ
eq

i ;
2. Streaming step: From Ψi compute Ψ ∗i (x+ c∆ tei, t +∆ t) =Ψ(x, t);
3. From Ψ ∗i compute ρ and u, and from both Ψ

eq
i ;



4. Collision step: Update the distribution Ψi from Ψi =Ψ ∗i −ν(Ψ ∗i −Ψ
eq

i ).

The main issues related to the use of this procedure (very simple at first glance)
are the enforcement of Dirichlet boundary conditions and the calculation of the ex-
pression of the equilibrium distribution for complex or multi-phase flows. The in-
terested reader can refer to the vast existing bibliography on these topics.

4.3 Kinetic theory description of some complex fluids

Over the last decades, an increasing number of functional and structural parts, made
so far with metals, has been progressively reengineered by replacing metallic ma-
terials by polymers, reinforced polymers and composites. The motivation for this
substitution may be the weight reduction, the simpler, cheaper or faster forming
process, or the ability to exploit additional functionalities. The fillers usually em-
ployed cover a broad range involving many scales: (i) the nanometer scale (e.g.
carbon nanotubes, graphene, fullerene, nanodiamonds); (ii) the micrometer to the
millimeter scale (particles and short fibers); (iii) the centimeter scale of fibers used
in SMC and BMC composite processes; and finally (iv) the macroscopic scale where
fibrous reinforcements are made of continuous fibers arranged in bundles. When
load-bearing capacities are especially looked for, continuous fiber reinforced poly-
mers are selected. In that case, the impregnation of the reinforcement with a low
viscosity polymer involves the flow of a Newtonian or non-Newtonian fluid in the
complex multi-scale microstructure related to the fiber and tow arrangement. Rein-
forced polymers are selected instead of high performance polymers of equivalent
properties since the latter are generally more expensive. When looking for func-
tional properties, the use of nano-charges opens a wide spectrum of possibilities
but also raises new challenges, such as dispersion of charges into the polymer ma-
trix and occurrence of aggregation and disaggregation mechanisms. Suspensions of
practical interest involve many scales and many concentration regimes, the latter
ranging from dilute to highly concentrated.

In what follows we are addressing many of the just referred scenarios. We start
addressing the modeling of suspensions involving rigid rods where the Brownian
effects are neglected. For this purpose we consider a suspending medium consisting
of a Newtonian fluid of viscosity η in which there are suspended rigid and non-
Brownian rods. We assume as first approximation that their presence and orientation
do not affect the flow kinematics that is defined by the velocity field v(x, t), that
allows defining the velocity gradient, rate of strain and vorticity tensors, ∇v, D and
Ω respectively, with D and Ω the symmetric and skew-symmetric components of
the velocity gradient respectively, i.e.

D =
1
2
(
∇v+(∇v)T ) , (4.40)

and



Ω =
1
2
(
∇v− (∇v)T ) . (4.41)

In what follows we consider the following tensor products:

• if a and b are first order tensors then the single contraction “·” reads (a ·b)= a j b j
(Einstein summation convention);

• if a and b are first order tensors then the dyadic product “⊗” reads (a⊗b) jk =
a j bk;

• if a and b are first order tensors then the cross product “×” reads (a× b) j =
ε jmn am bn (Einstein summation convention) with ε jmn the components of the
Levi-Civita tensor ε (also known as permutation tensor);

• if a and b are respectively second and first order tensors then the single contrac-
tion “·” reads (a ·b) j = a jm bm (Einstein summation convention);

• if a and b are second order tensors then the single contraction “·” reads (a ·b) jk =
a jm bmk (Einstein summation convention);

• if a and b are second order tensors then the double contraction ‘:” reads (a : b) =
a jk bk j (Einstein summation convention);

4.3.1 Dilute suspensions of non-Brownian rods

To address the modeling of suspensions involving rigid rods while neglecting the
Brownian effects, we consider nine different bricks that constitutes the multiscale
description of such suspensions: three at the microscopic scale, three at the meso-
scopic level and three at the macroscopic scale, all them revisited in what follows.

Microscopic scale: Particle conformation

The conformation of each rod of length 2L can be described from its orientation,
the last expressed from the unit vector p located at the rod center of gravity G and
aligned along the rod axis. Despite the fact of using the concept of rod center of
gravity, the rod mass can be neglected and with it all the inertia effects.

Microscopic scale: Particle conformation evolution

The equation governing the time evolution of the particle conformation ṗ can be
derived by considering the system illustrated in Fig. 4.5 consisting of a rod and two
beads located at both rod ends where we assume that hydrodynamic forces act. We
assume that the forces F that act on each bead scale with the difference of velocities
between the fluid and the bead, the first one given by v0 +∇v ·pL and the second
one by vG + ṗL. Thus, force F(pL) reads:

F(pL) = ξ (v0 +∇v ·pL−vG− ṗL), (4.42)



where ξ is the friction coefficient, v0 the fluid velocity at the rod’s center of gravity
(assumed unperturbed by the rod presence and orientation) and vG the velocity of
the center of gravity.

Fig. 4.2 Hydrodynamic forces applying on a rod immersed in a Newtonian fluid

Obviously if F(pL) acts on the bead pL, then in the opposite bead −pL the re-
sulting force reads

F(−pL) = ξ (v0−∇v ·pL−vG + ṗL). (4.43)

Adding Eqs. (4.42) and (4.43) and enforcing the forces balance neglecting inertia
effects (the rods mass is assumed negligible) it results

F(pL)+F(−pL) = 2ξ (v0−vG) = 0, (4.44)

than implies v0 = vG, that is, the rod center of gravity is moving with the fluid veloc-
ity. To simplify the notation from now on we consider F=F(pL) and F(−pL)=−F.

As the resulting torque must also vanish, the only possibility is that force F acts
along p, that is F = λp, with λ ∈ R. Thus we can write

λp = ξ L(∇v ·p− ṗ). (4.45)

Premultiplying Eq. (4.45) by p and taking into account that p ·p = 1 and conse-
quently p · ṗ = 0, it results

λ = ξ L(∇v : (p⊗p)) , (4.46)

where ∇v : (p⊗p) ≡ pT ·∇v ·p (both expressions ∇v : (p⊗p) and pT ·∇v ·p will
be used in what follows indifferently).

Coming back to Eq. (4.45) and using Eq. (4.46) we obtain

ξ L(∇v : (p⊗p))p = ξ L(∇v ·p− ṗ), (4.47)

from which it results finally that the rotary velocity corresponds to the Jeffery equa-
tion for infinite aspect ratio ellipsoids (rods) [34]



ṗ = ∇v ·p− (∇v : (p⊗p))p,

 (4.48)

or its equivalent form
ṗ = ∇v ·p−

(
pT ·∇v ·p

)
p, (4.49)

where it can be noticed that the rod kinematics does not contain size effects.

Microscopic scale: Particle contribution to the stress

The forces acting at the rods ends pL and−pL result respectively λp and−λp, both
directed along the rod direction and by construction auto-equilibrated.

With λ given by Eq. (4.46) it results

F(pL) = ξ L(∇v : (p⊗p)) p, (4.50)

whose contribution to the stress τ p, by applying the Kramer’s formula (also known
as virial stress), results

τ
p = ξ L2(∇v : (p⊗p)) p⊗p, (4.51)

that can be rewritten as

τ
p = ξ L2

∇v : (p⊗p⊗p⊗p). (4.52)

From Eq. (4.52) one could infer that rheology contains size effects because the
presence of factor L2 in the particle contribution to the stress. To prove that size
effects also disappears when addressing rheology we consider the traction applied
on the rod-end T that by considering a Newtonian behavior writes T = 2ηD ·p. By
writing the objective stress related to the rod rotation 2η(ṗ−Ω ·p) and enforcing
that the resulting force aligns along the direction p, we obtain again the Jeffery’s
equation. In order to obtain the same expression for the stress it suffices considering
ξ ∝

η

L2 . Thus we can conclude that size effects are absent in Eq. (4.52).

Mesoscopic scale: Population description

There are two natural descriptions of a population of rods at a mesoscopic level:

• The first consists in specifying each rod orientation by considering the unit vec-
tor aligned along its axis, that is, by considering pi, i = 1, · · · ,N. As discussed
later the main drawback related to such approach lies in the necessity of tracking
the evolution of each “computational” rod by solving the corresponding Jeffery
equation (4.49), and even if conceptually there is no major difficulty, the com-
puting cost could be excessive in most practical applications.



• The second approach for describing such a population lies in the introduction of
the probability distribution function – pdf – Ψ(x, t,p) given the fraction of rods
that a position x and time t are oriented along direction p.

Despite the fact that both mesoscopic models involve the same physics and rich-
ness of description, the main advantage of the second one is the manipulation of a
scalar continuous function instead of the discrete description involved in the first ap-
proach. The price to be paid when using the description based on the use of the pdf
is its inherent multidimensionality, because in that framework the pdf depends on
the standard space and time coordinates, x and t respectively, and also on the con-
formation coordinates that the microstructural description involves, in the present
case p.

Mesoscopic scale: Description of the population evolution

• When the population is described from the individuals composing it, whose con-
formation is given by vectors pi, i = 1, · · · ,N, the evolution of each one is given
by the Jeffery equation (4.49), that reads

ṗi = ∇v ·pi +(∇v : (pi⊗pi)) pi, ∀i = 1, · · · ,N. (4.53)

• The alternative description consists of using the pdf Ψ(x, t,p) that verifies the
normality condition ∫

S
Ψ(x, t,p) dp = 1; ∀x, ∀t. (4.54)

In order to use it, one needs to derive the equation governing the evolution of
the orientation distribution function Ψ , that is related to the rods conservation
balance, that reads

∂Ψ

∂ t
+∇x · (ẋ Ψ)+∇p · (ṗ Ψ) = 0, (4.55)

where for inertialess rods, with length L smaller that the characteristic flow
length, ẋ = v(x, t) and the rods rotary velocity is given by Jeffery’s equation
(4.49). The resulting balance is known as the orientation Fokker-Planck equa-
tion.
The price to pay is the increase of the model dimensionality, because the orienta-
tion distribution is defined in a high-dimensional domain consisting of 6 dimen-
sions in the general 3D case, i.e. Ψ : (x, t,p)→ R+.

Mesoscopic scale: Contribution of the particles population to the stress

Again we consider the two alternative descriptions:



• When the population is described in a discrete manner, by specifying the dif-
ferent rods orientations pi, the contributions of rods to the suspension stress is
calculated by adding their individual effects, given by Eq. (4.52), that is

τ =
N

∑
i=1

τ
i =

N

∑
i=1

ξ L2
∇v : (pi⊗pi⊗pi⊗pi). (4.56)

• When the population is described from the pdf Ψ(x, t,p) the sum in Eq. (4.56) is
replaced by an integral in the conformation space S :

τ =
∫

S
τ

p
Ψ(p) dp = 2ηNp

∫
S

∇v : (p⊗p⊗p⊗p)Ψ(p) dp =

2ηNp∇v :
∫

S
p⊗p⊗p⊗p Ψ(p) dp, (4.57)

where the so-called particle number Np accounts for the particles concentration
and where we considered the viscosity instead of the friction coefficient to be
consistent with the usual notation.
By considering the expression of the fourth order orientation tensor

A =
∫

S
p⊗p⊗p⊗p Ψ(p) dp, (4.58)

Eq. (4.57) can be rewritten as

τ = 2ηNp(A : ∇v), (4.59)

and because the symmetry of tensor A, the extra-stress τ can be expressed from

τ = 2ηNp(A : D). (4.60)

Macroscopic scale: Conformation

As just discussed discrete descriptions are computationally expensive because of
the large number of rods that must be considered in order to derive accurate enough
model outputs. On the other hand Fokker-Planck based descriptions are rarely con-
sidered precisely because the curse of dimensionality that the introduction of con-
formation coordinates (the rod orientation in the case here considered) implies. Thus
standard mesh-based discretization techniques, as finite differences, finite elements
or finite volumes, fail when addressing models defined in high-dimensional spaces.

