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Abstract

This paper deals with a new triangular finite element to analyze the behaviour of multilayered shells. This element is

based on a refined kinematical model and uses both conforming finite element method and higher-order approxima-

tions. Including a nonlinear distribution with respect to the normal co-ordinate for the transverse shear stresses and

continuity requirements between layers for both transverse shear stresses and displacements, this model does not

require any shear correction factors. Moreover, it allows to satisfy the boundary conditions at the top and bottom sur-

faces of the shell. Various strain expressions available for shells are discussed. Although the program is able to calculate

arbitrary shell shapes, present shell element performances are evaluated here in comparison with available analytical

tests issued from literature. The present finite element shown very good responses on the classical shell test: pinched

cylinder, pinched hemispherical shell, Scordelis–Lo roof. Finally, results in linear static, free vibrations and transient

dynamic response for multilayered shells show the efficiency of this new shell finite element.

� 2004 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Multilayered beam, plate and shell models are

needed in structural mechanics for analyzing, dimen-

sionning and designing this kind of structures, see for

example the review paper [1]. In the field of multilay-

ered shells where transverse shear stress effects are of

great importance, many high-order shell theories exist,

see for example [2–8], but few numerical tools have

been developed.

In the recent literature, a layer-wise technique has

been used to develop a triangle finite element based on

condensation technique at the pre-processing level in or-

der to reduce the computational cost [9]. A three-dimen-

sional shell element is presented by Klinkel [10]. These

numerical tools are not pure structural models and suffer

of the classical shear and membrane lockings.

The aim of this work is to present a new finite ele-

ment, simple to use, free from classical numerical
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pathologies and very efficient in computing both

displacements and stresses for multilayered shell appli-

cations. This new C1 shell finite element is based on

the refined model given in [3] which incorporates:

• a cosine distribution for the transverse shear strains

avoiding the use of shear correction factors;

• the continuity conditions between layers of the lami-

nate for both displacements and transverse shear

stresses;

• the satisfaction of the boundary conditions at the top

and bottom surfaces of the shell;

• the use of only five independent generalized displace-

ments (three translations and two rotations),

From a previous work on multilayered plate finite

element [11], a new shell finite element has been deve-

lopped using both conforming finite element method

and high-order finite element approximations: Argyris

interpolation for the transverse displacement and Ganev

interpolation for membrane displacements and trans-

verse shear rotations.

Some unavoidable geometric shell considerations are

firstly presented to introduce necessary tools for shell

description. In the second part of this paper, the shell

model based on a refined kinematical approach is devel-

oped. The third part deals with different strain tensors

which can be deduced from the displacement field. These

shell models are evaluated using an analytical approach

for a simply supported cylindrical shell panel under sin-

usoidal pressure. The next part is dedicated to finite ele-

ment approximations corresponding to the above

refined model. Finally, some linear static tests for multi-

layered plates and shells are described. Linear free vibra-

tion and transient dynamic responses are achieved in

order to show the efficiency of this new finite element.

It must be noticed that this efficiency is demonstrated

for both convergence velocity and accuracy for displace-

ments and stresses.

2. Geometric considerations

The shell C with a middle surface S and a constant

thickness e is defined by:

C ¼ M 2 R
3 : ~OMðn; n3Þ ¼ ~UðnÞ þ n3~a3; n 2 X;

�

� 1

2
eðnÞ6 n36

1

2
eðnÞ

�

where the middle surface is described by a map ~U from a

bidimensional domain X as:

~U : X � R
2 ! S � R

3

n ¼ ðn1; n2Þ7!~UðnÞ

At any point of the shell middle surface, the covariant

basis vectors are usually obtained as:

~aa ¼ ~UðnÞ;a; ~a3 ¼
~a1 �~a2
k~a1 �~a2k

ð1Þ

From these local covariant base vectors, coefficients of

the first and second fundamental forms are deduced,

and we have:

aab ¼~aa �~ab
bab ¼ �~aa �~a3;b ¼~a3 �~ab;a

ð2Þ

In Eq. (1) and further on, Latin indices i, j, . . . take their

values in the set {1,2,3}, while Greek indices a,b, . . .

take their values in the set {1,2}. The summation con-

vention on repeated indices and the classic notation

ð Þ;a ¼
oð Þ
ona

are used.

For any point of the shell, covariant base vectors are

expressed as follow:

~ga ¼ ~OMðn; n3Þ;a ¼ ðdba � n3bbaÞ~ab ¼ lb
a~ab and ~g3 ¼~a3

ð3Þ
where curvature tensor is defined by bba and dba is the

Kronecker symbol. The mixed tensor mb
a must also be

introduced. It is defined by the relation:

mb
a ¼ ðl�1Þba ¼

1

l
fdba þ n3ðbba � 2HdbaÞg ð4Þ

where l ¼ detðlb
aÞ ¼ 1� 2Hn

3 þ ðn3Þ2K; H ¼ 1
2
trðbbaÞ;

K ¼ detðbbaÞ.
Finally, the contravariant vectors are constructed

from the covariant ones using the following equations:

~aa:~ab ¼ dab ~a3 ¼~a3; ~ga:~gb ¼ dab ~g3 ¼~g3 ð5Þ

All these relations are classic and it is not necessary to

give more details in order to obtain the Christoffel�s sym-

bols and other differential geometric entities, see Berna-

dou [12].

