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Abstract — The robust and efficient computation of the macroscopic tangent moduli represents a 

challenging numerical task in the process of the determination of the effective macroscopic properties 

of heterogeneous media. The aim of the present contribution is to compare the performances of three 

numerical techniques for the computation of the tangent moduli via the periodic homogenization 

multiscale scheme: the condensation technique, the fluctuation technique and the perturbation 

technique. A total Lagrangian approach is adopted in the formulation of the equations governing the 

periodic homogenization scheme as well as in the derivation of the macroscopic tangent moduli. 

Through a comparative study, the condensation technique is shown to have better performance as 

compared to the two other techniques. 

Keywords — representative volume element, periodic homogenization, macroscopic tangent moduli. 

1. Introduction 

In the scientific literature, several multiscale approaches have been proposed to determine the 

effective properties of heterogeneous media. The analytical approaches developed by Hill [1] and 

Hashin and Shtrikman [2] are among the earliest proposed multiscale schemes. These approaches have 

been initially applied to linear elastic composite materials. Despite their wide use in several scientific 

and engineering applications, the analytical approaches are often limited by the complexity of the 

studied microstructures and by the presence of geometric and material non-linearities in the modeling. 

To overcome these limitations, several numerical approaches have been recently developed to estimate 

the overall mechanical behavior of heterogeneous media. In this field, one can quote the approaches 

based on the Fast Fourier Transforms [3] and on the Finite Element Method [4]. In the present 

contribution, attention is focused on the modeling of the mechanical behavior of heterogeneous media 

exhibiting a periodic distribution of heterogeneities (such as composite materials, hole-containing 

sheet metals, or polycrystalline aggregates). Considering this spatial periodicity, the periodic 

homogenization approach is selected to model the transition between the microscopic and the 

macroscopic levels. The equations governing the periodic homogenization scheme (localization and 

homogenization relations, equilibrium equations, periodic boundary conditions) are numerically 

solved by the finite element method. To achieve this task, we have used the toolbox ‘Homtools’ 

developed by Lejeunes and Bourgeois [5]. Homtools is a set of python scripts for Abaqus that greatly 

simplify the determination of homogenized characteristics of periodic materials and structures. 

However, Homtools is unable to determine the macroscopic tangent moduli relating the macroscopic 

stress measure to the corresponding work-conjugate strain measure. Though, the computation of these 

tangent moduli is essential in several applications, such as the prediction of macroscopic material or 

structural instabilities through the bifurcation theory [6,[7], or the modeling of the mechanical 

behavior of metallic components by the FE2 approach [8]. To remedy this, the present contribution is 

devoted to the implementation and comparative analysis of three numerical techniques for the 

computation of these tangent moduli by periodic homogenization: the condensation technique (CT) 

developed in [9], the fluctuation technique (FT) presented in [10], and the perturbation technique (PT) 

detailed in [11]. These numerical implementations have been performed by developing a set of Python 
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scripts. These scripts are used as post-processing of the finite element computations carried out by 

Homtools. This paper is organized as follows: 

 In Section 2, the periodic homogenization governing equations, within the finite strain 

framework, are briefly recalled. 

 The numerical aspects relating to the implementation of the three techniques for the 

computation of the macroscopic tangent moduli are presented in Section 3. 

 The performances of these three numerical techniques are assessed in Section 4. 

 Section 5 closes the paper by some conclusions. 

2. Periodic homogenization equations 

In this paper, a total Lagrangian approach is adopted in the formulation of the governing equations. 

Accordingly, the deformation gradient and the first Piola–Kirchhoff stress tensor are used as 

appropriate strain and stress measures, respectively. For the sake of clarity, capital (resp. small) letters 

and symbols will be used to denote macroscale (resp. microscale) quantities and variables. The 

periodic homogenization scheme is defined by the following main equations: 

 The microscopic deformation gradient f  is additively decomposed into its macroscopic 

counterpart F  and a fluctuation gradient f per : 

 ,per f F f  (1) 

where f
per  is a periodic field over the boundary of the representative volume element (RVE) in 

its initial configuration. 

 The averaging relations linking the macroscopic deformation gradient F  to its microscopic 

counterpart f , as well as the macroscopic first Piola–Kirchhoff stress tensor P  to its 

microscopic counterpart p : 

 
0 0

0 0

0 0

1 1
;

V V
dV dV

V V
  F f P p ,  (2) 

where 
0

V  is the initial volume of the RVE. 

 The constitutive relation at the macroscopic scale, relating the rate of the macroscopic first 

Piola–Kirchhoff stress tensor P  to the rate of the macroscopic deformation gradient F  through 

the macroscopic tangent modulus PK1 : 

 = :PK1
P F . (3) 

 The microscopic static equilibrium equation in the absence of body forces: 

 
0

div
x

p 0 . (4) 

where 0
x  is the initial position of the microscopic material point. 

 The constitutive equations that describe the microscopic mechanical behavior. 

