
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/19147

To cite this version :

Christophe PRADERE, Marie-Marthe GROZ, Anissa MEZIANE, Alain SOMMIER, Emmanuelle
ABISSET-CHAVANNE - Three-Dimensional Reconstruction of Thermal Volumetric Sources from
Surface Temperature Fields Measured by Infrared Thermography - Applied Sciences - Vol. 9,
n°24, p.5464 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/19147
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Three-Dimensional Reconstruction of Thermal Volumetric

Sources from Surface Temperature Fields Measured by

Infrared Thermography

Christophe Pradèrea, Marie-Marthe Grozb, Emmanuelle Abisset-Chavannea, Anissa Mezianea,

and Alain Sommiera

aUniv. Bordeaux, I2M, CNRS, UMR 5295, Arts et Métiers Paris Tech, Bordeaux INP, F-33400

Talence, France
bEpsilon-Alcen company, Esplanade des Arts et Métiers, F-33405 Talence CEDEX, France

ABSTRACT

Non-destructive testing (NDT) of materials and structures is a very important industrial issue in the fields of
transport, aeronautics and space as well as in the medical domain. Active infrared thermography is an NDT
method that consists in providing an external excitation to cause an elevation of the temperature field in the
material, consequently allowing evaluation of the resulting temperature field at the surface. However, thermal
exciters that are used (flash lamps, halogen, lasers) act only on the surface of the sample. On the other hand,
several energy conversion systems can lead to the generation of volumetric sources; the phenomena of thermo-
acoustics, thermo-induction, thermomechanics or thermochemistry can be cited. For instance, ultrasonic waves
can generate volumetric heat sources if the material is viscoelastic or if there is a defect. The reconstruction of
these sources is the initial process for the quantification of parameters responsible for the heating. Characterizing
a heat source means reconstructing its geometry and the supplied power. Identification of volumetric heat sources
from surface temperature fields is a mathematically ill-posed problem. The main cause of the issue is the diffusive
nature of the temperature. In this work, 3D reconstruction of the volumetric heat sources from the resulting
surface temperature field, measured by infrared thermography, is studied. An analysis of the physical problem
enables specifying the limits of the reconstruction. In particular, a criterion on the achievable spatial resolution
is defined, and a reconstruction limitation for in-depth sources is highlighted.
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1. INTRODUCTION

Active infrared thermography is a widely used method in non-destructive testing (NDT). The process involves
exciting the environment studied with the help of an external energy supply, and then measuring the resulting
temperature on the surface. However, one of the disadvantages of thermal NDT is that the excitation and the
measurement are on the surface. Indeed, exciters today used in thermal NDT are usually flash lamps, halogens
or lasers, which act only on the surface of the material, making access to information in the volume difficult.
Several energy conversion systems can, however, lead to the appearance of volumetric sources in a material:
phenomena of thermo-acoustics, thermo-induction, thermomechanics or thermochemistry can be citenumd. For
example, an excitation by ultrasonic waves can lead to heat sources in a material if it is viscoelastic or if it
contains a defect. Thus, to characterize this defect or the parameter responsible for the heating, the first step is
to characterize the volumetric heat source from the surface temperature data provided by the IR camera. This
is a mathematically ill-posed problem, mainly because of the diffusive characteristic of the heat transfer problem
as well as the influence of noise. This subject has first been studied as a 2D problem, where the objective was to
reconstruct the size and the shape of planar subsurface defects from the blurred temperature measured at the
surface Ref. 1.
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Then, the study has been extended to 3D problems; several pioneering teams have proposed methods based
on thermal and acoustic coupling Refs. 2–6 or by introducing the concept of virtual waves Refs. 7, 8. These
methods of reconstruction that exist today enable reconstructing volume data (sources, initial conditions, etc.)
from surface data (temperature fields). However, two main limitations emerge from this work: depth and
measurement noise. Indeed, whatever the methods used, the deep sources are poorly determined; they are
blurred and etched, and their intensities are under-estimated. Finally, measurement noise, unavoidable during
experiments is a limiting factor and drawback for the inverse processing method. To overcome this drawback,
regularization methods allow approaching the solution, but the choice of the regularization parameters is delicate.
The temporal shape of excitation used (modulated, burst, pulse, etc.) does not seem to be a decisive factor for
reconstruction: the methods do indeed lead to similar results. Each of these methods has its advantages and
disadvantages: methods that use pulsed excitation are, among others, fast but very sensitive to noise, unlike
modulated excitation methods that are less sensitive to noise but slower to implement. In this paper, it is
proposed to reconstruct 3D heat sources using a method based on an impulse excitation (Dirac type). The
impulse thermal response has the advantage of being completely determined analytically. The main objective
is to explain, using a physical criterion, the reason for the depth limitation. Then, a reconstruction process
based on Bayesian inference, a method largely used in other scientific domains, is proposed to decrease the noise
influence in the inverse processing. Finally, results on a complete 3D shape generated by the Joule effect will be
presented.