3. The shell model

In order to define different shell models in this work,

the displacement field is firstly introduced. Next, the

methodology permitting to ensure interlayer continuity

conditions and satisfaction of the boundary conditions

at the top and bottom surfaces of the shell is presented.

Finally, several strain models are presented according to

some usual assumptions.

3.1. The displacement field

From Béakou and Touratier [13], the displacement

field of a shell point, in each elastic layer denoted (k),

is defined for a general doubly curved shell with respect

to the contravariant base vectors ~ai by:

F. Dau et al. / Computers and Structures 82 (2004) 1889–1899



~uðn1; n2; n3 ¼ z; tÞðkÞ ¼ uiðn1; n2; n3 ¼ z; tÞðkÞ~ai

where

uaðn1; n2; n3 ¼ z; tÞðkÞ ¼ lb
avbðn1; n2; tÞ

�z v3;aðn1; n2; tÞ þ F b
aðzÞðkÞc0bðn1; n2; tÞ

u3ðn1; n2; n3 ¼ z; tÞðkÞ ¼ v3ðn1; n2; tÞ

8

>

<

>

:

ð6Þ

In this expression, c0a ¼ ba þ bbavb þ v3;a are the two

transverse shear strain components at the middle surface

of the shell (z=0) and we denote by va the in-surface dis-

placements, v3 the deflexion. Notation ba is used for

rotations by convenience. It is expressed as b1=h2 and

b2=�h1, where h1 and h2 are measures of the two posi-

tive rotations of the transverse shell fiber. The functions

F b
a
ðkÞðzÞ, introduced in Eq. (6), include trigonometric

functions f1(z), f2(z) and linear functions gk1ðzÞ; gk2ðzÞ;
gk3ðzÞ and gk4ðzÞ. They are defined by:

F 1
1
ðkÞðzÞ ¼ f1ðzÞ þ g1

ðkÞðzÞ; F 2
1
ðkÞz ¼ g2

ðkÞðzÞ
F 1

2
ðkÞz ¼ g3

ðkÞðzÞ; F 2
2
ðkÞðzÞ ¼ f2ðzÞ þ g4

ðkÞðzÞ
ð7Þ

with:

f1ðzÞ ¼ f ðzÞ � e

p
b55f

0ðzÞ

f2ðzÞ ¼ f ðzÞ � e

p
b44f

0ðzÞ

gi
ðkÞðzÞ ¼ ai

ðkÞzþ d
ðkÞ
i

i ¼ 1; 2; 3; 4 and k ¼ 1; 2; 3; . . . ;N

ð8Þ

In Eqs. (7) and (8), f ðzÞ ¼ e
p
sin pz

e
while f 0ðzÞ stands for

of

oz
; e the thickness of the shell and N represents the num-

ber of layers.

Coefficients b44; b55; a
ðkÞ
i ; d

ðkÞ
i for i=1,2,3,4, intro-

duced in Eq. (8), are determined from the boundary con-

ditions on the top and bottom surfaces of the shell, and

from the continuity requirements at each layer interfaces

for displacements and transverse shear stresses, see [13]

for detail calculations.

In each layer (k)th layer, strains and stresses are

respectively denoted by �
ðkÞ
ij and r

ðkÞ
ij . Furthermore, the

transverse normal strain �33 is negligible according to

the moderately thick shell hypothesis. The material

behaviour is admitted linearly elastic and the shell lam-

ination may be nonsymmetric and having angle ply

layers.

The present Sinus model, called (SIN-C), allows ana-

lyzing effects of interlayer requirements.

Classic shell models can be derived from this

formulation:

• the present Sinus model without interlayer continuity

(SIN): f1(z)= f2(z)= f(z), g
ðkÞ
i ðzÞ ¼ 0

• the Reissner-Mindlin–Naghdi model (RM–N):

f1(z)= f2(z)=z, g
ðkÞ
i ðzÞ ¼ 0

• the Kirchhoff-Love–Koı̈ter model (KL–K):

f1(z)= f2(z)=0, g
ðkÞ
i ðzÞ ¼ 0

Hereafter, the superscript (k) for uðkÞa components is

omitted in order to lighten notations.