3.  Computation of the macroscopic tangent moduli 

To compute the macroscopic tangent moduli, the RVE is firstly discretized by finite elements as 

shown in Figure 1. Homtools is used to easily prescribe the periodic boundary conditions on the RVE 

and to apply the macroscopic deformation gradient F . Once the boundary conditions and macroscopic 
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deformation gradient are applied, the macroscopic first Piola–Kirchhoff stress tensor P  is computed 

by running the input file generated by Homtools. Further details on these applications can be found in 

[5]. The macroscopic tangent moduli can then be computed at the convergence of each finite element 

increment or several increments (this computation frequency has to be specified in the input file of the 

finite element simulation). 

 
 (a) (b) 

Figure 1 – Discretization of the RVE: (a) Initial configuration; (b) Deformed configuration. 

3.1. Condensation technique 

A classical assembly procedure is implemented to determine the global stiffness matrix K  from 

the elementary ones K
el  and by taking into account the connectivity of the different nodes of the 

mesh: 

 
1

where dK K K B B




  
e

el Nel
el el T PK1

e
Vel

Vl , (5) 

with: 

 Nel  is the total number of finite elements, 

 B  is the elementary gradient matrix, 

 eV  is the volume of the finite element in the initial configuration, 

 1PK
l  is the microscopic tangent modulus relating p  to f . 

Then, the lines and the columns of K  are rearranged (permuted) to obtain the following 

decomposition: 

 
K K

K
K K

 
  
 

aa ab

ba bb

, (6) 

where b  (resp. a ) designates the set of nodes located on the boundary v  (resp. interior) of the RVE 

(Figure 1). The macroscopic tangent modulus is deduced on the basis of the following expression: 

  
1

1
1

0

. . . . . .
1

Q S K K K K S Q



  

  

PK1 T T

bb ba aa ab
V

, (7) 

where Q  and S  are matrix operators, which can be determined by following the procedures detailed 

in [9]. 
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3.2. Fluctuation technique 

The fluctuation method allows us to express the macroscopic tangent modulus PK1  in the 

following form [10]: 

 
0

1 1

0

0 0

1 1 ˆ ˆd K K K
 

PK1 PK T

V
V

V V
l , (8) 

where K is the global stiffness matrix (defined in Eq. (5)) and K̂  is the global fluctuation matrix 

defined as: 

 
1

1

ˆ ˆ ˆwith dK K K B




  
e

el Nel
el el T PK

e
Vel

Vl . (9) 

3.3. Perturbation technique 

The perturbation technique used to evaluate the macroscopic tangent modulus PK1  is based on the 

finite difference method. The application of this technique at a given time increment requires to run 

the finite element computation for ten times (in a 3D case): once to determine the macroscopic tensor 
P  that satisfies the equilibrium state (called the general step, by following the Abaqus terminology) 

corresponding to the loading F , and nine times to numerically build PK1  by slight perturbations of 

each component of F  (called perturbed steps): 

 

( )

( )

d ( ) ( )

d

F F F  
 



ij ij kl ijPK1

ijkl

kl kl

P P P

F F




, (10) 

where 
( )

F kl


 is the perturbation tensor corresponding to the kl-th component, defined as: 

 
( )

F e e   kl k l

  , (11) 

and   is the magnitude of the perturbation (typically set to 810 ). 

3.4. Implementation of the three numerical techniques 

A set of Python scripts have been developed to implement the different numerical techniques 

presented in Section 3. To couple the finite element simulations with the Python scripts, some relevant 

(technical) comments shall be stated: 

 To apply the condensation technique for elastoplastic media, the microscopic constitutive 

equations need to be implemented within a user material subroutine (UMAT). Otherwise, 

using Abaqus built-in constitutive models, the elementary stiffness K
el  is determined only on 

the basis of the elastic contribution of the microscopic tangent modulus 
1PK

l  (see Eq. (5)). The 

elementary stiffness matrices K
el  are saved by using the Abaqus command ‘Element Matrix 

Output’ in ‘.inp’ file. 

 To apply the fluctuation technique, a user element subroutine (UEL) needs to be implemented 

(and not only a UMAT). In this UEL, the elementary stiffness and fluctuation matrices should 

be determined by Eqs. (5) and (9), respectively. These matrices are saved in external data files. 

A procedure is also developed in Python scripts to numerically evaluate the integral 

0

1

0d
PK

V
Vl  introduced in Eq. (8). 
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 As to the perturbation technique, with the toolbox Homtools, the Abaqus/Standard restart 

technique is used to achieve the perturbed steps. The Python code is devoted to managing the 

running of the general and the perturbed steps as well as the numerical construction of PK1 . 

4.  Numerical results 

4.1. Basic validations 

In this section, the implementation of the three techniques (CT, FT, PT) is validated by comparing our 

numerical predictions with the results published in [12]. To achieve this task, we consider two RVEs 

of two-phase composites with soft matrix reinforced by stiff inclusions. In the first (resp. second) 

RVE, the inclusion has the form of a layer (resp. cylinder) as shown in Figure 2 (a) (resp. Figure 2 

(b)). The behavior of the different phases is assumed to be isotropic and linear elastic. The Young 

modulus 2081.06MPamE  and Poisson ratio 0.3007m  are assigned to the matrix, and 

10i mE E , i m   to the inclusion. 