2. METHODOLOGY OF THE INVERSION

2.1 Direct Problem

From the global point of view, the goal of the proposed method is to be able to reconstruct 3D volumetric
sources Q(x, y, z), as illustrated Figure 1, from the measured temperature fields at the sample surface opaque to
IR radiation. With this constraint, we will assume that any geometry or shape of sources can be approximated
by a sum of variable intensity source points.

Figure 1. Schema of 3D volumetric sources distributed in a material and the associated surface temperature field.

The impulse thermal response θDirac at each point r = (x, y, z) at time t from a heat source located at
r′ = (x′, y′, z′) delivering, at a previous time t′, a pulse of heat quantity of Q(r′) (J·m−3) in an infinite homoge-
neous medium Ref. 9, possibly anisotropic, but of non-thermo-dependent thermophysical properties, is expressed
analytically by Equation (1):

θDirac =
Q(r′)

ρCp

G3D (r, t/r′, t′) , (1)

where ρ (kg·m−3) and Cp (J·K−1·kg−1) are, respectively, density and specific heat of the material, while G3D

(m−3) is the 3D-Green function of the material. This function can be written as:

G3D (r, t/r′, t′) = Gx (r, t/r
′, t′) ·Gy (r, t/r

′, t′) ·Gz (r, t/r
′, t′) . (2)

where Gx, Gy and Gz are the 1D-Green functions along the three directions of space Ref. 9.



If the domain is infinite in all three directions, each 1D-Green function expresses itself explicitly in the same
way, here, with spatio-temporal Gaussian functions, and the thermal impulse response becomes:

θDirac =
Q(x′, y′, z′)

ρCp
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(3)

where ax, ay and az (m2·s−1) are the diffusivities along each of the x, y or z directions of space, respectively.

If the domain is not infinite in all three directions, but only along the directions x and y, and is only semi-
infinite in the third direction (z), the 1D-Green functions Ref. 9 Gx and Gy are the same as in Equation (3),
but Gz is different and can be written as:

Gz(z, t/z
′, t′) =

1

4
√

πaz(t− t′)

[

exp

(
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)]

. (4)

Now, if the domain is infinite along the directions x and y and finite along the direction z, the domain is
therefore a plane sample of thickness Lz. In this case, the 1D-Green functions Gx and Gy are the same as in
Equation (3), but Gz is different and can be written as Ref. 9 :

Gz(z, t/z
′, t′) =

1

Lz

[

1 + 2

+∞
∑

m=1
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−azm
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z
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]

. (5)

For this example of a sample finite along the z direction, the quadripole method is another technique that
allows the access to the temperature response Ref. 10. It enables calculating the analytical solution Gz of Gz in
the Laplace domain:

Gz(z, p) =
cosh

(

z
√

p/a
)

cosh
(

(L− z′)
√

p/a
)

λ
√

p/a sinh
(

L
√

p/a
) (6)

The previous Equation (6) can be inverted numerically to find its original in temporal space. The numerical
algorithms, such as Gaver-Stehfest, or a return of Laplace by Fourier Ref. 10 or using De Hoog’s Invlap algorithm,
can indeed be used.

For the inversion, several models, including those defined by Equations (3), (4), (5) or (6), can be used.
To compare the influence of each model along the z direction, three different configurations of heat sources are
tested. As the x and y direction are considered infinite, the heat sources considered on the examples are an
infinite plane along these dimensions, located at a given depth in the sample, as illustrated by Figure 2a.