3.2. The strain field: general expressions

The strain tensor is expressed with respect to the

contravariant base vectors ~ai and after some alge-

braic manipulations, the strain components are deduced

as:

� ¼ �ijðai � ajÞ

with

2�ab¼
1

l
ð�0abþ�0baþF m

aðzÞ�1mbþF m
bðzÞ�1maþGm

aðzÞ�2mb

þGm
bðzÞ�2maþzfðbkb�2HdkbÞð�0akþF m

aðzÞ�1mk
þGm

aðzÞ�2mkÞþðbka�2HdkaÞð�0bkþF m
bðzÞ�1mkþGm

bðzÞ�2mkÞgÞ

2�a3¼
1

l
ðF m0

a ðzÞc0mþbmaðF b
m ðzÞ�zF b0

m ðzÞÞc0b

þzðbma�2HdmaÞfF b0

m ðzÞc0bþbbm ðF k
bðzÞ�zF k0

b ðzÞÞc0kgÞ
ð9Þ

where Gm
aðzÞ ¼ F m

aðzÞ � dmaz.

By convenience, the following notations have been

introduced in Eq. (9) to characterize the mechanical

effects:

membrane strain: �0ab ¼ vajb � babv3,

bending strain 1: �1ab ¼ bajb,

bending strain 2: �2ab ¼ bkavkjb þ bkajbvk þ v3jab,

transverse shear strain: c0a ¼ ba þ bbavb þ v3;a ,

where the notation vajb stands for the covariant deriva-

tive with respect to the nb curvilinear co-ordinate.

At this stage, no assumption is carried out on the

strain components: the coefficient 1/l which depends

on the transverse co-ordinate z and curvature tensor

components and all terms coming from the displacement

field are preserved in the transverse shear strain expres-

sions. This model is called the complete model.

4. The strain field simplifications

From the general strain field expressions, some sim-

plified strain models can be expressed according to con-

tinuity requirements and geometric considerations.

4.1. SIN-C: Sin model with continuity requirements

This model is deduced from the complete one and the

transverse shear strains are simplified to ensure continu-

ity requirements:



2�ab ¼
1

l
ð�0ab þ �0ba þ F m

aðzÞ�1mb þ F m
bðzÞ�1ma þ Gm

aðzÞ�2mb

þ Gm
bðzÞ�2ma þ zfðbkb � 2HdkbÞð�0ak þ F m

aðzÞ�1mk
þ Gm

aðzÞ�2mkÞ þ ðbka � 2HdkaÞð�0bk þ F m
bðzÞ�1mk

þ Gm
bðzÞ�2mkÞgÞ

2�a3 ¼F m0
a ðzÞc0m

ð10Þ

4.2. SIN-C/Love: Sin model with continuity requirements

and the geometric assumptions from Love

This model takes into account the continuity condi-

tions for the transverse shear strains and includes the fol-

lowing geometric assumptions: 1� zbba � 1 () zbba � 1.

Therefore, Eq. (9) becomes:

2�ab ¼�0ab þ �0ba þ F m
aðzÞ�1mb þ F m

bðzÞ�1ma
þ Gm

aðzÞ�2mb þ Gm
bðzÞ�2ma

2�a3 ¼F m0
a ðzÞc0m

ð11Þ

This geometric assumption, introduced by Love [14],

is often called the shallow shell hypothesis in literature.

In this case, only the term v3jab influences the �
2
ab bending

strain 2.

4.3. SIN-C/Donnell: Sin model with continuity require-

ments and Donnell assumption for the transverse shear

strains

Donnell�s assumption consists in neglecting mem-

brane coupling in the transverse shear strains at the mid-

dle surface. Therefore, the expression of the transverse

shear strain becomes: c0a ¼ ba þ v3;a .

Finally, plate transverse shear strains are used in this

model.

4.4. SIN-C/Love+Donnell

The strain components are those used in SIN-C/Love

model with the expression of the transverse shear strain

following Donnell assumption: c0a ¼ ba þ v3;a .

5. Comparison of different strain models on the Ren shell

panel: analytical approach

5.1. The Ren cylindrical panel

The geometrical and mechanical properties of the pa-

nel presented Fig. 1 are:

Geometry: Rmoy=R=10, /=60�, a=R/, S=R/e=4,

10, 50, 100. The panel is supposed infinite along the

x2=n2 direction.

Material properties: homogeneous or three layers of

same thickness (0�, 90�, 0�) are considered using the fol-

lowing properties for a layer in orthotropic axes:

E1 ¼ 25E2 G12 ¼ G13 ¼ 0:5E2 G23 ¼ 0:2E2

m12 ¼ 0:25

Loading: a single sinusoidal pressure along the curva-

ture is imposed

P ðn1Þ ¼ P 0 sin
pn1

R/

Boundary conditions: the cylindrical panel is simply

supported along its straight edges (see Fig. 1).

5.2. Analytical approach

In this paragraph, the bending of a cylindrical panel

described above is considered using a plane strain state

in the (x1,x3=z) plane, see Fig. 1. Therefore, from Eq.