For these reasons, mesoscopic models were coarsened to derive macroscopic
models defined in standard physical domains, involving space and time. At the
macroscopic scale the orientation distribution function is substituted by its moments
for describing the microstructure. Usually macroscopic descriptions of rods suspen-
sions are based on the use of the first two non-vanishing moments, the second, a,
and the fourth, A, order moments (the odd moments vanish because the symmetry



of the pdf), the former is given by

a =
∫

S
p⊗p Ψ(p) dp, (4.61)

and the latter by Eq. (4.58).

Macroscopic scale: Microstructural evolution

The microstructural evolution described at the macroscopic scale considers the time
evolution of the pdf moments. The time evolution of the second order orientation
tensor, when replacing Ψ̇ by its expression given by the Fokker-Planck equation
(4.69), and after integrating by parts, results

ȧ =
∫

S
(ṗ⊗p+p⊗ ṗ) Ψ dp =

∫
S
(∇v ·p− (∇v : (p⊗p)) p)⊗p Ψ dp+∫

S
p⊗ (∇v ·p− (∇v : (p⊗p)) p) Ψ dp =

∇v ·a+a · (∇v)T −2 A : ∇v, (4.62)

that depends on the fourth order moment A. The time derivative of the fourth order
moment, using the same rationale, implies the sixth order one A , and so on.

Another possibility for deducing Eq. (4.62) lies in applying the rationale fol-
lowed for deriving the hydrodynamic equations in Section 4.2.1. Thus, we multiply
the Fokker-Planck equation (4.69) by p⊗ p and integrate on the unit ball surface
S , making use of the integration by parts for the term involving ∇p(ṗΨ). This
procedure will be considered later when addressing polymeric systems.

Thus, if we consider the microstructure described from ‘a” a closure relation is
needed in order to express the fourth order moment “A” as a function of the lower
order moments (a in the present case). Different closure relations have been intro-
duced and widely used [12]. When considering for example the quadratic closure
relation (that is only exact when all the rods are locally aligned in the same direc-
tion) the fourth order moment results

A≈ a⊗a, (4.63)

that allows writing

ȧ≈ ∇v ·a+a · (∇v)T −2 (∇v : a) a, (4.64)

or invoking again symmetry considerations

ȧ≈ ∇v ·a+a · (∇v)T −2 (D : a) a. (4.65)



Macroscopic scale: Moment based stress

We obtained previously the expression of the rods population contribution to the
stress

τ = 2ηNp(A : ∇v), (4.66)

that implies the use of the fourth order moment A. When A is calculated from the
pdf Ψ by using (4.58) within the mesoscopic framework there is no closure issues.
However, when one proceed at the macroscopic scale in which the pdf is not avail-
able anymore, a closure relation must be considered for either

• writing A from the knowledge of a, the last calculated by integrating (4.62) with
an appropriate closure relation (e.g. Eq. (4.64) when considering the quadratic
closure),

or

• calculating A by solving the equation that governs its time evolution in which as
just commented the sixth order moment appears requiring again an appropriate
closure.

The first route is the simplest one and the most used in practice, that leads

τ = 2ηNp(Acr(a) : ∇v), (4.67)

where the superscript ‘cr” refers to the use of an appropriate closure relationship.
When considering the quadric closure the stress writes:

τ = 2ηNp(a : ∇v)a = 2ηNp(a : D)a. (4.68)

4.3.2 On the solution of the Fokker-Planck equation

As discussed in the previous section the solution of the Fokker-Planck equation
seems a real issue when using well experienced mesh-based discretization tech-
niques due to the curse of dimensionality that it implies. As this issue is a recurrent
difficulty in all the models treated in this chapter, before moving on in the descrip-
tion of other kinetic theory models, we are briefly discussing different simulation
alternatives.

Since kinetic theory descriptions involve a probability distribution function de-
pending on space, time and a number of conformational coordinates, the associ-
ated Fokker-Planck equations suffer the so-called curse of dimensionality typical of
problems defined in highly dimensional spaces.

Thus, mesh-based discretization techniques fail for discretizing the problem be-
cause the number of degrees of freedom involved in a mesh or grid increases expo-
nentially with the space dimension.



In what follows, we consider some alternatives to standard mesh-based dis-
cretization that are able to address the solution of Fokker-Planck equations asso-
ciated with kinetic theory descriptions.

We consider, without loss of generality, a generic Fokker-Planck equation in-
volving the pdf Ψ(x, t,a) where here a represents a set of arbitrary conformational
coordinates (it is of fundamental importance not to confuse conformational coordi-
nates a and the orientation tensor considered in the previous section) and diffusion
terms are represented by fluxes qx and qa operating respectively in the physical and
conformational spaces:

∂Ψ

∂ t
+∇x · (v Ψ)+∇a · (ȧ Ψ) =−∇x ·qx−∇a ·qa. (4.69)

4.3.2.1 Method of particles for solving advection-dominated problems

This technique described in detail in [15] [16] consists in approximating the initial
distribution Ψ(x, t = 0,a) from M Dirac’s masses a0

i at each one of the Q positions
x0

j :

Ψ(x, t = 0,a) =
Q

∑
j=1

M

∑
i=1

α
j

i δ (a−a0
i ) δ (x−x0

j). (4.70)

This represents a sort of approximation based on Q ·M computational particles
Pi j with initial positions and conformations given by{

x0
i j = x0

j , i = 1, · · · ,M ; j = 1, · · · ,Q
a0

i j = a0
i , i = 1, · · · ,M ; j = 1, · · · ,Q , (4.71)

and whose position and conformation will be evaluated all along the flow simulation,
from which the distribution will be reconstructed.

When considering the purely advective balance equation

∂Ψ

∂ t
+∇x · (v Ψ)+∇a · (ȧ Ψ) = 0, (4.72)

the time evolution of position and conformation of each particle Pi j is calculated
by integrating {

xi j(t) = x0
i j +

∫
τ=t
τ=0 v(xi j(τ)) dτ

ai j(t) = a0
i j +

∫
τ=t
τ=0 ȧi j(ai j(τ),xi j(τ)) dτ

. (4.73)

As the position update only depends on the velocity field, that itself only depends
on the position, it can be stressed that particles Pi j, i = 1, · · · ,M are following the
same trajectory in the physical space, having x0

j as departure point.
Now, the orientation distribution at time t can be reconstructed from



Ψ(x, t,a) =
Q

∑
j=1

M

∑
i=1

α
j

i δ (a−ai j(t)) δ (x−xi j(t)). (4.74)

Obviously, smoother representations can be obtained by considering appropriate
regularizations of the Dirac’s distribution, as the one usually performed within the
SPH (Smooth Particles Hydrodynamics) framework [15] [3].

When considering diffusion terms, there are two main routes based on the use of
particles, one of stochastic nature, the other fully deterministic.

To illustrate the procedure when models involve diffusion terms, we consider the
Fokker-Planck equation

∂Ψ

∂ t
+∇x · (v Ψ)+∇a · (ȧ Ψ) =−∇x ·qx−∇a ·qa, (4.75)

where qx and qa are two diffusive fluxes operating in the physical and conforma-
tional spaces respectively, both modeled from a Fick-type law:{

qx =−Dx ·∇xΨ

qa =−Da ·∇aΨ
. (4.76)

• Within the stochastic framework, diffusion terms can be modeled from appropri-
ate random variables within a Lagrangian or a Eulerian description, the last one
known as Brownian Configurations Fields (BCF). Both approaches were consid-
ered in our former works on the solution of Fokker-Planck equations [16] [17].
Within the Lagrangian stochastic framework and starting from the initial cloud
of computational particles Pi j representing the initial distribution Ψ(x, t = 0,a),
the simplest particles updating reads{

xi j(tn+1) = xi j(tn)+v(xi j(tn)) ∆ t +Rx(∆ t)
ai j(tn+1) = ai j(tn)+ ȧi j(ai j(tn),xi j(tn)) ∆ t +Ra(∆ t) , (4.77)

where ∆ t is the time step and both random updates Rx and Ra depend on the
chosen time step (see [43] for more details as well as for advanced stochastic
integrations).
Obviously, because of the random effects operating in the physical space, the
M particles initially located at each position x0

j , j = 1, · · · ,Q, will follow dif-
ferent trajectories in the physical space along the simulation. In order to obtain
accurate enough results, we must consider a rich enough representation, that is,
a large population of particles. For this purpose, we must consider large enough
M and Q. The large number of particles to be tracked seems a disadvantage of
the approach at first sight, but it must be noticed that the integration of each par-
ticle is completely independent of all the others, making possible the use of HPC
on massively parallel computing platforms.

• The technique introduced to treat purely advective equations can be extended to
consider diffusion contributions as was described in [3] and that we revisit in
what follows, within a fully deterministic approach. Eq. (4.75) can be rewritten
as:



∂Ψ

∂ t
+∇x ·

((
v+

qx

Ψ

)
Ψ

)
+∇a ·

((
(ȧ+

qa

Ψ

)
Ψ

)
= 0, (4.78)

or
∂Ψ

∂ t
+∇x · (ṽ Ψ)+∇a ·

(
˙̃a Ψ
)
= 0, (4.79)

where the effective velocities ṽ and ˙̃a are given by:{
ṽ = v− 1

Ψ
Dx ·∇xΨ

˙̃a = ȧ− 1
Ψ

Da ·∇aΨ
. (4.80)

Now, the integration scheme (4.73) can be applied by replacing material and
conformation velocities, v and ȧ, by their effective counterparts ṽ and ˙̃a:{

xi j(t) = x0
i j +

∫
τ=t
τ=0 ṽ(xi j(τ)) dτ

ai j(t) = a0
i j +

∫
τ=t
τ=0

˙̃ai j(ai j(τ),xi j(τ)) dτ
. (4.81)

This fully deterministic particle description requires much less particles that its
stochastic counterpart, but as noticed in Eq. (4.80), the calculation of the ef-
fective material and conformational velocities requires the derivative of the pdf
Ψ with respect to both the physical and the conformational coordinates. To do
so, the distribution must be reconstructed all along the simulation (at each time
step), which constitutes a serious drawback for its implementation on massively
parallel computing platforms. Moreover, to make possible the calculation of the
distribution derivatives, the Dirac distribution must be regularized in order to
ensure its derivability.

4.3.2.2 Separated representations for solving difusion-dominated problems

When the diffusion effects are dominant, the techniques presented in the previous
section become inefficient because they require an excessive number of particles to
produce accurate enough results, in particular for reconstructing the distribution. In
this case, standard mesh-based discretizations seem a better choice. However, as dis-
cussed before, mesh-based discretizations fail when addressing highly dimensional
models as it is the case when addressing the solution of the previous introduced
Fokker-Planck equation. Separated representations seem the most appealing choice.

Considering the Fokker-Planck equation

∂Ψ

∂ t
+∇x · (v Ψ)+∇a · (ȧ Ψ) = ∇x (Dx ·∇xΨ)+∇a (Da ·∇aΨ) , (4.82)

there are many separated representation choices. The most natural one consists in
separating time, physical and conformational spaces, i.e.

Ψ(x, t,a)≈
N

∑
i=1

Xi(x) ·Ti(t) ·Ai(a). (4.83)



Thus, when proceeding with the Proper Generalized Decomposition – PGD –
constructor [4, 5, 19, 20], we must solve of the order of N 2D or 3D (depending on
the dimension of the physical space) boundary value problems – BVP – for calcu-
lating functions Xi(x), the same number of 1D initial value problems – IVP – for
calculating functions Ti(t), and finally the same number of problems involving the
conformational coordinates for calculating functions Ai(a).