Figure 2. Scheme of the sample along the z direction (a). Temperature response at the surface depending on the used
model for three configurations: a heat source located at z = Lz/4 (b), z = Lz/2 (c) or z = 3Lz/4 (d).



The first example is computed considering this heat source at z = Lz/4 (near the measuring surface). On
the second example, the source is located at z = Lz/2 and for the last one, it is located at z = 3Lz/4 (deep
source). The resulting temperatures θ(z = 0, t), are calculated by three different models (finite, semi-infinite and
infinite along z), measured at the surface, and given by (b), (c) and (d), respectively, in Figure 2. For the three
examples, Q0 = 0.01 J·m−3, a = 2.5 × 10−7 m2·s−1 and ρCp = 106 J·K−1·m−3. The study is made between
t0 = 0 and tf = L2

z/a.

Whatever the depth of the heat sources, it can be seen that for short times, the temperature responses
calculated by the three different models are exactly the same. The differences occur only for the long times.

In this paper, all the works were done at short times (t < tf/3). Therefore, the model used is the infinite
model, given by Equation (3), because it is more convenient (analytically). However, the choice of the model is
not decisive: the methodology that leads to the results is the same, and any models or numerical simulations
can be used for the inversion.

By introducing the following dimensionless data t∗ = t
tf
, i∗ = i′

Li
(i = x, y or z), as well as the Fourier

number Foi =
aitf
Li

, where tf corresponds to the time of the experiment and Li to the considered length of the
material, Equation (3) can be rewritten in dimensionless form as follows:
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Then for a given shape of a source the resulting temperature will be obtained by:

θ(r∗, t∗) =

∫

sample

Q(r′∗)θ3D(r
∗ − r′∗, t∗)dr′. (8)

In the case of the 3D problem, the whole material is discretized and each point of discretization is the
representation of a voxel considered as a potential source, with a level of energy Q(x0, y0, z0) = Q0Ω(x0, y0, z0),
which corresponds to the mean of the source energy on the defined voxel. The size of the voxels depends on the
number of discretizations along each direction. The problem is then written in matrix form, given by Equation
(9). The resulting surface temperature at z = 0 is a 2D field as a function of time. For the writing of the
problem, each θ(i) is a vector containing the 2D temperature reshaped into a 1D transient temperature:

(

I
(1)
3D I

(2)
3D · · · I

(n)
3D

)

[Ω] =











θ(1)
θ(2)
...

θ(m)











⇔ I Ω = θ, (9)

where I is an m by n operator matrix and θ is a vector of size m, and m and n are, respectively, the number of
time steps and the depth discretization of the sample. n can then be seen as the number of point heat sources
present in the material. In the case of the 3D problem, the operator matrix can indeed be written in the form
of a block symmetric Toeplitz matrix Ref. 11:

I3D =











A1 A2 · · · Anx

A2 A1

. . . Anx−1

...
. . .

. . .
...

Anx Anx−1 · · · A1











, (10)

where each element Ai is a matrix of size ntny by nzny, nz and ny corresponding to the number of discretization
points in z and y, and nt to the number of time steps. All the matrices Ai are themselves symmetrical in blocks,



defined by:

Ai =











Ai1 Ai2 · · · Ainy

Ai2 Ai1

. . . Ainy−1

...
. . .

. . .
...

Ainy · · · · · · Ai1











, (11)

where each block Aij is of size nt by nz. The global matrix I is therefore nxnynt by nznynx. Thus, instead
of calculating all the points separately, just calculate the first row (by block) of each matrix Ai to reconstruct
the entire matrix. The time savings by doing so are considerable. Indeed, for the 3D problem, the number of
computations is (nxny)

2nz.

3. DESCRIPTION OF SEVERAL INVERSE PROCESSING METHODS

In this part the main goal is to present the two main techniques developed by our team and to highlight their
advantages and drawbacks.

3.1 Method based on Fourier criterium and regularization

The inverse problem given by Equation (9) is written as follows:

IΩ = θ. (12)

In practice, I is not square. Its number of lines is much greater than its number of columns. Therefore, I is not
invertible. The algorithm used for the studied problem is therefore based on the Moore-Penrose pseudo-inversion
method Refs. 12, 13. The pseudo-inverse I is obtained by using singular value decomposition (SVD) method
Refs. 14–17. The principle of SVD is to decompose the matrix I of size m by n into a product of three matrices
where U is an orthogonal matrix of size m by m, orthogonal V of size n by n and S a “diagonal” matrix of size
m by n. The diagonal elements of S are called singular values. They are positive and ranked from the largest to
the smallest.