   
 (a) (b) 

Figure 2 – The finite element meshes: (a) Microstructure with layer inclusion; (b) Microstructure with cylindrical 

inclusion. 

The RVEs are submitted to a plane-strain loading. The comparisons between our results and those 

published in [12] are reported in Table 1. In this table, attention is focused on the analysis of the plane 

components 
1

1111

PK
, 

1

1122

PK
, 

1

2211

PK
, 

1

2222

PK
 and 

1

1212

PK
 of PK1  obtained by the different techniques. 

Furthermore, to numerically evaluate the difference between our predictions and the results from [12], 

we have introduced the scalar factor c  defined as: 

 /
Ref

PK1 PK1c , (12) 

where PK1  (resp. 
Ref

PK1 ) defines the Euclidian norm of PK1  determined by our numerical 

implementation (resp. published in [12]). 

Table 1 reveals that the three techniques provide almost the same results, the scalar factors c=0.996 

(microstructure with layer inclusion) and c=0.998 (microstructure with cylindrical inclusion) are very 

close to the associated values obtained in [12]. 
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Table 1 – Macroscopic tangent moduli for the two RVEs 

 
Ref. [12] CT FT PT 

RVE 1 RVE 2 RVE 1 RVE 2 RVE 1 RVE 2 RVE 1 RVE 2 

1

1111

PK
 78682.6 3413.1 78564.6 3400.7 78564.4 3400.7 78564.5 3400.8 

1

2222

PK
 4204.0 3413.1 4189.5 3400.8 4189.5 3400.8 4189.5 3400.8 

1

1122

PK
 1815.9 1415.1 1801.5 1407.2 1801.5 1407.2 1801.5 1407.2 

1

1212

PK
 1194.0 960.1 1194.0 958.8 1194.0 958.8 1194.0 958.9 

c 1.000 1.000 0.998 0.996 0.998 0.996 0.998 0.996 

4.2. Comparative performance of the three techniques 

The results of Section 4.1 clearly show that all of the three techniques give the same macroscopic 

tangent moduli. In this subsection, we focus attention on evaluating the performances of these three 

techniques. To this aim, we consider a cubic RVE made of an elastic cubic inclusion (in the center) 

and an elastoplastic matrix (Figure 3). The volume fraction of the inclusion is set to 20%. 

 

Figure 3 – The finite element discretization of the RVE with cubic inclusion. 

The different phases have the following material properties: 

 Inclusion: the Young modulus and the Poisson ratio are set to 2100 GPa and 0.3, respectively. 

 Matrix: the Young modulus and the Poisson ratio are set to 210 GPa and 0.3, respectively. As to 

the hardening behavior, it follows the Swift hardening law: 

  
0 184p

y eq    
.

, (13) 

where y  is the equivalent yield stress and p
eq  is the equivalent plastic strain. 

The RVE is submitted to an incompressible loading defined by the following macroscopic 

deformation gradient: 

 

1.2 0 0

0 0.91287 0

0 0 0.91287

F

 
 


 
  

. (14) 
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The finite element computations generate a set of external files (elementary stiffness matrices for CT, 

elementary stiffness matrices and fluctuation matrices for FT, and the restart databases for PT), which 

are used as inputs for the Python scripts. Therefore, the evaluation factor on the computational 

efficiency is twofold: the required disk space and the CPU time (spent by running the Python scripts). 

These computations were made on 8 parallelized cores allocated in cluster computer. 

Figure 4 reports the evolution of the components 
1

1111

PK
, 

1

2222

PK
, 

1

1122

PK
, 

1

1212

PK
 obtained by CT, FT, PT. 

This figure reveals that the three techniques give identical results. 

    
 (a) (b) 

   
 (c) (d) 

Figure 4 – Evolution of the plane components of the overall tangent moduli obtained by CT, FT, PT. 

The macroscopic tangent moduli are evaluated at each 1% of deformation. As shown in Table 2, the 

CPU times required by CT and FT differ slightly, but the external files generated by FT are much 

heavier than those generated by CT. PT costs much more CPU times and generates the heaviest 

external files, but requires very few memory allocation. 

Table 2 – Disk space and CPU time required by each of the three techniques for the case of microstructure with 

cubic inclusion 

 CT FT PT 

External files (GB) 3.979 7.654 11.087 

CPU time (Minutes) 82 85.1 111.64 
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5.  Conclusions 

Three numerical techniques for the computation of the macroscopic tangent moduli by periodic 

homogenization have been implemented in the form of Python scripts. All of the three techniques 

provide the same results. From the computational point of view, the following conclusions can be 

drawn: 

 CT appears to be the easiest to be operated and the most efficient in terms of CPU times. 

 FT does not cost much more CPU times, but it relies on the user subroutine UEL and is more 

complicated to implement. 

 PT consumes much more CPU times, and requires the largest disk space. 
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