4.3.3 Dilute suspensions of Brownian rods

In section 4.3.1 Brownian effects were neglected. The Brownian effects are due to
the fluid molecules bombardment acting on the rod beads. This section focuses on
the modeling of such effects particularly important when considering nano-charges
(e.g. carbon nanotubes – CNT –). Moreover, as that bombardement results in a diffu-
sion mechanism inducing a sort of randomizing effet, the same modeling framework
is usually retained to address semi-dilute or semi-concentrated suspensions of rods
in order to take into account the inter-rods interactions.

4.3.3.1 Microscopic description

In this case the rod beads are subjected to the hydrodynamic forces and the ones
coming from the bombardment. The first one was introduced previously

FH = ξ L (∇v ·p− ṗ), (4.84)

where the superscript ‘H” refers to its hydrodynamic nature. Now the Brownian
force FB is assumed to act during a short time interval δ t following a certain statis-
tical distribution concerning its magnitude and its orientation. The first one, in virtue
of the central limit theorem, is assumed to be described by a gaussian distribution of
zero mean and a certain standard deviation and the one related to the orientation by
a uniform distribution on the unit circle C (in 2D) or in the unit sphere S (in 3D).

Brownian forces acting in the rod direction are assumed equilibrated. However,
the components of those forces perpendicular to the rod axis contribute to the rod
rotation, and then they affect its rotary velocity. In what follows, for the sake of
clarity, we restrict our analysis to the 2D case. For inertialess rods the resultant
moment must vanish and consequently

FH · t+FB · t = 0, (4.85)

being t the unit vector tangent to the unit cercle defined from t = ṗ
‖ṗ‖ .

By injecting into Eq. (4.85) the hydrodynamic force (4.84) it results

tT ·∇v ·p−‖ṗ‖=−FB · t
ξ L

, (4.86)



and multiplying by t, taking into that ṗ = ‖ṗ‖t, it results

ṗ =
(
tT ·∇v ·p

)
t+

FB · t
ξ L

t, (4.87)

that using the vectorial equivalence(
tT ·∇v ·p

)
t = ∇v ·p−

(
pT ·∇v ·p

)
p, (4.88)

results in

ṗ = ∇v ·p−
(
pT ·∇v ·p

)
p+

FB · t
ξ L

t =

∇v ·p−
(
pT ·∇v ·p

)
p+

FB− (FB ·p)p
ξ L

, (4.89)

where we can notice that the rotary velocity is given by the Jeffery expression ṗJ

complemented with a term accounting for the Bownian effects ṗB,

ṗJ = ∇v ·p−
(
pT ·∇v ·p

)
p, (4.90)

and

ṗB =
FB− (FB ·p)p

ξ L
, (4.91)

from which
ṗ = ṗJ + ṗB. (4.92)

Now, we discuss the effects of such Brownian contribution to the extra-stress
tensor.

Consider a rod aligned along the x-axis, such that pT = (1,0) and the fluid
at rest. This rod undergone a continuous bombardment from the suspending fluid
molecules. The component of forces aligned with the rod axis does not contribute to
the rod rotation and by averaging it in ∆ t� δ t (∆ t and δ t being the rod kinematics
characteristic time and the one related to the bombardement respectively) the result-
ing contribution vanishes. On the contrary, the component perpendicular to the rod
will contribute to the stress. To derive the expression of this Brownian contribution
we consider that due to an impact the rod rotates a small angle, e.g. δθ > 0, with
the rod orientation defined by pδθ . We consider the unit tangent vector tδθ such that
pδθ × tδθ = ez (ez is the unit vector in the out-of-plane direction in the present 2D
analysis). Considering the Brownian force applying at that position, i.e. ‖FB‖ · tδθ ,
it results the contribution to the virial stress

−‖FB‖ pδθ ⊗ tδθ = ‖FB‖
(

sin(δθ) cos(δθ) −cos2(δθ)

sin2(δθ) −sin(δθ) cos(δθ)

)
, (4.93)

where the negative sign accounts for the fact that the hydrodynamic force applies in
the opposite direction of the Brownian force.



We can notice in that expression two facts: (i) the trace is zero, and (ii) the contri-
bution is non-symmetric. However, we can imagine that a little bit later, a Brownian
force will apply in the opposite direction. Invoking ergodicity (allowing to replace
time by ensemble averages) we could assume that another particle initially aligned
along p receive the opposite impact leading to an angle −δθ , from which

‖FB‖ p−δθ ⊗ t−δθ = ‖FB‖
(

sin(δθ) cos(δθ) cos2(δθ)

−sin2(δθ) −sin(δθ) cos(δθ)

)
, (4.94)

and then by averaging it gives a Brownian contribution to the extra-stress associated
to the x-direction (ϕ = 0)

τ
B
ϕ=0 =

(
β 0
0 −β

)
= β

(
1 0
0 −1

)
= β U, (4.95)

that becomes symmetric and traceless.
Now, for rods aligned in any other direction ϕ , it suffices to apply a rotation of

angle ϕ to tensor τB
ϕ=0 according to

τ
B
ϕ = β RT

ϕ ·U ·Rϕ , (4.96)

with

Rϕ =

(
cosϕ sinϕ

−sinϕ cosϕ

)
, (4.97)

that finally yields

τ
B
ϕ = 2β

((
cos2 ϕ sinϕ cosϕ

sinϕ cosϕ sin2
ϕ

)
−
( 1

2 0
0 1

2

))
, (4.98)

that can be rewritten as

τ
B
pϕ

= 2β

(
pϕ ⊗pϕ −

I
2

)
, (4.99)

where I is the identity tensor and pϕ the unit vector defined by the angle ϕ .
For a population of rods pi, i = 1, · · · ,N, the contribution of Brownian effects is

finally given by:

τ
B = 2β

N

∑
i=1

(
pi⊗pi−

I
2

)
. (4.100)

4.3.3.2 Mesoscopic description

The mesoscopic discrete description can be summarized as follows:

• Given the flow velocity field v(x, t), the initial position of the centre of gravity of
each rod xG

i (t = 0) and its orientation pi(t = 0) or knowing both them at time t;



• For each rod i = 1, · · · ,N:

– Update the position of the centre of gravity by integrating:

dxG
i

dt
= v(xG

i , t). (4.101)

– Update its orientation by integrating

dpi

dt
= ∇v|xG

i ,t
·pi−

(
pT

i ·∇v|xG
i ,t
·pi

)
pi +

FB
i − (FB

i ·pi) pi

ξ L
. (4.102)

• Compute the stress at position x and time t by considering all the rods inside a
control volume V (x) centered at x by applying

τ(x, t) = 2η D(x, t)+

+ ∑
i∈V (x)

(
2ηNp ∇v|x,t : (pi⊗pi⊗pi⊗pi)+2β

(
pi⊗pi−

I
2

))
. (4.103)

In the case of coupled models this stress will serve to update the velocity field,
however, as previously indicated, in the present text we consider the velocity field
unperturbed by the presence and orientation of the rods (decoupled modeling).

On the other hand the mesoscopic continuous description considers a diffusion
term in the Fokker-Planck equation

∂Ψ

∂ t
+∇x · (vΨ)+∇p · (ṗΨ) = Dr∇

2
pΨ , (4.104)

with the flow induced orientation ṗ given by the Jeffery’s equation (4.49), and where
Dr is the so-called rotary diffusion.

We can notice that in absence of flow, i.e. v(x, t) = 0 the Fokker-Planck equation
reduces to

∂Ψ

∂ t
= Dr∇

2
pΨ , (4.105)

that ensures a steady state consisting of an isotropic orientation distribution, i.e.
Ψ(x, t → ∞,p) = 1

2π
in 2D and Ψ(x, t → ∞,p) = 1

4π
in 3D. The higher is the rota-

tional diffusion the faster the isotropic orientation distribution is reached.
Thus, at the continuous mesoscopic level the introduction of Brownian effects

seems quite simple. The question is: what is the discrete and macroscopic counter-
parts of the just introduced diffusion term?

The Fokker-Planck equation can be rewritten in the form:

∂Ψ

∂ t
+∇x · (vΨ)+∇p · (ṗΨ)−Dr∇

2
pΨ =

∂Ψ

∂ t
+∇x · (vΨ)+∇p ·

(
˙̃pΨ
)
= 0, (4.106)



where the effective rotational velocity ˙̃p is given by

˙̃p = ∇v ·p−
(
pT ·∇v ·p

)
p−Dr

∇pΨ

Ψ
(4.107)

that contains the flow induced Jeffery’s contribution ṗJ plus the Brownian one ṗB,
i.e. ˙̃p = ṗJ + ṗB with

ṗJ = ∇v ·p−
(
pT ·∇v ·p

)
p, (4.108)

and

ṗB =−Dr
∇pΨ

Ψ
. (4.109)

Within the mesoscopic continuous description Brownian contribution to the
extra-stress tensor results from the generalization of Eq. (4.100) by substituting the
sum by that corresponding integral

τ
B = 2β̃

∫
S

(
p⊗p− I

2

)
Ψ(p) dp = 2β̃

(
a− I

2

)
. (4.110)

In summary, the mesoscopic continuous description consists of:

• Given the flow velocity field v(x, t) and the initial orientation distributionΨ(x, t =
0,p)

• Solve the Fokker-Planck equation that governs the rods orientation distribution:

∂Ψ

∂ t
+∇x · (vΨ)+∇p · (ṗΨ) = Dr∇

2
pΨ , (4.111)

with
ṗ = ∇v ·p−

(
pT ·∇v ·p

)
p. (4.112)

• Compute the stress tensor:

τ = τ
f + τ

r = 2η D+2ηNp (D : A)+2β̃

(
a− I

2

)
. (4.113)

4.3.3.3 Macroscopic description

When moving towards the macroscopic scale the Brownian contribution to the extra-
stress is defined by Eq. (4.110), however at the macroscopic scale the microstructure
is defined by the different moments of the orientation distribution. In what follows
we are deriving the contribution of Brownian effects on the equation governing the
evolution of the second order moment.

We start from the second order moment definition

a =
∫

S
p⊗p Ψ dp (4.114)



whose time derivative involves now the effective rotational velocity p̃̇

ȧ =
∫

S

(
˙̃p⊗p+p⊗ ˙̃p

)
Ψ dp. (4.115)

As proved in the previous sections, the effective rotational velocity contains the
flow induced contribution given by the Jeffery’s expression ṗJ and the one induced
by the Brownian effects ṗB, given by Eqs. (4.108) and (4.109) respectively. With
this decomposition Eq. (4.115) can be written as

ȧ =
∫

S

((
ṗJ + ṗB)⊗p+p⊗

(
ṗJ + ṗB))

Ψ dp =

∫
S

(
ṗJ⊗p+p⊗ ṗJ)

Ψ dp+∫
S

(
ṗB⊗p+p⊗ ṗB)

Ψ dp = ȧJ + ȧB, (4.116)

where the flow induced microstructure evolution ȧJ is given by

ȧJ = ∇v ·a+a · (∇v)T −2A : D. (4.117)

We are now calculating the expression of the remaining contribution ȧB

ȧB =
∫

S

(
ṗB⊗p+p⊗ ṗB)

Ψ dp, (4.118)

with ṗB given by

ṗB =−Dr
∇pΨ

Ψ
. (4.119)

For the sake of clarity we consider again the 2D case that allows to write

ṗB =−Dr
‖∇pΨ‖

Ψ
t, (4.120)

with t being the unit tangent vector to the unit circle aligned with the rotary velocity.
In this case Eq. (4.118) reduces to

ȧB =−Dr

∫
S
(t⊗p+p⊗ t)

∂Ψ

∂θ
dθ . (4.121)

Now, integrating by parts Eq. (4.121) and taking into account

dp
dθ

= t, (4.122)

and
dt
dθ

=−p, (4.123)



it results that
ȧB =−2Dr

∫
S
(p⊗p− t⊗ t) Ψ(θ) dθ . (4.124)

It is easy to prove that

t⊗ t+p⊗p = I → t⊗ t = I−p⊗p, (4.125)

that allows to write Eq. (4.124) in the form

ȧB =−2Dr

∫
S
(2(p⊗p)− I) Ψ(θ) dθ =−2Dr (2a− I) (4.126)

or

ȧB =−4Dr

(
a− I

2

)
. (4.127)

When considering a 3D situation, the resulting expression is given by

ȧB =−6Dr

(
a− I

3

)
. (4.128)

We can notice that in the 2D case and in absence of flow, ȧJ = 0, and then ȧ = ȧB

ȧ =−4Dr

(
a− I

2

)
, (4.129)

ensuring an isotropic steady state, i.e. a(t→ ∞) = I
2 .