If only the first p singular values are different from zero (p < n), the SVD can then be further reduced. Thus,
the pseudo-inversion of Equation (18) gives:

Ω =

p
∑

k=1

UT
·,kθ

sk
V·,k. (13)

The reconstruction problem studied here responds well to the existence and uniqueness requirements of a
well-posed inverse problem (cf. Hadamard Ref. 18). Unfortunately, the condition of stability is not respected.
One of the methods to study this stability is to observe singular values of operator matrix I: the closer they are
to zero, the more the problem is ill-posed. If, in addition, their decay follows a power law such that if si ≈ i−n,
with n strictly positive, the problem is described as ill-posed. On the other hand, if their decay follows an
exponential law such as si ≈ e−i (which is the case here), then it is strongly ill-posed. Then to overcome such
problems, it becomes necessary to use regularization methods.

Mathematically, in the presence of noise, Equation (18) is no longer valid: strict equality becomes an approx-
imation and inversion can be seen as a minimization problem by the least squares. The unknown Ω is sought in
such a way as to minimize the residual R by the introduction of a term of penalization:

R2 = ‖IΩ− θmes‖22 + αJ(Ω), (14)

where α is a scalar called the “coefficient of regularization” and J(Ω) is an independent function of the unknown
Ω. The higher the coefficient of regularization is, the more stable the inversion will be. However, in return,
the term of “penalization” adds a bias to the initial problem. Thus, the greater the term of regularization is,
the farther the final solution is from the good one. The difficulty therefore lies in the choice of the adjustment
parameters in order to have the best compromise between stability and speed of the solution. Different methods



enable choosing the α parameter, among them the UPRE (unbiased predictive risk estimator), GCV (generalized
cross validation), L-Curve and discrepancy principle or Picard methods Refs. 17, 19–23. Then, several types of
regularization are possible depending on the choice of J . In this paper, the following types will be studied: (i),
regularization by the L2 standard (Tikhonov regularization Ref. 24), and (ii), regularization by the L1 standard
(Lasso method Ref. 25).

In the Tikhonov case, Equation (13) will take the following form:

Ω =

p
∑

k=1

s2k
s2k + α

UT
·,kθmes

sk
V·,k. (15)

The comparison between the theoretical solution, given by Equation (13), and the solution of the Tikhonov
regularization, given by Equation (15), shows that Tikhonov regularization has the effect of weighting each mode
k of the SVD by a coefficient. In the L1 regularization, Equation (13) will take the following form:

(

VSTSVT + α
(

J(i)

)2
)

Ω(i) = VSUT θmes, (16)

where for each iteration i, J(i) is a diagonal matrix that contains the L1-norm of the solution of the previous
iteration Ω(i−1). As can be seen in the definition of this matrix, each iteration uses the results from the source
Ω(i) from the previous iteration. For the first iteration, it is therefore necessary to define the matrix J(1). The
choice of this initialization does not matter, since from the first iteration, there will be correction according to
the data of the inversion. However, it is unadvisable to take the null matrix since that would mean that the first
iteration is not regularized. In this study, we take J(1) = Id, the identity matrix.

The problem given by Equation (16) is a simple linear equation, given by:

IL1
Ω = VSUT θmes. (17)

The matrix IL1
is entirely determined since it involves only the data of SVD of the matrix of the basic

problem, as well as the solution Ω(i−1) of the previous iteration (so known). Moreover, by its construction, this
matrix is square and invertible. The resolution of the problem (17) can therefore be done via any inversion
algorithm. Unlike Tikhonov’s regularization and truncation of the spectrum of SVD, the regularization by the
L1-norm allows penalizing each position of the source (node of discretization) with a different parameter. As it
is defined, regularization by the L1-norm strongly penalizes the “zero” zones (no source), and conversely, it lowly
weights non-zero areas (source). This approach favours a solution containing a maximum of null values, which
results in strong intensity contrasts on the source reconstruction in contrast to the Tikhonov regularization,
which tends to smooth the solution.