(6), the generalized displacements to be considered are:

v1,v3 and b1=h2 from which the strains can be deduced

according to the assumptions made in Sections 4.1–4.4.

For the different shell models presented above, the strain

components are summarized in Table 1. In these expres-

sions, b11 ¼ b11 ¼ �1=R, and c01 ¼ b1 þ b11v1 þ v3;1 ex-

cepted for Donnell model where c01 ¼ b1 þ v3;1.

The boundary value problem is derived from the

associated weak form as:

Z

S

Z e=2

�e=2

D	
11
�C11�11 dzdS þ

Z

S

Z e=2

�e=2

D	
13
�C552�13 dzdS

þ
Z

S

pv	3 dS ¼ 0 ð12Þ

Fig. 1. The Ren laminated cylindrical shell panel.
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where D	
11 and D	

13 stand for the virtual strain rate and
�C11, �C55 are the bidimensional elastic moduli of the

material, taking into account the zero transverse normal

stress assumption r33=0.

The closed form solution is deduced introducing the

generalized displacements under the following form:

v1 ¼ V 1 cosðksÞ
b1 ¼ b cosðksÞ
v3 ¼ V 3 sinðksÞ

8

>

>

<

>

>

:

ð13Þ

which satisfies both the boundary conditions and the

equilibrium equations derived from Eq. (12). k ¼ 3
R
and

s stands for n1 in the above expressions.

5.3. The homogeneous case

This section deals with the homogeneous Ren panel

case [15] and two numerical evaluations are conducted:

the first one is dedicated to the influence of the 1/l

approximation and the second one deals with an evalu-

ation of the previous shell models on the homogeneous

Ren cylindrical shell panel.

5.3.1. Influence of 1/l approximation

For the SIN-C model, the influence of various

approximations on the factor 1/l function of the co-

ordinate z, is studied.

Table 2 presents results obtained with three kinds of

approximation: first, third and fifth order development

of 1/l(z). Nondimensionalized normal transversal dis-

placement v3, membrane/bending stress r11 and trans-

verse shear stress r13, as in [15], are given for different

ratios S ¼ R
e
. We can observe that the solution is not sig-

nificantly improved when the degree of approximation

increases. Therefore, in order to simplify analytical cal-

culations, the first order approximation for 1/l factor

is kept.

The models introduced in the above section with

strain components given in Table 1 are now evaluated

using the first order approximation excepted for the

SIN-C/Love one which is based on the assumption

1� zbba � 1.

5.3.2. Analytical results for different shell models

Based on the Ren cylinder test described in Section

5.1, this part permits to evaluate the behaviour of the

different shell models, described above in Sections 4.1–

4.4.

Nondimensionalized results for v3,r11,r13 are sum-

marized in Table 3. In this table, ratio S=R/e=4 is very

constraining because the validity of a shell model can be

Table 1

The Ren cylindrical shell panel: the strain tensor components for different shell models