In summary, the decoupled macroscopic description consists of:

• Given the flow velocity field v(x, t) and the initial second order moment of the
orientation distribution a(x, t = 0);

• Solve the equation governing the evolution of a:

ȧ = ∇v ·a+a · (∇v)T −2A : D−4Dr

(
a− I

2

)
, in 2D, (4.130)

by using an exact or an approximated closure relation.
• Compute the stress tensor:

τ = τ
f + τ

r = 2ηD+2ηNp (D : A)+2β̃

(
a− I

2

)
, in 2D, (4.131)

using again an appropriate closure relation.

4.3.3.4 From semi-dilute to concentrated regimes

Semi-dilute and semi-concentrated regimes have been widely addressed, most of
time by using phenomenological approaches. The most common approach consists



in considering that rod-rod interactions tends to randomize the orientation distri-
bution. Thus, a second diffusion coefficient is introduced for accounting for rods
interactions, however, in the present case that diffusion coefficient should scale with
the flow intensity in order to ensure that in absence of flow the microstructure does
not evolve artificially due to such a diffusion term. In general the interaction diffu-
sion coefficient DI is assumed in the general form

DI =CI f (Deq) (4.132)

where Deq is related to the second invariant of the rate of strain tensor, i.e. Deq =√
D : D and CI is the so-called interaction coefficient. The Folgar & Tucker model

considers the simplest dependence f (Deq) = Deq.
Obviously, there are finer approaches based on the direct simulation where the

rod-rod interactions are taken explicitly into account. In the concentrated regime the
subjacent physics is richer and many times it involves aggregation. The interested
reader can refer to chapter 2 in [12] and the references therein.

4.3.4 Rigid clusters composed of rigid rods

The kinematics of rigid and deformable clusters composed of rods was widely de-
scribed in [12]. When focusing on rigid clusters it was assumed that hydrodynamic
forces (previously introduced) act on the N beads of the rods involved in the cluster.
The location of each bead Bi with respect to the cluster center of gravity G is given
by Lipi, where pi is the unit vector pointing from G to Bi, as shown in Fig. 4.3.

Fig. 4.3 Rigid cluster composed of rods.



A balance of torques yields the cluster rotary velocity. By defining the cluster
conformation tensor c as follows,

c =

N
∑

i=1
L2

i (pi⊗pi)

N
∑

i=1
L2

i

, (4.133)

the cluster rotary velocity ω is given by

ω = (I− c)−1(ε : (∇v · c)), (4.134)

where ε the Levi-Civita permutation tensor. From the cluster rotary velocity ω given
by Eq. (4.134), the rate of change of the conformation tensor ċ can be calculated
[2, 12].

Thus, different cluster having the same conformation tensor c will have the same
rotary velocity. A particular case consists of the tri-dumbell whose rotary velocity
calculated from the previous equations coincides with the one associated to the Jef-
fery solution for the corresponding ellipsoid. In the next section 4.3.4.1 we describe
the rationale in the case of a rigid bi-dumbbell.

In the limit case when the number of rods is large enough, the discrete description
given by Eq. (4.133) can be substituted by a continuous one that considers the pdf
ψ(p) given the fraction of rods in the cluster aligned in direction p.

A dilute suspension composed of rigid clusters could be described within the
kinetic theory framework by using a second pdf, the one related to the clusters dis-
tributed in the suspending medium, Ψ(x, t,c), given the fraction of cluster that at
position x and time t have a conformation c. Being the conformation tensor c sym-
metric and with unit trace, it has in the general 3D case 5 independent components,
that is 5 conformational coordinates. The associated Fokker-Planck equation reads

∂Ψ

∂ t
+∇x · (vΨ)+∇c · (ċΨ) = 0, (4.135)

whose high dimensionality compromises the use of standard mesh-based discretiza-
tion techniques for solving it, as discussed in [1].

4.3.4.1 Orthogonal rigid bi-dumbbell: Revisiting general Jeffery’s equation

In what follows we first prove that the kinematics of a rigid ellipse immersed in a
flow can be obtained from the analysis of a rigid bi-dumbbell. The Jeffery’s equation
for an ellipse of aspect ratio r (major to minor axes ratio) when considering the
decomposition of the velocity gradient in its symmetric (the rate of strain tensor D)
and skew-symmetric component (the vorticity tensor Ω ), ∇v = D+Ω reads

ṗ = Ω ·p+F (D ·p− (pT ·D ·p)p), (4.136)



with the shape factor F = r2−1
r2+1 .

In what follows we consider a rigid system composed of two rods, mutually
perpendicular, and having respectively length 2L1 and 2L2 (L1 > L2) as sketched in
Fig. 4.4.

Fig. 4.4 Two-rods rigid cluster representing an elliptic 2D particle

In the present configuration the hydrodynamic forces acting in bead L1p1 and
L2p2, FH

1 and FH
2 respectively read

FH
1 = ξ L1(∇v ·p1− ṗ1), (4.137)

and
FH

2 = ξ L2(∇v ·p2− ṗ2), (4.138)

with p1 ⊥ p2, and with their rates of change expressed from{
ṗ1 = ω×p1
ṗ2 = ω×p2

, (4.139)

where ω denotes the angular velocity.
The angular momentum balance implies

L2
1p1× (∇v ·p1− ṗ1)+L2

2p2× (∇v ·p2− ṗ2) = 0. (4.140)

Introducing (4.139) into (4.140) and taking into account that p1×ω ×p1 = ω

and p2×ω×p2 = ω , it results that

ω =
L2

1

L2
1 +L2

2
(p1× (∇v ·p1))+

L2
2

L2
1 +L2

2
(p2× (∇v ·p2)) . (4.141)



Thus, ṗ1 can be expressed from

ṗ1 = ω×p1 =

L2
1

L2
1 +L2

2
((p1× (∇v ·p1))×p1)+

L2
2

L2
1 +L2

2
((p2× (∇v ·p2)×p1)) . (4.142)

Now, applying the triple vector product formula (a×b)×c =−a ·(b ·c)+b ·(a ·
c), Eq. (4.142) reads

ṗ1 =
L2

1

L2
1 +L2

2

(
∇v ·p1−

(
pT

1 ·∇v ·p1
)

p1
)
−

L2
2

L2
1 +L2

2

((
pT

1 ·∇v ·p2
)

p2
)
. (4.143)

We are developing the last term in Eq. (4.143) to obtain an equation that only
contains p1 in order to compare with the Jeffery’s one. First we apply the decompo-
sition ∇v = D+Ω from which the last term in Eq. (4.143) reads(

pT
1 ·∇v ·p2

)
p2 =

(
pT

1 ·D ·p2
)

p2 +
(
pT

1 ·Ω ·p2
)

p2, (4.144)

where the first term in the right hand member, using the fact that D is symmetric,
reads (

pT
1 ·D ·p2

)
p2 =

p2
(
pT

1 ·D ·p2
)
= p2

(
pT

2 ·D ·p1
)
= (p2⊗p2) ·D ·p1. (4.145)

Now, using the orthogonality of p1 and p2, it results that

(p2⊗p2)+(p1⊗p1) = I, (4.146)

and then Eq. (4.145) can be written as(
pT

1 ·D ·p2
)

p2 = (I−p1⊗p1) ·D ·p1. (4.147)

Finally we consider the second term in the right-hand side of Eq. (4.144), using
the fact that Ω is skew-symmetric(

pT
1 ·Ω ·p2

)
p2 =

p2
(
pT

1 ·Ω ·p2
)
=−p2

(
pT

2 ·Ω ·p1
)
=−(p2⊗p2) ·Ω ·p1, (4.148)

that is (
pT

1 ·Ω ·p2
)

p2 =−(I−p1⊗p1) ·Ω ·p1. (4.149)

Now, coming back to Eq. (4.143), we obtain



ṗ1 = Ω ·p1 +
L2

1−L2
2

L2
1 +L2

2
D ·p1−

L2
1−L2

2

L2
1 +L2

2

(
pT

1 ·D ·p1
)

p1, (4.150)

that corresponds exactly to the Jeffery expression for an ellipse of aspect ratio L1
L2

.

4.3.5 Extensible rods

We consider the kinematics of an extensible rod, whose reference length is 2L0.
In first gradient flows (at the rod scale) only rod extension and its rotation are ac-
tivated by the flow kinematics. At time t, the rod, aligned in the direction p, is
represented by an elastic spring of length 2L and rigidity K equipped of two beads
at its extremities where the hydrodynamic forces act. As previously considered the
hydrodynamic force scales with the fluid/bead relative velocity, the former given by
v0 +∇v ·pL and the latter by vG + ṗL+pL̇, where v0 is the unperturbed fluid ve-
locity at the rod center of gravity and vG the velocity of the rod centre of gravity. A
sketch of the elastic rod and the forces applying on it is depicted in Fig. 4.5

Fig. 4.5 Extensible fiber immersed in a flow.

The system is assumed inertialess, implying that the equilibrium of forces and
torques should vanish. The first reads FH(pL)+FH(−pL) = 0, that implies v0 = vG,
that is, the rod centre of gravity moves with the fluid.

Now, to prevent a resultant torque, force FH(pL) must align with p, i.e. FH(pL)=
λp, λ ∈ R. Thus, it results that

FH(pL) = ξ (∇v ·pL− ṗL−pL̇) = λp, (4.151)



that multiplying by p and taking into account that p · p = 1 and consequently p · ˙p 

= 0, yields

ξ (∇v : (p⊗p)L− L̇) = λ . (4.152)

Introducing this expression into Eq. (4.151) reads

ξ (∇v ·pL− ṗL−pL̇) = ξ (∇v : (p⊗p)L− L̇)p, (4.153)

and grouping terms
ṗ = ∇v ·p−∇v : (p⊗p)p, (4.154)

that is nothing else than the standard Jeffery’s expression for ellipsoids of infinite
aspect ratio (rods) widely discussed in the previous sections.

Now by equating the force acting on the beads, λ , with the one installed in the
spring, it results that

2K (L−L0) = ξ (∇v : (p⊗p)L− L̇), (4.155)

or
L̇ =−2K

ξ
(L−L0)+∇v : (p⊗p)L. (4.156)

Thus, the kinematics of an elastic dumbbell of reference length 2L0 immersed in
a first gradient flow and described by its orientation p and length 2L is given by{

ṗ = ∇v ·p−∇v : (p⊗p)p
L̇ =− 2K

ξ
(L−L0)+∇v : (p⊗p)L . (4.157)

Before closing this section we address the case of a deformable bi-dumbbell that
will be used later for deriving a micro-mechanical model of flowing foams.

