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Investigation of high-order methods in
large-eddy simulation of separated flow in a
channel with periodic constrictions

X. Gloerfelt and P. Cinnella

1 Introduction

In large-eddy simulations (LES), only the dynamics of large scales is computed and
the effect of smaller scales is modelled. Scale separation is however difficult to es-
tablish since the low-pass filtering arises from a complex combination of implicit
filtering by the grid and the discretization schemes. Even when explicit filtering
is performed, the implicit filtering due to the application of discretization methods
changes the shape of the filter function. The question of the intricate interactions be-
tween numerical errors, leading to this badly-defined filter, and subgrid-scale mod-
elling errors has retained the attention of numerous authors since the studies of
Ghosal [5] or Kravchenko and Moin [6]. Even with high-order schemes the subgrid
contribution can be dominated by numerical errors in the high-wavenumber range.
Meyers et al. [7] use error-landscapes to provide a more systematic assessment of
computational errors. In explicitly-filtered LES, the filter shape plays a key role
[10]. Since SGS models require informations from the smallest resolved scales, it is
essential to ensure a high-accurate numerical approximation near the filter cutoff.

In the present study, several LES of the flow in a channel with streamwise-
periodic constrictions are presented. This is a particularly challenging benchmark
case for the prediction of separation of turbulent flows from curved surface and
subsequent reattachment. It has been designed to test LES or RANS/LES models
[4, 9], and an ERCOFTAC database [8] is available for the hill geometry, reference
LES and measurements. A large variety of numerical methods, meshing strategies,
subgrid-scale (SGS) models, wall modelling assumptions (through either RANS
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equations or wall functions) have been investigated in the past [3, 4, 9, 11]. The
principal objective of the current study is to identify the sensitivity of the predictive
accuracy to resolution and modelling issues. Simulations were performed for six
different finite-difference schemes, six explicit filters and five subgrid-scale models
on a coarse grid. It is shown in particular that the dissipative part of the discretization
scheme plays a determinant role and overwhelms the choice of a SGS closure.

2 Flow configuration and numerical strategy

The chosen configuration corresponds to the streamwise-periodic-hill channel flow,
as described in the ERCOFTAC website [8]. The Reynolds number based on the hill
height and the bulk velocity at the top of the hill is Reh = 10595, and we choose a
relatively low value for the Mach number, M=0.2. The dimensions of the domain are
Lx=9h; Ly=3.035h; Lz=4.5h, with h the hill height. The upper and lower boundaries
are isothermal solid walls, where no-slip velocity boundary conditions apply. Peri-
odic boundary conditions are implemented in the streamwise (x) and spanwise (z)
directions. A forcing function is used to impose a constant mass flux. The govern-
ing equations are the compressible Navier-Stokes equations written for a curvilin-
ear domain by using a coordinate transformation. They are integrated in time using
an explicit low-storage six-step Runge-Kutta scheme, optimised in the frequency
space [2]. Space derivatives are approximated in the Cartesian regular computa-
tional space by using centered finite differences (FD), which are not dissipative. A
filtering procedure is employed to remove spurious high-wavenumber oscillations.
The filters have symmetric coefficients, and thus are non-dispersive. In the present
work, several finite-difference and filtering schemes are tested to show the effect of
the scheme resolvability on the quality of the LES simulations. A similar study has
been done for a Taylor-Green vortex and a turbulent boundary layer [1]. Table 1
summarizes the different simulations discussed in the following.

The present LES strategy combines a finite-difference scheme with good spectral
properties with the use of a selective filtering, which has many advantages. It pre-
vents aliasing error and removes grid-to-grid oscillations. Moreover, the selective
filtering provides the necessary regularization. The effect of SGS motions is taken
into account implicitly in the high-wavenumber range thanks to the smooth trunca-
tions of the filter and finite-difference schemes in the wavenumber space. That is
why this kind of approaches is considered as an implicit LES. In the following, the
strategy is referred to as RT (for Regularization Term). The explicit-filter strategy
can be used alone as in the RT strategy, or in conjunction with a SGS model. The
first model tested is the classical Smagorinsky model supplemented by a van Driest
damping function near the walls. Second, the dynamic version (DSM) with a Lapla-
cian test filter is investigated. The dynamic constant is also filtered with a Laplacian
to avoid too fast variations. Third, the multiscale model (MSM) is tested. Scale sep-
aration is performed by applying an 11-point filter with cutoff at k∆x = π/3 [2]. In
the small-small version (MSM-ss), both the SGS tensor and the eddy viscosity are



 Table 1 Summary of computational cases.