Model Strain tensor components

Complete �11 ¼ 1
l
ðv1;1 1� F 1

1
ðzÞ
R

þ z
R

� �

þ F 1
1ðzÞb1;1 � b11v3 þ ðF 1

1ðzÞ � zÞv3;11Þ
2�13 ¼ 1

l
ðF 10

1 ðzÞð1� zb11Þc01 þ b11F
1
1ðzÞc01Þ c01 ¼ b11v1b1 þ v3;1

SIN-C
�11 ¼ 1

l
ðv1;1 1� F 1

1
ðzÞ
R

þ z
R

� �

þ F 1
1ðzÞb1;1 � b11v3 þ ðF 1

1ðzÞ � zÞv3;11Þ
2�13 ¼ F 10

1 ðzÞc01 c01 ¼ b11v1 þ b1 þ v3;1

SIN-C/Love
�11 ¼ v1;1 þ F 1

1ðzÞb1;1 � b11v3 þ ðF 1
1ðzÞ � zÞv3;11

2�13 ¼ F 10

1 ðzÞc01 c01 ¼ b11v1 þ b1 þ v3;1

SIN-C/Donnell
�11 ¼ 1

l
ðv1;1 1� F 1

1
ðzÞ
R

þ z
R

� �

þ F 1
1ðzÞb1;1 � b11v3 þ ðF 1

1ðzÞ � zÞv3;11Þ
2�13 ¼ F 10

1 ðzÞc01 c01 ¼ b1 þ v3;1

SIN-C/Love-Donnell
�11 ¼ v1;1 þ F 1

1ðzÞb1;1 � b11v3 þ ðF 1
1ðzÞ � zÞv3;11

2�13 ¼ F 10

1 ðzÞc01 c01 ¼ b1 þ v3;1

Table 2

The Ren multilayered cylindrical shell panel: influence of 1/l

approximation

Ratio S 1/l approximation v3 r11 r13

S=4 3D elasticity 0.312 1.079 0.572

1st order 0.276 0.969 0.554

3rd order 0.275 0.977 0.553

5th order 0.275 0.977 0.553

S=10 3D elasticity 0.115 0.807 0.579

1st order 0.108 0.769 0.576

3rd order 0.108 0.769 0.576

5th order 0.108 0.769 0.576

S=50 3D elasticity 0.0770 0.752 0.568

1st order 0.0762 0.745 0.580

3rd order 0.0762 0.745 0.580

5th order 0.0762 0.745 0.580

S=100 3D elasticity 0.0755 0.751 0.565

1st order 0.0752 0.747 0.580

3rd order 0.0751 0.747 0.580

5th order 0.0751 0.747 0.580



discussed. Nevertheless, we can observe a good agree-

ment for this ratio with reference values.

SIN-C/Donnell and SIN-C/Love+Donnell models

are very penalyzing for both transverse displacement

and stresses due to the transverse shear strain expres-

sion, see Sections 4.3 and 4.4.

For the SIN-C/Love model, relative error in compar-

ison with SIN-C model varies from 6.5% to 5.5% for the

transverse displacement and from 3.6% to 2.7% for the

transverse shear stress. Moreover, SIN-C/Love overesti-

mates the normal transverse stress in comparison with

SIN-C model.

From Table 3, the more homogeneous results for

deflexion and stresses are obtained with the SIN-C

model, which is used later in this paper.

5.4. The multilayered case

SIN, SIN-C and RM–N, for Reissner-Mindlin–Nag-

hdi, models (see Section 3.1) are now evaluated in the

case of the multilayered Ren cylindrical panel with geo-

metrical and mechanical properties as given in Section

5.1. Results on this evaluation are summarized in Table

4. The first order approximation for 1/l is conserved as

discussed above.

The efficiency of the SIN-C model which takes into

account continuity requirements for the displacement

and for the transverse shear stresses, and does not need

any shear correction factor, is obvious in Table 4. Distri-

bution of the transverse shear stress r13 is shown on Fig.

2 where continuous lines stand for interlayers.

6. The triangular six node finite element

The discrete formulation of the boundary value prob-

lem for shells is deduced from the standard functional:

að~uh;~u	hÞ[Xe
¼ f ð~u	hÞ[Xe

þ F ð~u	hÞ[Ce
; 8~u	h ð14Þ

In Eq. (14), [Xe is the triangulation of the multilayered

structure and [Ce is its edges. In addition, ~uh is the

Table 3

The Ren cylindrical shell panel: analytical nondimensionalized

displacements and stresses

S ratio Model v3 r11 r13

4 3D elasticity 0.312 1.079 0.572

SIN-C 0.277 0.971 0.557

SIN-C/Love 0.260 1.096 0.537

SIN-C/Donnell 0.232 0.876 0.512

SIN-C/Love+Donnell 0.219 0.986 0.495

10 3D elasticity 0.115 0.807 0.579

SIN-C 0.108 0.769 0.576

SIN-C/Love 0.102 0.795 0.560

SIN-C/Donnell 0.090 0.695 0.527

SIN-C/Love+Donnell 0.085 0.719 0.512

50 3D elasticity 0.0770 0.752 0.568

SIN-C 0.0762 0.745 0.580

SIN-C/Love 0.0720 0.742 0.563

SIN-C/Donnell 0.0633 0.670 0.529

SIN-C/Love+Donnell 0.0602 0.668 0.516

100 3D elasticity 0.0755 0.751 0.565

SIN-C 0.0751 0.747 0.580

SIN-C/Love 0.0711 0.741 0.563

SIN-C/Donnell 0.0624 0.671 0.530

SIN-C/Love+Donnell 0.0594 0.667 0.516

Table 4

The Ren multilayered cylindrical shell panel: nondimensional-

ized displacements and stresses

Ratio S Model v3 r11 r13

4 3D elasticity 0.457 1.772 0.476

SIN-C 0.399 1.293 0.460

SIN 0.385 1.139 0.343

RM–N 0.339 0.680 0.186

10 3D elasticity 0.144 0.995 0.525

SIN-C 0.136 0.860 0.525

SIN 0.129 0.822 0.359

RM–N 0.120 0.739 0.187

50 3D elasticity 0.0808 0.798 0.526

SIN-C 0.0800 0.775 0.539

SIN 0.0796 0.774 0.362

RM–N 0.0792 0.770 0.187

100 3D elasticity 0.0787 0.786 0.523

SIN-C 0.0782 0.775 0.540

SIN 0.0781 0.775 0.362

RM–N 0.0779 0.774 0.187

Fig. 2. The Ren laminated cylindrical shell panel: distribution

of the transverse shear stress r13.



finite element approximation of the displacement field

~u given by Eq. (6) and ~u	h is the finite element approx-

imation of the corresponding virtual velocity field ~u	.
Linear functions f and F represent the body (including

inertia terms) and surface loads. The superscript h

introduced in Eq. (14) which indicates the finite element

approximation, is also used for the finite element

approximation of the generalized displacements vhi and

hha defined in Eq. (6).