4.3.5.1 Orthogonal elastic bi-dumbell

In the present configuration, and considering that as proven before the centre of
gravity moves with the fluid, the hydrodynamic forces acting in bead L1p1 and L2p2,
FH

1 and FH
2 respectively read

FH
1 = ξ (∇v ·p1L1− ṗ1L1−p1L̇1), (4.158)

and
FH

2 = ξ (∇v ·p2L2− ṗ2L2−p2L̇2), (4.159)

with again p1 ⊥ p2, and with their rates of change expressed from{
ṗ1 = ω×p1
ṗ2 = ω×p2

. (4.160)

The angular momentum balance implies now



L2
1p1× (∇v ·p1− ṗ1)+L2

2p2× (∇v ·p2− ṗ2) = 0, (4.161)

that coincides with the expression obtained in the case of orthogonal rigid bi-
dumbbells, proving the validity of Jeffery equation in the case of orthogonal elastic
bi-dumbell.

However, in the present case we need extra-equations giving the spring exten-
sions L̇1 and L̇2. For that purpose we consider the Jeffery’s equation (4.136) with

F =
L2

1−L2
2

L2
1+L2

2
, i.e.

ṗ1 = Ω ·p1 +F
(
D ·p1−

(
pT

1 ·D ·p1
)

p1
)
, (4.162)

and introduce it into the expression of the hydrodynamic force acting on bead p1L1
(4.158)

FH
1 = ξ (∇v ·p1L1− ṗ1L1−p1L̇1) =

ξ
(
∇v ·p1L1−Ω ·p1L1−F

(
D ·p1L1−

(
pT

1 ·D ·p1
)

p1L1
)
−p1L̇1

)
=

ξ L1
(
(1−F )D ·p1 +F

(
pT

1 ·D ·p1
)

p1
)
−ξ p1L̇1, (4.163)

that proves that force acting on bead p1L1 aligns in direction p1 as soon as F = 1.
The projection of force FH

1 in the direction p1 is the one that causes the spring
extension, i.e.

2K1(L1−L0
1) = ξ L1

(
(1−F )pT

1 ·D ·p1 +F
(
pT

1 ·D ·p1
))
−ξ L̇1 =

ξ L1pT
1 ·D ·p1−ξ L̇1, (4.164)

that is
L̇1 =−K ∗

1 (L1−L0
1)+L1pT

1 ·D ·p1, (4.165)

with K ∗
1 = 2K1

ξ
.

Obviously repeating the rationale for FH
2 it results that

L̇2 =−K ∗
2 (L2−L0

2)+L2pT
2 ·D ·p2, (4.166)

with again K ∗
2 = 2K2

ξ
.

4.3.6 Dilute polymers solutions

By assuming extensible beads connectors instead of rigid dumbbells, the resulting
models describe accurately some viscoelastic features of dilute polymer solutions.
In this case, linear macromolecules are crudely represented by two beads connected
by an extensible (linear or non-linear) spring.

In that follows we are summarizing some of the most usual microstructural mod-
els based on this representation. We then start by considering models based on a



  single connector, to 

finish with the consideration of the more general (and more complex) Multi-

Bead-Spring – MBS –.

4.3.6.1 Linear and nonlinear elastic dumbells

We start by considering two beads connected by an elastic spring (Fig. 4.5) of null
reference length, i.e. L0 = 0. In fact the spring reference length represent the equi-
librium end-to-end distance of a macromolecule idealized as a sequence of beads
distributed along its contour and connected by rigid rods. Relative rotation of con-
secutive rods is allowed at the common bead. In absence of forces the end-to-end
averaged distance vanishes justifying the fact of considering a null reference length
of the elastic spring. For a complete description the interested reader can refer to
[49].

Linear spring

Considering again the system depicted in Fig. 4.5, neglecting Brownian forces, as-
suming a linear spring with rigidity K and null reference length, and proceeding in
a similar way that in previous section, we obtain model (4.157) with L0 = 0{

ṗ = ∇v ·p−∇v : (p⊗p)p
L̇ =− 2K

ξ
L+∇v : (p⊗p)L) . (4.167)

The time evolution of the connector q = pL reads taking into account both ex-
pressions in (4.167)

q̇ = ṗL+pL̇ = ∇v ·q− 2K

ξ
q, (4.168)

in which we identify the affine deformation ∇v ·q, that now is not constrained by a
constant length as it was the case when considering the unit vector p, and the elastic
term proportional to the spring stretching q (remember that the spring reference
length is zero).

Now, the mesoscopic model involving the pdf Ψ(x, t,q) results in the Fokker-
Planck equation

∂Ψ

∂ t
+∇x · (vΨ)+∇q · (q̇Ψ) = 0, (4.169)

where for the moment Brownian effects are neglected. The first two terms in the
previous equation can be grouped into the material derivative d

dt , and then it allows
to rewrite it as

dΨ

dt
+∇q · (q̇Ψ) = 0. (4.170)

To define the meso-to-macro bridge we define the conformation tensor c(x, t)
from



c(x, t) =
∫
R3

q⊗qΨ(x, t,q) dq. (4.171)

In order to determine the equation governing its evolution, ċ, we multiply both
members of Eq. (4.170) by q⊗q and then we integrate in the configurational space
in which q is defined, R3, making use of the integration by parts, to obtain

dc
dt

= ∇v · c+ c · (∇v)T − 4K

ξ
c. (4.172)

To consider Brownian effects we write the equilibrium of forces applying on the
two beads, the first located at r1 and the second at r2, with the connector q defined
from q = r2− r1:

−ξ (ṙ2−v0−∇v · r2)−KbT
∂

∂r2
ln(Ψ)−FC = 0, (4.173)

where ξ is the drag coefficient, v0 is the fluid velocity at the origin of coordinates,
Kb is the Boltzmann’s constant, T is the absolute temperature and FC is the elastic
force in the spring. Here, because the assumed linearity, FC is proportional to its
length and act along the connector (spring) direction, i.e. FC =K q. We consider the
random force involving the logarithm of the the distribution function Ψ to recover a
diffusion term in the associated Fokker-Planck equation.

The balance of forces at the other bead reads

−ξ (ṙ1−v0−∇v · r1)−KbT
∂

∂r1
ln(Ψ)+FC = 0. (4.174)

By subtracting the second one to the first one, taking into account{
∂

∂r2
= ∂

∂q
∂q
∂r2

= ∂

∂q
∂

∂r1
= ∂

∂q
∂q
∂r1

=− ∂

∂q
, (4.175)

it results that

−ξ (q̇−∇v ·q)−2KbT
∂

∂q
ln(Ψ)−2FC = 0, (4.176)

from which the expression of q̇ can be extracted

q̇ = ∇v ·q− 2KbT
ξ

∂

∂q
ln(Ψ)− 2

ξ
FC, (4.177)

and using the linear behavior of the elastic spring

q̇ = ∇v ·q− 2KbT
ξ

∂

∂q
ln(Ψ)− 2K

ξ
q, (4.178)

It can be noticed that in absence of Brownian effects and for a linear spring Eq.
(4.178) reduces to the one previously obtained, Eq. (4.168).

The mesoscopic model is defined as previously by



∂Ψ

∂ t
+∇x · (vΨ)+∇q · (q̇Ψ) = 0, (4.179)

that making use of the material derivative material derivative reduces to

dΨ

dt
+∇q · (q̇Ψ) = 0, (4.180)

where now q̇ is given by Eq. (4.178) that includes Brownian effects.
In order to determine the equation governing the evolution of the conformation

tensor ċ, when Brownian effects are retained in the model, we multiply both mem-
bers of Eq. (4.180) by q⊗q and then we integrate in the configurational space R3,
making use of the integration by parts, to obtain

dc
dt

= ∇v · c+ c · (∇v)T − 4K

ξ
c+

4KbT
ξ

I. (4.181)

If the extra-stress is assumed given by the Kramer’s expression, with n the num-
ber of elastic dumbbells per unit volume, it results

τ +nKbT I = n〈Fc⊗q〉= nK c, (4.182)

where the term nKbT I is isotropic and then it does not have any rheological conse-
quence.

By substituting expression (4.182) into Eq. (4.181) it results

1
nK

(
dτ

dt
−∇v · τ− τ · (∇v)T

)
+

4
nξ

τ = 2nKbT D, (4.183)

where the upper-convected derivative δ

δ t can be identified, leading to

1
nK

δτ

δ t
+

4
nξ

τ = 2nKbT D, (4.184)

that by introducing the parameters{
λ = ξ

4K

ηp =
n2KbT ξ

4

, (4.185)

leads to the viscoelastic Oldroyd-B model

λ
δτ

δ t
+ τ = 2ηpD. (4.186)



 Nonlinear 

spring

When considering a nonlinear spring behavior, the time evolution of the connector
q reads

q̇ = ∇v ·q− 2K (q)
ξ

q, (4.187)

with q = ‖q‖.
Now, the mesoscopic model involving the pdf Ψ(x, t,q) results in the Fokker-

Planck equation
∂Ψ

∂ t
+∇x · (vΨ)+∇q · (q̇Ψ) = 0, (4.188)

or using the material derivative d
dt

dΨ

dt
+∇q · (q̇Ψ) = 0. (4.189)

The non linear term K (q) makes impossible, in the general case, to obtain a
closed equation for the evolution of the conformation tensor and then for the extra-
stress tensor (constitutive equation). The introduction of particular closures makes
possible the obtention of closed equations as is the case of FENE-P models (see
chapter 1 in [12]).

Thus the microscopic counterpart of the viscoelastic Oldroyd-B model can be
derived by using a linear spring, and the so-called FENE (Finitely Extensible Non
Linear Elastic) model is obtained by considering the connector force

Fc = K (q)q =
1

1− ||q||
2

b

q, (4.190)

where
√

b is the maximum stretching of the spring connector.

4.3.6.2 Multi-Bead-Spring models

As depicted in Fig. 4.6, the Multi-Bead-Spring – MBS – chain consists of N + 1
beads connected by N springs. The bead serves as an interaction point with the
solvent and the spring contains the local stiffness information depending on local
stretching (see [13, 26] and the references therein for additional details).

The dynamics of the chain is governed by hydrodynamic, Brownian and con-
nector (spring) forces. If we denote by

.
r j the velocity of the bead j and by

.
q j the

velocity of the spring connector j, then we obtain
.
q j=

.
r j+1 −

.
r j; j = 1, · · · ,N. (4.191)



Fig. 4.6 MBS model of a polymer chain

The kinetic theory approach consists in introducing the microstructutal confor-
mation from the pdf Ψ(x, t,r1, · · · ,rN+1) or in an equivalent manner, making use of
the connector vectors, Ψ(x, t,q1, · · · ,qN).

The force balance at each bead reads

−ξ (
.
r j −v0−∇v · r j)︸ ︷︷ ︸

Hydrodynamic contribution

−KbT
∂

∂r j
ln(Ψ)︸ ︷︷ ︸

Brownian contribution

+Fc
j−Fc

j−1︸ ︷︷ ︸
Connector forces

= 0, (4.192)

where ξ is the drag coefficient, v is the velocity field, v0 is the fluid velocity and the
origin of coordinates, Kb is the Boltzmann’s constant and T is the absolute temper-
ature.

From Eqs. (4.191) and (4.192) it results that:

.
q j= ∇v ·q j−

1
ξ

N

∑
k=1

A jk

(
KbT ∇qk ln(Ψ)+Fc

k

)
(4.193)

where ∇qk =
∂

∂qk
and A is the Rouse’s matrix with components

A jk =

2 if k = j
−1 if k = j±1
0 otherwise

. (4.194)

In the Rouse model the connector force Fc is a linear function of the connector
vector, but FENE springs previously introduced can be also used.

The pdf involving the physical coordinates (espace and time) and the confor-
mational coordinates (connector vectors) Ψ(x, t,q1, · · · ,qN) is defined in a space
of dimension 3+ 1+ 3N, implying the so-called curse of dimensionality when N
increases.