Cases Grid FD
scheme

Filter SGS Symbol/Line

64×33×32 DRP11 DRP11 RT black dash-dotted
Grid convergence 128×64×64 DRP11 DRP11 RT

256×128×128 DRP11 DRP11 RT
64×33×32 o2 o2 RT grey dashed

Influence of 64×33×32 o4 o4 RT grey solid
discretization 64×33×32 o6 o6 RT grey dash-dotted
and filter order 64×33×32 o8 o8 RT black dashed

64×33×32 o10 o10 RT black solid
64×33×32 o2 DRP11 RT grey dashed

Influence of 64×33×32 o4 DRP11 RT grey solid
discretization 64×33×32 o6 DRP11 RT grey dash-dotted
alone 64×33×32 o8 DRP11 RT black dashed

64×33×32 o10 DRP11 RT black solid
64×33×32 DRP11 o2 RT grey dashed

Influence of 64×33×32 DRP11 o4 RT grey solid
filter order 64×33×32 DRP11 o6 RT grey dash-dotted
alone 64×33×32 DRP11 o8 RT black dashed

64×33×32 DRP11 o10 RT black solid
64×33×32 DRP11 DRP11 SM CS=0.18 circle/black solid
64×33×32 DRP11 DRP11 SM CS=0.1 circle/black dashed

Influence of 64×33×32 DRP11 DRP11 DSM Cd square/grey solid
SGS modeling 64×33×32 DRP11 DRP11 DSM Cd/2 square/grey dashed

64×33×32 DRP11 DRP11 MSM-ls diamond/black solid
64×33×32 DRP11 DRP11 MSM-ss diamond/black dashed

Ref. LES[8] 280×200×220 FVa FVa DSM white triangle/solid

a FV: second-order finite volume (code LESSOC)

based on the filtered strain-rate tensor, whereas in the large-small version (MSM-ls),
the SGS tensor alone is based on the filtered strain-rate tensor.

3 Influence of numerical schemes

The first investigation concerns the spatial discretization scheme on the coarsest
grid. Two families of central finite-difference schemes are considered, namely stan-
dard second- to tenth-order schemes, denoted hereafter o2 to o10, and a DRP-type
optimized scheme with an 11-point stencil [2] (DRP11). For brevity, only profiles
along a vertical line at x/h = 2, i.e. in the middle of the separated zone, are plotted
in figure 1. The first row of figure 1 shows the coupled influence of finite-difference
and selective-filtering schemes. The separate role of the dispersive (FD) and dissipa-
tive (filter) parts are presented in the second and third row, respectively. Concerning
the influence of the order of the standard finite-difference schemes, the mean flow
profiles are affected by the high phase error introduced by the 2nd and 4th-order
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Fig. 1 From left to right, profiles of ⟨u⟩; ⟨v⟩ and ⟨v′v′⟩ in the recirculation region at x/h = 2. First
row: coupled influence of finite-difference and selective-filtering schemes; second row: influence
of finite-difference schemes supplemented by the DRP11 filter; third row: influence of selective-
filtering schemes along with the DRP11 scheme. Line legend is provided in Table 1.

scheme. The curves obtained beyond the 6th-order are rather similar, showing that
the quality of the solution becomes independent of the spatial scheme order. The
influence of the filter order in the RT method are shown in the second row of fig-
ure 1, where standard filters compared to the optimised filter and a reference LES
[3]. The 2nd-order filter dissipates all of the turbulent structures. The 4th-order and
6th-order filters are highly overdissipative. Contrary to the results obtained for finite
differences schemes, a major influence is found up to the 10th-order for the filters.
The similarity with the results of the first row, where the FD and filter schemes are
changed simultaneously, indicates that the accuracy of the LES solution is highly
dependent on the choice of a sufficiently sharp filter. The strong influence of the
filter choice on the numerical resolvability is clearly illustrated in figure 2 for the
instantaneous vorticity: using a sharper the filter allows capturing smaller structures.
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Fig. 2 Instantaneous snapshots of the vorticity norm: (a) FDo2/SFo2; (b) FDo4/SFo4; (c)
FDo6/SFo6; (d) FDo8/SFo8; (e) FDo10/SFo10; (f) FD DRP11/SF DRP11.

4 Influence of subgrid-scale models

Results for several SGS models are presented in figure 3. This series of simulations
uses the 11-point optimised finite-difference and filter schemes with χ=0.2 (see Ta-
ble 1). The Smagorinsky model with CS=0.18, even in its dynamic form, appears
to be too dissipative. As shown by several authors (e.g.[7]), the optimal values for
the constant is lower. Taking CS=0.1 or dividing by a factor of 2 the value of the
dynamical constant yield results in fair agreement with the reference. In the same
way, the use of multiscale models allows a significant improvement of the quality of
the solution, but shows results similar to those obtained with the RT strategy alone.
Overall the effect of the SGS model is weak and confirms that the numerical errors
tend to be more influential than the SGS-model.

5 Conclusion

The separated flow in a channel with periodic constrictions is a good candidate to
investigate the quality of LES.Coarse-grid LES have been conducted and show a
fair agreement with the references for this benchmark case. It is shown that the dis-
sipative part of the numerical discretization has a significant impact on the quality
of the results. In particular its selectivity in the wavenumber space is of the utmost
importance for increasing the resolved part of the dynamics. The influence of dif-
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Fig. 3 From left to right, profiles of ⟨u⟩; ⟨v⟩ and ⟨v′v′⟩ in the recirculation region at x/h = 2.
Influence of subgrid-scale models. Line legend is provided in Table 1.

ferent SGS models has been tested and found to be relatively weak. This confirms
that the numerical errors can dominate the role of the SGS-model.
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