6.1. The finite element approximations

The geometry is approximated using the classic linear

three node triangle. The geometrical transformation

using an explicit map ~U is illustrated in Fig. 3.

In a conforming finite element approach, the dis-

placement field, given by Eq. (6) requires that v3 has to

be approximated by a C1-continuous function, while

the other generalized displacements va and ha require a

C0-continuous.

Therefore, Argyris [16] finite element approximation

is used for the deflexion and Ganev [17] for the other

generalized displacements. Note that the Argyris inter-

polation is exactly of continuity C1 and the Ganev inter-

polation involves a semi-C1 continuity.

The degrees of freedom (dof) associated with this

kind of finite element in the local curvilinear base vectors

are:

• at a corner node:

v1 v1;1 v1;2 v2 v2;1 v2;2

v3 v3;1 v3;2 v3;11 v3;22 v3;12

h1 h1;1 h1;2 h2 h2;1 h2;2

ð15Þ

• at a mid-side node:

v1 v1;n v2 v2;n

v3;n

h1 h1;n h2 h2;n
ð16Þ

where p,n is the derivative of p=(vi,ha) with respect to

the normal direction n of the edge of the element

Then, having derivatives in the previous set of degrees

of freedom, the following methodology is used to pre-

scribe kinematic boundary conditions for the previous

derivative degree of freedom (dof).

For a given p function and a boundary condition such

that p(n1=0,n2)=0, "n2, the first order derivatives can

be expressed using the derivative definition:

p;1ð0; n2Þ ¼ lim
h!0

pðh; n2Þ � pð0; n2Þ
h

6¼ 0

p;2ð0; n2Þ ¼ lim
h!0

pð0; n2 þ hÞ � pð0; n2Þ
h

¼ 0

ð17Þ

The same procedure can be used for the second order

derivative dof and Table 5 gives the synthesis of the pre-

scribed dof for Argyris and Ganev finite element

approximations. In this table, 0 indicates that the degree

of freedom must be fixed, while 1 means that it is free.

When the degree of freedom does not exist, we write –.

6.2. The elementary matrices

6.2.1. Elementary stiffness matrix

The elementary stiffness matrix ½Ke
 is obtained by

computing the bilinear form given in Eq. (14) at the ele-

mentary level as:

að~uh;~u	hÞXe
¼
Z

Xe

Z e=2

�e=2

�	he
� �T½�CðkÞ
 �he

� �

ldz
ffiffiffi

a
p

dXe

¼
Z

Xe

E	h
e

� �T
Z e=2

�e=2

½Be
T½�CðkÞ
½Be
ldz
 !

Eh
e

� �
ffiffiffi

a
p

dXe

¼
Z

Xe

E	h
e

� �T½Ae
 Eh
e

� �
ffiffiffi

a
p

dXe ¼ Q	
e

� �T½Ke
½Qe


ð18Þ

Table 5

Boundary conditions values for a given p function using Ganev or Argyris interpolations

Edge Interpolation p p,1 p,2 p,n p,11 p,22 p,12

n1=cste GANEV 0 1 0 1 – – –

ARGYRIS 0 1 0 1 1 0 1

n2=cste GANEV 0 0 1 1 – – –

ARGYRIS 0 0 1 1 0 1 1

Fig. 3. Geometrical transformation using explicit map.



To develop Eq. (18), the classic orthotropic elastic con-

stitutive law, using matrix notation, has been introduced

as:

rh
e

� �

¼ ½�CðkÞ
 �	he
� �

ð19Þ

where ½rh
e 
 is the matrix of stress components and ½�CðkÞ


the matrix associated with the bidimensional moduli

of the material for the kth layer taking into account of

the zero transverse normal stress hypothesis.

Using the displacement field ~u in Eq. (6) and the

strains defined in Eq. (9), the matrix [Be] can easily be

deduced and contains all the functions depending on z

co-ordinate. The matrix ½Eh
e 
, identically for ½E	h

e 
 adding
the asterisk superscript, which may be seen as a general-

ized strain matrix is given by:

½Eh
e 


T ¼ ½vh1 vh1;1 vh1;2 ..
.
vh2 v

h
2;1 v

h
2;2

..

.
vh3 v

h
3;1 v

h
3;2 v

h
3;11 v

h
3;12 v

h
3;22

..

.

hh1 h
h
1;1 h

h
1;2

..

.
hh2 h

h
2;1 h

h
2;2
 ð20Þ

The finite element approximations, defined at the

above Section 6.1, are directly used to express the matrix

½Eh
e 
 as a function of the degrees of freedom vector [Qe] at

the element level (see Eqs. (18) and (20)).