The conservation balance related to the distribution function Ψ(x, t,q1, · · · ,qN)
reads



∂Ψ

∂ t
+∇x · (vΨ) =−

N

∑
j=1

∇q j · (
.
q j Ψ). (4.195)

By Introducing Eq. (4.193) it results:

∂Ψ

∂ t +∇x · (vΨ) =−
N

∑
j=1

∇q j ·

((
∇v ·q j−

1
ξ

N

∑
k=1

A jk Fc
k

)
Ψ

)
+

+KbT
ζ

N

∑
j=1

∇q j ·

(
N

∑
k=1

A jk∇qkΨ

)
.

(4.196)

This kind of model seems particularly suitable for representing molecular chains
composed by rigid segments as in the case of the DNA. Other variants can be de-
fined, for example by restricting the free rotation of each two consecutive rods by
introducing a rotational spring at each bead. In all these models the expression of
the rods rotational velocity (4.193) must be reevaluated depending on the considered
physics.

4.3.7 Polymer melts

In most polymer processing operations such as injection molding, film blowing and
extrusion, the polymers are in the molten state. A widely applied class of molecular-
based models for concentrated polymer solutions and melts relies on the notion of
reptation motion.

The key idea of this model is the application of the reptation mechanism intro-
duced by De-Gennes [23] to a tube (along which the molecule can move) in order to
describe the viscoelastic behavior of entangled polymers. The molecule is described
as sliding or reptating through a tube whose contours are defined by the locus of en-
tanglements with neighboring molecules. The motion of a molecular chain in any
other direction that the one defined by the tube axis is strongly restricted, except at
both tube ends, where it can move in any possible direction. The tube moves itself
due to two mechanisms: (i) by means of the motion of the central chain itself, which
partially leaves its original tube, for extending it in other directions, and (ii) by the
fluctuation induced by the motions of the neighbor chains defining the tube lateral
border.

In addition to the reptation mechanism, the Doi-Edwards model [25] assumes
affine tube deformation induced by the macroscopic flow but neglects other phe-
nomena like the stretch of the chain, the Convective Constraint Release -CCR- or
the double reptation.

Within the reptation picture and these assumptions, the dynamics of a single
tube segment represented by the unit u (tangent to the tube) is given by the affine
deformation

.
u= ∇v ·u− (∇v : (u⊗u))u. (4.197)



The molecule defining and occupying the tube at the initial time, is equipped
with a contour length coordinate s where s = 0 and s = 1 represent the chain ends.

The distribution function involved in the Doi & Edwards model depends on
the physical space and time and also on the conformation coordinates u and s,
Ψ(x, t,u,s), where Ψ(x, t,u,s)duds represents the joint probability that at position
x and time t, a tube segment having the orientation in the interval [u,u+ du] con-
tains the chain segment labelled in the interval [s,s+ ds]. Thus, the configuration
space results S × [0,1].

The balance of Ψ(x,u,s, t) results

∂Ψ

∂ t
+∇x · (vΨ)+∇u · (u̇Ψ)+∇s(qs) = 0, (4.198)

where the reptation flux can be modeled from a diffusion term

qs =−Dr
∂Ψ

∂ s
, (4.199)

whose diffusion coefficient Dr is related to the reptation characteristic time τr for a
chain to come out the tube by reptation,

Dr =
1

π2τr
. (4.200)

Thus, Eq. (4.198) can be written as:

∂Ψ

∂ t
+∇x · (vΨ)+∇u · (u̇Ψ)−Dr

∂ 2Ψ

∂ s2 = 0. (4.201)

To solve the Fokker-Planck equation, one needs to prescribe appropriate bound-
ary conditions at the conformational domain boundaries s = 0 and s = 1 (the ori-
entation coordinate being defined on the unit sphere does not require enforcing any
boundary condition). The usual choice is assuming an isotropic orientation distribu-
tion at both ends (even if other choices could be more pertinent in some situations),
which reads

Ψ(x, t,u,s = 0) =Ψ(x, t,u,s = 1) =
1

4π
. (4.202)

Knowing the distribution function, the stress can be computed from

τ(x, t) = G
∫

S×[0,1]
u⊗u Ψ(x, t,u,s) duds, (4.203)

where G is an elastic modulus.
However, the Doi-Edwards model seems to be too simplistic to take into account

some features observed experimentally. More advanced kinetic theory models were
proposed including chain stretching, double reptation and convective constraint re-
lease.



4.3.8 Liquid Crystalline Polymers

Important difficulties persist in the numerical calculation of flows of complex fluids
consisting of highly anisotropic particles. Most of these difficulties stem from the
necessity to capture the rich dynamic fluid behavior, which spans both isotropic and
anisotropic fluid microstructures (nematic, chiral nematic, smectic etc). For exam-
ple, models describing single particle orientation in a dilute suspension, i.e. in the
absence of inter-particle interaction, as the one deeply described previously based
on the Jeffery’s model, are not able to describe the behavior of a nematic suspension.

The successful treatment of collective flow-orientation phenomena appearing at
high concentrations requires the consideration of interparticle interaction, either ex-
plicitly like in microscopic liquid-cristal models – LC – or in a mean-field sense.
There are notable examples of mean field approaches to anisotropic particle inter-
action described within the kinetic theory framework.

Different closure approximations have been proposed for alleviating the numeri-
cal simulation of LC models by proceeding at the macroscopic scale. The impact of
these approximations on the rheological response can be significant, even if some
of them retain the main features of the kinetic theory model.

An appealing choice that allows circumventing the introduction of such approx-
imations consists in solving directly the Fokker-Planck equation related to the ki-
netic theory description of LC models. In this section we consider the Fokker-Planck
equation associated with Doi’s model.

In order to describe the fluid microstructure we firstly define the unit vector u
describing the orientation of the liquid crystal (LC) molecule axis. Now, the dis-
tribution function which gives the probability of finding, at a certain point x and
time t, molecules aligned in the direction u is represented by Ψ(x,u, t), defined
by: Ψ(x,u, t) : R3×S ×R+→ R+ . The dynamics of the evolution of this distri-
bution function is induced by (i) hydrodynamic effects, (ii) Brownian effects and
(iii) LC-molecules interaction described by a nematic potential. The corresponding
Fokker-Planck equation related to Doi’s model writes

∂Ψ

∂ t
+∇x · (vΨ) =

−∇u · (
.
u Ψ)+∇u · (Dr∇uΨ)+∇u ·

(
DrΨ∇u

(
V (u)
KbT

))
, (4.204)

where the last two terms describe diffusion and nematic effects, Kb is Boltzmann’s
constant, Dr the diffusion coefficient describing the Brownian effects, T the absolute
temperature and v the fluid velocity field. The rotary velocity dictated by an affine
deformation assumption

.
u= ∇v ·u− (∇v : (u⊗u))u. (4.205)



We can notice that removing the last term in Eq. (4.204) involving the nematic
potential V (u) reduces to the kinetic theory description of rods suspensions previ-
ously described.

A frequently used form for the nematic potential is

V (u) =−3
2

UKbT (u⊗u) : S, (4.206)

where U is a dimensionless interaction potential and the second order traceless ori-
entation tensor S is defined by

S = 〈u⊗u〉− I
3
, (4.207)

with the averaging 〈•〉 defined on the unit sphere S by the second moment of the
orientation distribution (as was the case when considering rigid rods)

〈u⊗u〉=
∫
S

u⊗u Ψ(x,u, t) du. (4.208)

To illustrate the physical meaning of the nematic potential we are considering a
2D molecular orientation distribution (in absence of macroscopic flow) where most
molecules are fully aligned in a certain direction, for example in the x-direction. In
this case the different entities appearing in the nematic potential result

〈u⊗u〉=

〈 cos2ϕ cosϕ sinϕ

cosϕ sinϕ sin2
ϕ

〉≈
1 0

0 0

 , (4.209)

that implies

S = 〈u⊗u〉− I
2
≈

 1
2 0

0 − 1
2

 , (4.210)

and then

V (u) =−3
2

UKbT (u⊗u) : S =−β

(
cos2(ϕ)

2
− sin2(ϕ)

2

)
, (4.211)

where β = 3
2UKbT . Now, we evaluate ∇uV (u)

∇uV (u) =
∂V (ϕ)

∂ϕ
= 2βcosϕ sinϕ, (4.212)

that allows to define the nematic pseudo-rotary velocity
.

ϕnem=−3UDrcos(ϕ)sin(ϕ), (4.213)



such that Eq. (4.204) in absence of flow reduces to

∂Ψ

∂ t
= Dr

∂ 2Ψ

∂ϕ2 −
∂

∂ϕ
(
.

ϕnem Ψ), (4.214)

from which we can conclude that Brownian effects induce a tendency towards a
random distribution whereas the nematic term tends to concentrate more and more
the orientation distribution on the direction along which most of the molecules are
oriented, in the present case ϕ = 0 . This tendency can be noticed by simple in-
spection of Eq. (4.213): there are two equilibrium positions (where the ”nematic”
velocity vanishes) at ϕ = 0 and ϕ = π

2 . However that velocity in ϕ = 0±ε tends to
approach the molecule to ϕ = 0 , whereas in ϕ = π

2 ±ε the velocity moves apart the
molecule that approach the other equilibrium position ϕ = 0, proving that ϕ = 0 is
the single stable orientation.

4.3.9 Carbon-Nanotubes suspensions: introducing aggregation
effects

Carbon nanotubes (CNTs) belong to a relatively new class of fibrous material, with a
length scale between that of polymer chain and classical synthetic fibers. Because of
their high mechanical strength, low density, high thermal and electrical conductivity,
they can potentially be used for high-performance nanocomposites or nanodevices.
Since most applications involve suspending CNTs in a matrix, it is important to
understand and model the rheology of CNT suspensions. The rheology of CNTs
suspended in different matrices has been studied experimentally by a number of re-
searchers. A significant shear-thinning characteristic for untreated CNTs suspended
within an epoxy resin was reported and CNT aggregates were optically observed.

Although different empirical models such as the Cross model, the Carreau model
and the Krieger-Dougherty model can be used to describe the evolution of flow
curves for CNT suspensions, knowing the microstructure of CNT suspensions is of
equal importance as it is intimately related to the final physical properties of CNT
composite materials.

In the context of short-fiber suspensions modeling (previously addressed), a sim-
ple orientation model could be used to describe the evolution of steady shear viscos-
ity by coupling the flow kinematics with the fiber orientation. In the first modeling
attempt, it was assumed that CNTs can essentially be modeled as short rigid fibers
which can rotate and align in a shear flow and that the evolution of the viscosity
contribution due to the presence of CNTs depends only on the orientation of CNTs.

In the simple orientation mesoscopic model making use of the Fokker-Planck
equation and the constitutive law previously introduced Np and Dr were the key
adjustable parameters to fit to the experimental data. The model was found to be
successful in capturing the shear thinning characteristic for some surface-treated
CNT suspensions where no optically resolvable CNT aggregate was observed [40].



However, that model with the use of a single Dr and Np values, failed to fit
the experimental flow curves for untreated CNT suspensions, where the extent of
viscosity enhancement was very pronounced at low shear rates. It is clear that a
simple orientation explanation was not sufficient to describe the observed viscosity
enhancement and it is believed that the extra contribution to shear viscosity at low
shear rates is due to the presence of CNT aggregates, which were experimentally
observed in optical microstructure studies.

The simple orientation model could not describe the shear-thinning characteris-
tic for untreated CNT suspensions, and therefore a new model called the Aggrega-
tion/Orientation – AO – model was developed. The model essentially considered a
hierarchy of CNT aggregate structures in an untreated CNT suspension, where the
shear viscosity was controlled not only by CNT orientation, but also by the aggrega-
tion state of CNTs in the suspension. The Fokker-Planck description was modified
to incorporate aggregation/disaggregation kinetics and a detailed derivation for the
AO model is included in this section.