3.2 Method based on Bayesian inference

The inverse problem is still given by Equation (9) and again written as follows:

IΩ = θ. (18)

In the probabilistic framework, the idea is to reconstruct the repartition of the probability η of finding a source
at each position i knowing the temperature evolution at the surface θ(j), j = 1...m using Bayesian inference based
on the Bayes relations Ref. 26:

η(Ω|θ) = P (θ|Ω) · P (Ω)

P (θ)
(19)

where η(S|θ) is called the posterior—the probability of source repartition S knowing the surface temperature
θ—P (Ω) is the prior, P (θ|Ω) is the likelihood—the probability of obtaining θ knowing S—and P (θ) is the model
evidence.



In our case, the prior, which allows an a priori knowledge of η to be taken into account, is assumed to be
irrelevant; the probability of finding a source is the same for all positions.

Therefore, in our case, the posterior can be written as follows Ref. 27:

P (Ω|θ) ∝ exp

(

− 1

2Γ2
||θ − θforward(Ω)||22

)

. (20)

where θforward(Ω) is the surface temperature evolution depending on the source repartition Ω.

To bypass the complexity of the problem when dealing with a 3D case due to the source position combinatorial
explosion, it si proposed to treat the 2D temperature field as nx×ny independent 1D problems. Indeed, looking
at the temperature only above the source allows us to limit the quantity of data to process without loosing
much information as almost all the information is contained in it. Moreover, two other points are used to go
on alleviating the combinatorial explosion: i) the superposition principle of the thermal response, coming from
the linear characteristic of the problem, and ii) the fact that the sources are detected from the one closest to
the surface to the deepest one, allowing for a sequential detection. Then, as soon as the position of a source is
located Ω(S1), its 3D analytical effect given by Equation (7) is subtracted from the measured temperature field
θmes using equation (21):

θ⋆(x, y, t) = θmes(x, y, t)−A3DΩS1
(x, y, t) (21)

The source detection then goes on using the corrected surface temperature θ⋆(t) until the time interval has
elapsed and all the sources have been detected.

Note that in the 3D case, the analytical contribution that is subtracted from the measured temperature field
corresponds to 3D analytical solution given by eq (7). Thus the contribution of this source on the surface at any
further timestep is eliminated.

4. RESULTS AND DISCUSSION

As depicted in Figure 3, the experiment in this part uses the Joule effect: a Chromel wire (nickel-chrome),
traversed by a current transmitted by a generator, constitutes the heat source (a). The principle of the method
is to insert this Chromel thread into PVC (polyvinyl chloride) material to form a particular geometrical figure.
In this experiment, the diameter of the Chromel wire was 200µm, and its geometric shape was similar to an
“M”, placed on the rear face of a PVC sample of 1mm thickness. To avoid thermal losses on the side of the
sample where the wire is located, a thickness of mousse has been bonded, thereby fixing the heating wire (b).
The Chromel wire lies on a small area of the PVC sample, as illustrated in (c); therefore it can be considered
semi-infinite along the x and y directions.

The Chromel wire is bonded to the back of the PVC sample. To estimate the whole 3D effect, the method
of the images is used: the sample is then considered to be 2 mm thick with the wire located not on its backside
but on the middle of the plane. Thus, at the time of reconstruction, one should find the Chromel wire centred
on the middle plane of the sample along the z direction.

The PVC is supposed to be isotropic, with a density of ρ = 1180 kg·m−3, a heat capacity of Cp = 1000 J·kg−1·K−1,
and diffusivity a = 1.2× 10−7 m2·s−1. The voltage of the generator was U = 3.5V with an intensity I = 1.13A.
The measures were carried out by an IR camera, with an acquisition frequency of 200Hz, and the size of the
pixel at the surface was 290µm × 290µm. In this experiment, the wire is traversed by the electric current for a
duration of approximately 7 s. The area of study on which the temperature is measured as a function of time
(with the IR camera) is a rectangle of dimensions 3.65× 2 cm2, divided into 126× 72 pixels. The resulting field
(Digital Level) at the surface is presented in Figure 4 at t = 0 s when the power supply is turned on (a), after
2 s (b), after 7.2 s, where the maximum of the temperature is measured (c), and after 70 s (d).