Finally, [Ae] contains the linearly elastic material

behaviour matrix for a multilayered shell which results

on the integration with respect to the thickness co-

ordinate.

6.2.2. Elementary mass matrix

The consistent elementary mass matrix [Me] is imme-

diately computed, using the same method as for the stiff-

ness one, and we have:
Z

Xe

Z e=2

�e=2

qe½u	h
T½€uh
ldz
ffiffiffi

a
p

dXe ¼ Q	
e

� �T½M e
½€Qe
 ð21Þ

In this equation, ð€Þ ¼ o
2ð Þ=ot2 and qe is the mass

density of the element Xe.

Finally, the load vector is similarly deduced and there

is no need to develop its expression.

All the elementary matrices presented here are ex-

actly integrated using 16 points.

7. Numerical evaluations

This new finite element has already been evaluated on

classical shell tests for homogeneous shell structures [18]

and very good results have been obtained but no detail is

given here. This section is dedicated to numerical evalu-

ations of this new finite element on multilayered

structures.

The aim of the numerical tests is to characterize accu-

racy and convergence properties for both displacements

and stresses for some multilayered shells where reference

solutions are available. As indicated before (see Section

3), the Sinus model with continuity requirements (SIN-

C) permits recovering other classical models specifying

expressions for fa(z) and gi(z)
(k) for i=1, 4. Numeri-

cal developments associated to the present six node

triangular finite element, denoted GAG (for Ganev–

Argyris–Ganev finite element approximations), give the

opportunity to compare various models.

7.1. Static linear test on a cylindrical shell panel

Numerical results are presented in this section for a

simply supported cross-ply cylindrical shell panel, see

Fig. 4. The geometry of this cylindrical panel is defined

by means of its radius R, its length b, its circumferential

length a. Geometrical, material and loading properties

have been chosen as follows:

Geometry: R=10, ratio b/a=3 and two ratios R/a=1,

4 defining respectively deep and shallow shells are con-

sidered. The thickness e is defined by means of two ra-

tios a/e=5, 10.

Boundary conditions and loading: this cross-ply cylin-

drical shell panel is simply supported at its edges, and is

subjected to a transverse doubly sinusoidal load.

Material properties: the shell has got three layers (0�,

90�, 0�) of equal thickness and the lamina material prop-

erties are taken from Ref. [19] and given in Section 5.1.

Results: the mesh N=4 with 760 dof is used and re-

sults are given for v3(a/2,b/2,0); r11(a/2,b/2,�e/2);

r22(a/2,b/2,e/6); r12(0,0,�e/2); r13(0,b/2,0); r23(a/

2,0,0).

The first result is about the convergence velocity of

the present element. Relative deviations for deflexion

and stresses with respect to the 3D elasticity solution

[20] are plotted in Fig. 5 versus the number of degree

of freedom (dof). This Figure shows the convergence

efficiency of the present element. The converged values

are quickly reached for global transverse displacement

v3 at the center of the shell panel: deviation is 0.85% with

Fig. 4. Three layers cylindrical panel under transverse doubly

sinusoidal pressure.



55 dof and 0.75% with 200 dof. For local quantities such

as transverse shear stresses r13 and r23, respectively lo-

cated at (0,b/2,0) and (a/2,0,0), relative error never ex-

ceeds 4 with a very coarse mesh using the present finite

element.

Numerical results obtained with the present finite ele-

ment (mesh N=4, 760 dof) are compared in Table 6 with

the elasticity solution given by Huang [20].

Results from the present finite element are in good

agreement with elasticity solutions for both transverse

displacement and stresses, and the effect of the continu-

ity condition is very significant. For the most difficult

case, R/a=1 and a/e=5 which is a deep thick shell,

numerical results present the following deviations in

comparison to the elasticity solution: �6.% for the

transverse displacement, (3.,�7.,�5.)% for the stresses

(r11,r22,r12), and finally (�2.,�12)% for the transverse

shear stresses (r13,r23).

7.2. Free vibration tests

A simply supported two-layer cross-ply cylindrical

panel is considered and the first dimensionless natural

frequency is compared with an analytical value given

in [21]. Characteristics of this cylindrical panel are as

follows:

Geometry: a rectangular shell with R=4., a=2. and

different ratios L/a=1, 2, 3, 4, 5 are considered, where

L is the straight edge length. The thickness is given by

e=0.1.

Boundary conditions: this cross-ply cylindrical shell

panel is simply supported at its edges.

Material properties: two layers (0�, 90�) of equal

thickness are considered and the lamina material proper-

ties are taken from [19] given above in Section 5.1.

Results: the lowest frequency parameter is given.

Results shown in Table 7 are in good agreement with

the reference solution. One can observe that the Kirchh-

off-Love–Koı̈ter (KL–K) model overestimates the first

natural frequency for all the ratios while RM–N model

underestimates this natural frequency. Deviations with

respect to the analytical solution never exceed 2%.