The aggregation/orientation distribution function in the AO model is written as
Ψ(x,p,n, t) : R3×S × [0,1]×R+ → R+, where n ∈ [0,1] describes the state of
aggregation: n = 0 corresponds to CNTs that are free from entanglement and n =
1 represents a CNT aggregate network. For a steady and homogeneous flow, the
aggregation/orientation distribution reduces to Ψ(p,n), which describes the fraction
of CNTs orientated in the direction p and belonging to a population n. Ψ(p,n) now
contains information about both CNT orientation and the aggregation state and the
remaining task is to modify the Fokker-Planck equation accordingly.

For an arbitrary population n (where n 6= 0 and n 6= 1), the population can increase
as a result of the aggregation of smaller aggregates (r < n) or the disaggregation of
larger aggregates (r > n). On the other hand, the population n can also decreases
because of the disaggregation of population n originating less entangled aggregates
(r < n ) or the aggregation forming more entangled aggregates (r > n). If a constant
aggregation velocity (vc) and a constant disaggregation velocity (vd) are assumed,
the following balance can be written for the population n

˙A (n) = vc
n∫
0

Ψ(p,r)Ψ(p,n− r) dr+ vd

1∫
n

1
rΨ(p,r) dr−

vdΨ(p,n)− vcΨ(p,n)
1−n∫
0

Ψ(p,r) dr,

(4.215)

where it has been assumed that the desagregation of population r > n produces a
uniform distribution of smaller aggregates, justifying the factor 1/r in the second
integral term.

The resulting Fokker-Planck equation reads

∂Ψ

∂ t
+∇x · (vΨ) =−∇p · (

.
p Ψ)+∇p · (Dr∇pΨ)+ ˙A (n), (4.216)



with the rotary velocity given again by Jeffery’s equation for rods (infinite aspect
ratio ellipsoids)

.
p= ∇v ·p− (∇v : (p⊗p))p. (4.217)

The solution of this model allowed in [39] to recover the main rheological fea-
tures of untreated CNT suspensions.

4.3.10 Microstructural description of flowing foams

Aqueous foams are concentrated dispersions of gas bubbles in a surfactant solution.
Their structures are organized over a large range of length scales.

The proposal of macroscopic constitutive equations is a key point to address the
modeling and simulation of industrial processes involving the flow of foams. How-
ever, in general these constitutive equations remain too phenomenological and even
if they allow to predict accurately the flow kinematics, microstructure information
remains unaccessible. On the opposite side, fully microscopic simulation allows
very detailed descriptions of the foam microstructural evolution, however such ap-
proaches fail for addressing scenarios of industrial interest that usually involve the
flow in very large and complex 3D geometries.

The most appealing route consists on a macroscopic description making use of
appropriate microscropic descriptors. The macroscopic flow model is expected to
depend on the cellular structure: cells size, shape and orientation as well as on the
fluid rheology and the surface tension. Moreover, cell shape and orientation changes
are induced by the flow.

The simplest description of a 2D cell, consists of an ellipse ranging from the cir-
cular shape to the infinite aspect ratio ellipse (rod). Such an ellipse could be repre-
sented from two orthogonal extensible springs, with reference length 2L0 and rigid-
ity K . In a previous section the kinematics of linear elastic dumbbells was carried
out, and now it becomes the starting point for elaborating the cell conformation.

Incompressible cells

If we assume an ellipse (bubble) with constant volume, we must ensure that
d(L1L2)

dt = 0, i.e. L̇1L2 +L1L̇2 = 0 that using Eqs. (4.165) and (4.166) results

L̇1L2 +L1L̇2 =−K ∗
1 (L1−L0

1)L2−K ∗
2 (L2−L0

2)L1+

L1L2D : (p1⊗p1 +p2⊗p2) . (4.218)

Taking into account (p1⊗p1 +p2⊗p2)= I and the flow incompressibility D : I= 0,
it reduces to

L̇1L2 +L1L̇2 =−K ∗
1 (L1−L0

1)L2−K ∗
2 (L2−L0

2)L1 = 0. (4.219)



Now the cell volume conservation implies L1L2 = L0
1L0

2 = V that leads to

V (K ∗
1 +K ∗

2 ) = K ∗
1 L0

1L2 +K ∗
2 L0

2L1 (4.220)

In order to close the model we assume that, in addition of the elastic spring
accounting for the surface tension effects, an extra force F I must exist in order to
ensure the volume conservation.

Thus, following the rationale introduced in section 4.3.5.1, equilibrium at beads
p1L1 and p2L2 read now

2K1(L1−L0
1)+F I = ξ L1pT

1 ·D ·p1−ξ L̇1, (4.221)

and
2K2(L2−L0

2)+F I = ξ L2pT
2 ·D ·p2−ξ L̇2, (4.222)

respectively, from which it results that

L̇1 =−K ∗
1 (L1−L0

1)+L1pT
1 ·D ·p1−F I , (4.223)

and
L̇2 =−K ∗

2 (L2−L0
2)+L2pT

2 ·D ·p2−F I . (4.224)

The incompressibility then reads

L̇1L2 +L1L̇2 =−K ∗
1 (L1−L0

1)L2−K ∗
2 (L2−L0

2)L1−F I(L1 +L2) = 0, (4.225)

that allows to derive the incompressibility Lagrange multiplier F I

F I =− 1
L1 +L2

(
K ∗

1 (L1−L0
1)L2 +K ∗

2 (L2−L0
2)L1

)
. (4.226)

Thus, finally the kinematic model for the orthogonal elastic bi-dumbell reads:
ṗ1 = Ω ·p1 +

L2
1−L2

2
L2

1+L2
2
D ·p1−

L2
1−L2

2
L2

1+L2
2

(
pT

1 ·D ·p1
)

p1

L̇1 =−K ∗
1 (L1−L0

1)−F I +L1pT
1 ·D ·p1

L̇2 =−L2
L1

L̇1

F I =− 1
L1+L2

(
K ∗

1 (L1−L0
1)L2 +K ∗

2 (L2−L0
2)L1

) . (4.227)

4.3.10.1 Conformation descriptor

The simplest choice for the conformation tensor consists of the second order sym-
metric tensor c defined from

c =
L2

1
2
(p1⊗p1)+

L2
2

2
(p2⊗p2), (4.228)

to be introduced into the macroscopic foam flow constitutive equation



σ =−pI+ τ =−pI+2ηD+µc, (4.229)

where p is the pressure, that can be viewed as the Lagrange multiplayer associated
with the macroscopic flow incompressibility constraint, η the effective homoge-
nized fluid viscosity, and µ the rheological parameter affecting the contribution of
the microscopic conformation.

4.3.11 Kinetic theory approach of micro-structural theory of
passive mixing

Many chemical engineering processes benefit of good bulk mixing. In such pro-
cesses, the determination of mixing rate is important in terms of understanding and
prediction of mixing time. The understanding allows to define new flows and the
associated processes maximizing the mixing rate, but one could also try to optimize
other parameters related to the microstructure describing the morphology, charac-
teristic length, shape and orientation

A possible way of quantifying the mixing rate can be derived from the consider-
ation of only one of the basic mechanisms of mixing processes: the increase of the
material interface due to the fluid mechanics in absence of interfacial tension and
molecular diffusion. The molecular diffusion leads to smooth concentration gradi-
ents across the interface. However this mechanism only becomes significant when
the interface has increased significantly. It is therefore expected that the overall mix-
ing rate will be closely linked to the rate of mechanical stretching of the interfacial
area.

The approaches quantifying the mixing from the increase of the material inter-
face have two important drawbacks: (i) the first one is associated with the difficulty
of introducing other additional physics as the one related to the surface tension, and
(ii) sometimes the microstructure description needs other information (morphology,
characteristic length, shape and orientation, etc.) that the area of the interface evo-
lution cannot provide.

In passive mixing, interfacial energy is negligible and the two phases have identi-
cal viscosities. Moreover, the global velocity field can be found independently of the
microstructure and then used to evolve the mixture structure, described with some
area tensor, very rich from the morphological and microstructural points of view.

In this section we summarize the kinetic theory approach proposed in our former
work [18] based on the use of the area tensor considered [52].

4.3.11.1 Morphology description of microstructured fluids

Let’s Ω be the domain in which the flow problem is defined. Points in Ω will be
referred by x which is a vector in 2D or 3D. In order to quantify the morphology at
any point x∈Ω a microscopic representative volume V (x) is considered centered at



that point. This volume results small with respect to the macroscopic scale (related
to the variation of the velocity field in Ω ) but large enough with respect to the
characteristic size of the microstructure. Let’s S(x) be the interface within V (x).
The second order area tensor A is then defined as:

A(x) =
1

V (x)

∫
S(x)

n⊗n dS, (4.230)

where n represents the unit vector defined on the interface S(x) assuming that it is
pointing towards the continuous phase (the discrete one is the one with lower volume
fraction). This area tensor is symmetric and has different appealing properties:

• The first property concerns its trace that we symbolize by Tr(A(x)) that taking
into account the normality of n results in

Tr(A(x))=
1

V (x)

∫
S(x)

(n2
1+n2

2+n2
3) dS=

1
V (x)

∫
S(x)

dS=
S(x)
V(x)

= Sv(x), (4.231)

where Sv(x) represents the specific surface related to point x, and whose maxi-
mization is usually searched in mixing processes.

• If we define the volume fraction of the disperse phase as φ then we can define
a characteristic length of the microstructure at point x from the volume of the
discrete phase Vd(x) = φV (x):

L(x)≡ Vd(x)
S(x)

=
φV (x)
S(x)

=
φ

Sv(x)
=

φ

Tr(A(x))
. (4.232)

• The microstructure shape and orientation can be easily deduced from the normal-
ized area tensor Ã(x) defined as

Ã(x) =
A(x)

Tr(A(x))
, (4.233)

and represented from an ellipsoid. The eigenvalues of Ã allow to compute the
length of the ellipsoid axes, since their orientation are given by the associated
eigenvectors.

The interest of computing the area tensor, from a given initial condition, at each
point of the flow domain and at each time has been justified. However, its evaluation
needs the establishment of the partial differential equation governing its evolution.
In what follows we are establishing this evolution equation and the closure issue
that its solution implies.

To derive the evolution equation of A(x) we consider the time derivative of vector
n and the surface element dS (standard results in continuum mechanics)

dn
dt

= ṅ =−(∇v)Tn+(∇v : (n⊗n)) n, (4.234)



and
dS
dt

=−(∇v : (n⊗n)) dS. (4.235)

Introducing Eqs. (4.234) and (4.235) into the time derivative of Eq. (4.230) it
results:

dA
dt

=−(∇v)T ·A − A ·∇v+∇v : A , (4.236)

where the dependence of A(x) on x has been omitted for the sake of clarity, and
where A denotes the fourth order area tensor defined by:

A (x) =
1

V (x)

∫
S(x)

n⊗n⊗n⊗n dS. (4.237)

The main difficulty in solving Eq. (4.236) is precisely related to that fourth order
area tensor, as was the case in suspensions composed of rods. Thus, a closure rela-
tion expressing that tensor as a function of the second order area tensor is needed.
In absence of a general exact closure relation, any closure proposal must be checked
carefully because its impact on the computed solution is a priori unpredictable.

The formalism associated with the evolution of the area tensor has other advan-
tages. One of them is the simplicity of incorporating other physical effects as for
example the surface tension. One could expect that in absence of strain rate the
disperse microstructure evolves towards an isotropic state composed of coalescent
microspheres, minimizing the specific area. Thus, Doi and Ohta [27] proposed in-
troducing in Eq. (4.236) a source term accounting for such effects

dA
dt

=−(∇v)T ·A − A ·∇v+∇v : A −a
σ

η
S2

v

((
Ã− I

3

)
+b

I
3

)
, (4.238)

where a and b are two material parameters, σ is the surface tension, η the fluid
viscosity (we are assuming that both fluids have the same viscosity) and I the unit
tensor. Thus, in absence of strain rate, Eq. (4.238) reduces to:

dA
dt

=−a
σ

η
S2

v

((
Ã− I

3

)
+b

I
3

)
, (4.239)

proving that the microstructure evolves towards an isotropic state induced by the
presence of the term Ã− I

3 in which the interface area reduces due to the presence
of − abσ

η
S2

v
I
3 . Even if this model predicts a null long-time specific area, fact that

motivated different corrections, we will consider the Doi-Ohta model in the kinetic
theory approach that follows.