Both methods, the one with Fourier criterium and the Bayesian one are applied to the previous experimental
data and the retrieving 3D heat sources corresponding to the hot wire are represented in the figure 5 for the first
method and in the figure 6 for the second one.



Figure 3. Picture of the experimental setup (a), schema of the home-made reference sample (b) and picture of the sample
during the experiment (c).

Figure 4. Measured temperature fields at the surface of the sample (PVC side): at t = 0 s when the power supply is
turned on (a), after 2 s (b), after 7.2 s (c) and after 70 s (d).

Considering inversion with the first method (SVD + regularization), to avoid excessive computation time,
the domain is divided into 18 equal parts (region of interest). Each of these domains is treated in a completely
independent way. This division is possible because the heat sources are small (the ROI are semi-infinite comparing
to the wire size) and the estimation are performed at short time, thus limiting the distribution in the plane.
In each of the eighteen domains, the solution computed by the program is a cube (3D matrix) of values close
to zero at points that do not contain sources and high values (which correspond to the intensity of the source)
whenever there is a heat source. The juxtaposition of all the domains enables estimating the totality of the
studied volume. For this experiment, the inversion with a regularization L1 was computed on a dual processor
with RAM = 128 GB: the duration of the algorithm was 5 h 45 min. Figure 5 illustrates the obtained results:
view along the thickness (a) and along the x and y plane (b).

For the second method (Bayesian), it is assumed that the intensities of the thermal sources generated by the
wire are identical and constant in all points. Under this hypothesis, the problem can be written in such a way
as to search only for the position of the thermal sources (and not their intensities). After a normalisation of



Figure 5. 3D estimated heat sources (i.e., electrical wire) with SVD applied on the measured temperature field number
of node of nz = 16 in the z direction and the Fourier number of 0.2 and an L1 regularization method: view along the
thickness (a) and along the x and y plane (b).

Figure 6. Wire reconstruction using the Bayesian inference method: (a) profile view, (b) front view.

temperature field, the probabilistic approach reconstruction algorithm is then applied and the solution obtained
is illustrated in Figure 6 representing the probability of the presence of source at each point of the plane. The
solution given by the program is a 3D matrix, which represents the volume of the sample, where each point of
the matrix contains the probability (¿98%) of the presence of a source at this point. The depths of the sources
are well found with this method on average; the wire is reconstructed on the plane parallel to the surface, in the
center of the plate. Regarding the reconstruction in the x and y directions, the wire is rebuilt thicker than it
actually is, especially in areas where the temperature variation is greater. This error is due to the fact that the
algorithm considers a constant intensity at any point of the wire. It can also be noted in Figure 6a that in these
areas, the wire is reconstructed at a slightly higher position.

Finally, an important point to highlight is the execution time of the program. The calculation in Ref. 28,
run on a laptop computer (the least powerful of the computers tested) lasted 8.35 s. To compare, in Ref. 29, the
proposed reconstruction method based on SVD and regularization allows estimating the sources for the same
experimental problem. Even if a reduction of the study domain is applied, the execution time of the program
is particularly long, more than 6 h are necessary to reconstruct the same sources. The Bayesian approach is
therefore definitely faster than a deterministic approach.

5. CONCLUSIONS

The subject of this work is to characterize 3D heat sources buried in a material from the temperature field
measured at the surface. Measurement noise is an important problem for the reconstruction of heat sources
because the problem is mathematically ill-posed. Two different methods has been presented in this paper.



The first method consists in an inverse method based on SVD and regularization that allows estimating the
geometry and the intensity of several volumetric sources. The commonly used solution in order to bypass the
problem of noise is to add terms of regularization. Two types of regularization were presented in this paper.

Second, a method based on Bayesian approach has been proposed. It constitutes another way to overcome
the ill-posed problem of the inversion of a heat equation rather than regularization. The main advantage of this
proposed method is the low noise sensitivity and the calculation time compared to other methods.

Both methods was used on an experimental case based on volumic source generated by using a well-controlled
Joule effect. It can be noted that the method can be developed to simultaneously estimate the location and the
amplitude of the source and a completely non-destructive test can be performed from such methods.
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