Fig. 5. Convergence study for deflexion and stresses with

respect to 3D elasticity solutions.

Table 6

The simply supported cross-ply cylindrical shell panel: nondimensionalized displacements and stresses

R/a a/e Models �v3 �r11 �r22 �r12 �r13 �r23

1 5 Elas. 2.716 �1.293 2.411 0.4371 0.4447 0.3442

SIN-C 2.551 �1.250 2.239 0.4151 0.4352 0.3020

SIN 2.193 �1.016 1.927 0.3563 0.3072 0.3187

1 10 Elas. 1.153 �0.8534 1.602 0.2725 0.4697 0.1848

SIN-C 1.168 �0.8638 1.617 0.2799 0.4803 0.1819

SIN 0.982 �0.7498 1.365 0.2376 0.3143 0.1891

4 5 Elas. 2.118 �1.022 1.116 0.2588 0.3867 0.2729

SIN-C 2.048 �1.043 1.079 0.2508 0.4048 0.2489

SIN 1.937 �0.923 1.024 0.2358 0.2930 0.2858

4 10 Elas. 0.9396 �0.7463 0.6468 0.1510 0.4271 0.1555

SIN-C 0.9318 �0.7432 0.6415 0.1494 0.4434 0.1524

SIN 0.8763 �0.7026 0.6076 0.1412 0.3029 0.1734

Table 7

Free vibrations of a simply supported two layers cylindrical

panel. First flexural eigen frequency and comparison with an

analytical solution

L/a Ref. [21] SIN-C KL–K RM–N

1 11.71 11.66 11.74 11.54

2 7.35 7.28 7.42 7.24

3 6.58 6.49 6.65 6.43

4 6.32 6.23 6.40 6.19

5 6.22 6.11 6.28 6.08



7.3. Transient response

Implicit and explicit time integration schemes have

been implemented to evaluate the behaviour in dynamics

of this new finite element. Some tests have been per-

formed on homogeneous plates and finally on multilay-

ered shells. Parametric studies such as sensitivity to the

time integration on the transient response or damping

factor influence on the dynamic behaviour have been

accomplished validing the implementation. Uniform

pressure and Dirac loading have been tested on simply

supported cylindrical shell panel. The results obtained

under Dirac loading are presented here.

Geometrical and material characteristics of this cylin-

drical panel, see Fig. 6, are as follows:

Geometry: a rectangular shell with R=10., ratio b/

a=3. and ratio R/a=1, is considered. Ratio a/e=10 is

used in this case.

Boundary conditions and loading: this cross-ply cylin-

drical shell panel is simply supported at its edges, and is

subjected to an impulsive normal load at its center.

Material properties: the shell has got three layers

(0�, 90�, 0�) of equal thickness and the lamina material

Fig. 8. Transient response of cylindrical panel under impulsive excitation on its center. Arbitrary Rayleigh damping is used.

Fig. 6. Laminated cylindrical panel for dynamic tests.

Fig. 7. Compared response with numerical simulation from

Ansys.



properties are taken from Pagano [19] given above in

Section 5.1.

Transient responses have been achieved on this

multilayered panel. For each simulation, the results are

in good agreement in comparison with 3D solid or shell

finite element computations from Ansys Software [22].

The transient responses given by the present element

and Shell93 element from Ansys Sofware are compared

in Fig. 7. For this simulation, the arbitrary Rayleigh

damping factor value is b=0.001. A good agreement

for the global dynamic responses of the panel is ob-

served. On the other hand, Fig. 8 shows the evolution

of the dynamic response when arbitrary Rayleigh damp-

ing factor increases. Responses are in agreement with

theoretical results again. Finally, these first investiga-

tions in dynamics are very encouraging for future work,

especially for impacts and damage studies in dynamics.

8. Conclusions

In this paper, a new triangular finite element has been

presented to analyze multilayered shells in static and

dynamic.

A discussion on various assumptions at the strain le-

vel was firstly presented in order to clarify the influence

of classical strain simplifications and truncatures. The

refined shell theory used, which contains only five inde-

pendent generalized displacements, allows satisfying ex-

actly all the boundary conditions at the top and bottom

surfaces of the shell and the interlaminar continuity for

displacement and stresses. Furthermore, this shell model

involves nonlinear distributions displacements and stres-

ses, avoiding the use of transverse shear correction

factors.

On the other hand, a conforming finite element meth-

od has been used to define a new finite element based on

higher-order polynomia approximations for the general-

ized displacements. Several tests have shown its effi-

ciency for both convergence velocity and accuracy for

displacements and stresses.

Present works have recently been followed by the

introduction of a moderately large transverse displace-

ment (Von-Karmann assumptions) for geometrically

nonlinear applications.
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