4.3.11.2 Kinetic theory description of passive mixing

We define the area distribution function Ψ(x,n, t) : R3×S ×R+ → R+, given at
each point in the physical domain x ∈ Ω and for any time t, the specific surface



Sv(x) orientated in the direction n. Thus, the area tensor can be defined from this
area distribution function according to

A(x, t) =
∫
S

n⊗n Ψ(x,n, t) dn. (4.240)

The trace of the previous equation reads as expected

Tr(A(x, t)) = Sv(x, t) =
∫
S

Tr(n⊗n)Ψ(x,n, t) dn =
∫
S

Ψ(x,n, t) dn. (4.241)

The expression of the time derivative of the distribution function reads

∂Ψ

∂ t
+∇x · (vΨ) =−∇n · (ṅΨ)− (∇v : (n⊗n))Ψ . (4.242)

Eq. (4.242) is close to the Fokker-Planck equation usually employed to describe
the microstructure in the rods suspensions considered in the previous sections. How-
ever in the present case, because this function is not subjected to a normality condi-
tion (Ψ is not a probability density function) there is an additional term (last term
in the right member of Eq. (4.242)) taking into account the interface area growing
induced by its stretching.

If Eq. (4.242) is solved instead of solving Eq. (4.236) (the latter requires the
choice of a closure relation for the fourth order orientation tensor), the area tensor
can be computed from Eq. (4.240) without the necessity of introducing any closure
relation.

Finally, other physical effects, and in particular the one related to the surface
tension, can be easily introduced in the kinetic theory formalism. As before, we
are considering the expression of the time derivative of the area tensor (that in the
kinetic theory framework is given by Eq. (4.240)), looking for the time derivative of
the distribution function Ψ leading to the expression (4.238).

It is easy to prove that the associated kinetic model is given by:

dΨ

dt
=− ∂

∂n
(
.
n Ψ)−

(
∇v : (n⊗n)

)
Ψ +

∂

∂n

(
D

∂Ψ

∂n

)
+F , (4.243)

where the diffusion coefficient and the source terms result in 2D

D =
a
4

σ

η
Sv =

a
4

σ

η

∫
S

Ψ(n) dn

 , (4.244)

and

F =
a

4π

σ

η
(Sv)

2b =− ab
4π

σ

η

∫
S

Ψ(n) dn

2

. (4.245)



4.4 The Chemical Master Equation

Simulating, for example, the behavior of gene regulatory networks is a formidable
task for several reasons. At this level of description, only a few molecules (maybe
dozens or hundreds) of each species involved in the regulation process are present,
and this fact limits the possibility of considering the process as deterministic, as is
done very often in most chemical applications. Here, the concept of concentration
of the species does not make sense. On the contrary, under some weak hypotheses
the system can be considered as Markovian (memory-less), and can be consequently
modeled by the so-called Chemical Master Equation – CME–, which is in fact noth-
ing else than a set of ordinary differential equations stating the conservation of the
probability distribution function – pdf – P in time.

We consider n different chemical species Si, i = 1, . . . ,n, each one having Ki +
1 possible number of individuals #si ∈ (0,1, . . . ,Ki), i = 1, . . . ,n, and a set of m
reactions R j, j = 1, . . . ,m with propensity a j encoding the reaction rate, expressed
from

χ
−
j,1s−1 S1 + . . .+χ

−
j,ns−n Sn

a j→ χ
+
j,1s+1 S1 + . . .+χ

+
j,ns+n Sn; j = 1, · · · ,m, (4.246)

with χ j,i controlling the appearance of specie Si in reaction j. For that purpose χ is
a boolean variable taking values 0 or 1.

The system state is defined from z = (#s1, . . . ,#sn). Thus, reaction j transforms
the state ẑ = (#s−1 , . . . ,#s−n ) into z, with z = ẑ+v j, where v j = (#s+1 −#s−1 , . . . ,#s+n −
#s−n ) contains the j-reaction stoichiometry.

As a memoryless random walk, each action corresponds to a Markov equation,
the so-called Chemical Master Equation – CME – which tracks the net change in
the probability P(z, t)

dP(z, t)
dt

=
m

∑
j=1

a j(z− v j, t)P(z− v j, t)−a j(z, t)P(z, t), (4.247)

with the propensity a j depending on the system state and time.
Equation 4.247 constitutes a system of linear differential equations that can be

integrated from a given initial condition. What is challenging is that it is defined
in a space with as many dimensions as the number of different species involved in
the regulatory network. If we consider N different species, present at a number n
of copies, the number of different possible states of the system is nN . This number
can take the astronomical value of 106000 if we consider some types of proteins, for
instance.

To overcome this difficulty, most researches employ Monte Carlo-like algorithms
(stochastic simulations). However, Monte Carlo techniques need as many as pos-
sible individual realizations of the problem, leading to excessive time consuming
simulations, together with great variance in the results. In [7] authors consider the
proper generalized decomposition for alleviating the curse of dimensionality. Then,
in [8] empirical closures were derived and used within a moment-based description.



4.4.1 Moments-based descriptions

The issue related to the curse of dimensionality, as in many other disciplines as
previously described (e.g. suspensions), motivated the replacement of the pdf by
some of its moments, since they very often suffice for having a view rich enough on
the dynamics of the systems. The use of moment-based descriptions was of major
interest in different areas of statistical mechanics and it is more and more considered
as an alternative to the discretization of the CME.

A moment represents the expected value of a random variable, z, raised to
a certain power. An “expectation” is a specifically defined function in statistics,
E [ f (z)] =

∫
f (z)P(z)dz when in continuous spaces or ∑ f (z)P(z) in discrete spaces.

In general, we can talk about the ith moment as

µi(t) = E
[
zi]= ∞

∑
z=0

P(z, t)zi. (4.248)

A probability distribution is uniquely defined by its full set of moments. Having
access to these moments could eliminate the need to solve for the full distribution,
depending on what information would be considered important. A special function,
called the Moment Generating Function M(θ , t), is specifically intended for this
purpose

M(θ , t) =
∞

∑
z=0

eθzP(z, t). (4.249)

By taking the Taylor expansion of eθz = 1+ (θz)1

1! + (θz)2

2! + (θz)3

3! + · · ·, we can
see the moments emerging from this function, the i-th moment associated with the
i-th power of θ

M(θ , t) = µ0(t)+
µ1(t)θ

1!
+

µ2(t)θ 2

2!
+ · · ·=

∞

∑
z=0

µz(t)θ z

z!
. (4.250)

The following equations will be used extensively in the following derivation, so
it will be useful to define them before

M(θ , t) =
∞

∑
z=0

eθzP(z, t) =
∞

∑
z=0

µz(t)θ z

z!

∂M(θ ,t)
∂ t =

∞

∑
z=0

eθz ∂P(z,t)
∂ t

∂ iM(θ ,t)
∂θ i =

∞

∑
z=0

eθzP(z, t)zi =
∞

∑
z=0

µz(t)θ z−i

(z−i)!

. (4.251)



4.4.2 From the Chemical Master Equation to moments based
descriptions

Since we will only consider the structure of the Chemical Master Equation, we
would like to derive a general version of the Moment Generating Function which
can be used for any system. The CME for l reactions with stoichiometric change vl
is:

∂P(z, t|z0, t0)
∂ t

= ∑
l

al(z− vl)P(z− vl , t)−al(z)P(z, t). (4.252)

As we will see later on, the kind of rate laws associated with the system dramat-
ically impact the complexity of the overall problem. We consider the most sim-
ple case of kinetic mass action laws. An example of a mass action rate law is
al(z) =

λ z1(z1−1)
2 = λ

2 z2
1 −

λ

2 z1 = ∑i cl,ia′l,i, where the law can be rewritten as a
sum of coefficients cl,i and variables a′l,i. This expanded, polynomial form will be
exploited in our derivation.

Since we would like to talk about moments of the CME rather than probabilities,
our first priority is to write this equation in terms of M, rather than in terms of P.
We multiply both sides by eθz and sum over all possible values of z

∞

∑
z=0

eθz ∂P(z, t)
∂ t

=
∞

∑
z=0

∑
l

eθzal(z− vl)P(z− vl , t)− eθzal(z)P(z, t), (4.253)

that taking into account the previous definitions results

∂M(θ , t)
∂ t

=
∞

∑
z=0

∑
l

(
∑

i
cl,ia′l,i(z− vl)eθzP(z− vl , t)−∑

i
cl,ia′l,i(z)eθzP(z, t)

)
=

∞

∑
z=0

∑
l

(
∑

i
cl,ia′l,i(z− vl)eθ(z−vl)eθ(vl)P(z− vl , t)−∑

i
cl,ia′l,i(z)eθzP(z, t)

)
=

∑
l

(
∑

i
cl,i

∂ iM
∂θ i eθ(vl)−∑

i
cl,i

∂ iM
∂θ i

)
= ∑

l
∑

i
cl,i

∂ iM
∂θ i

(
eθ(vl)−1

)
. (4.254)

Now, we can take the second definition of ∂ iM
∂θ i and expand eθ(vl) into its Taylor

series. Notice that the summation now begins at j = i. When j < i, the index will be
out of bounds and will not correspond to any physical state

∂M(θ , t)
∂ t

= ∑
l

∑
i

cl,i
∂ iM
∂θ i

(
eθ(vl)−1

)
=

∑
l

∑
i

cl,i

∞

∑
j=i

µ j(t)θ j−i

( j− i)!

(
∞

∑
k=0

(θvl)
k

k!
−1

)
. (4.255)



Remember that the initial goal was to isolate the coefficients of θ n in order to
obtain the nth moments:

∂M(θ , t)
∂ t

= ∑
l

∑
i

cl,i

∞

∑
j=i

µ j(t)θ j−i

( j− i)!

(
∞

∑
k=0

(θvl)
k

k!
−1

)
=

∑
l

∑
i

cl,i

(
µi

0!
+

µi+1θ

1!
+

µi+2θ 2

2!
+ · · ·

)(
vlθ

1!
+

(vlθ)
2

2!
+

(vlθ)
3

3!
+ · · ·

)
=

∑
l

∑
i

cl,i

([
µi

0!
vl

1!

]
θ +

[
µi

0!
vl

2

2!
+

µi+1

1!
vl

1!

]
θ

2 + · · ·
)
=

∑
l

∑
i

cl,i

∞

∑
n=0

θ
n

n

∑
k=1

µi+(n−k)
1

k!(n− k)!
. (4.256)

Our next step will be to isolate only the coefficients of θ in order to achieve
a form in which we are creating ODE’s of µ rather than M(θ , t). Since ∂M(θ ,t)

∂ t =

∑n
∂ µn
∂ t

1
n! θ n, we will have to multiply both sides by n! in order to isolate µ . Thus, it

finally results
∂ µn(t)

∂ t
= ∑

l
∑

i
cl,i

n

∑
k=1

vk
l µi+(n−k)

n!
k!(n− k)!

. (4.257)

It is easy to note from the previous expression (4.257) that the equation that gov-
erns the time evolution of the moments up to a certain order implies, in general,
higher order moments, and then, before solving all them, higher order moments
must be written as a combination of those involved in the considered time evolu-
tion equations. These relations have in most cases an approximate character and are
known as closure relations.
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