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Abstract. Structural Health Monitoring of aeronautic composite structures
through Lamb waves can advantageously exploit the fact that Lamb wave
damage interaction is nonlinear. However, one difficulty in this context is to
be able to distinguish between nonlinearities due to the propagation (i.e. ma-
terial or geometrical nonlinearities) and those due to the damage itself that are
of main interest here. This work proposes to use the Green-Volterra formal-
ism to build up a model for Lamb Wave propagation and damage interaction
that is complex enough to represent both types of nonlinearities, and simple
enough to be used for simulation and estimation purposes. This approach is
presented for the low frequency S0 mode nonlinear propagation in a dam-
aged beam. An analytical model of the nonlinear wave propagation is first
derived, where the damage is represented with a polynomial stiffness char-
acteristic acting via boundary conditions. This model is then used to derive
the Green-Volterra series describing the nonlinear input-output relationship
of the system. A modal decomposition of the Green-Volterra series is also pro-
vided. Simulations are presented, and the proposed approach is successfully
compared to state-of-the-art methods based on finite-elements models.

Keywords: Lamb Waves · Nonlinear Damage · Nonlinear Propagation in
composite materials · Green-Volterra model · S0 mode.

1 Introduction and problem statement

Structural Health Monitoring (SHM) combines advanced sensor technology with in-
telligent algorithms to interrogate the structural “health” condition. Generally, a
SHM process entails establishing: (1) the existence of damage, (2) the damage lo-
cations, (3) the types of damage, and (4) the damage severity [1]. On the basis of
the assumption that in many cases damage causes a structure to exhibit nonlinear
dynamical response and that the damage monitoring process can be significantly en-
hanced if one takes advantage of these nonlinear effects [2], we aim here at providing



a framework with a richer representation of nonlinear damages and nonlinear Lamb
waves propagation in composite aeronautic complex structures. Such approaches in
that direction have already been achieved [3, 4] but were not general enough in terms
of damage models and did not include nonlinear Lamb wave propagation thus moti-
vating the present study.

In order to model nonlinearities, this paper relies on the Volterra formalism.
Volterra series is a model representation that describes the output signal of a system
as an homogeneous series with respect to the input [5]. This approach, similar to
Taylor series approximations for functions, has been shown to be an universal ap-
proximator for any nonlinear dynamical system with fading memory [6]. To correctly
take into account the spatial dependency of the problem under study, this paper
uses the Green-Volterra series [7, 8], which are an extension of the Volterra formal-
ism incorporating the notion of Green’s function. Furthermore, we use the method
presented in [8] which allow to easily compute the Green-Volterra kernels for an in-
homogeneous nonlinear partial differential equation where the nonlinearities are in a
polynomial form.

In this paper, we thus use the Green-Volterra formalism to find analytical solu-
tions for the S0 mode nonlinear propagation and nonlinear damage interaction in a
damaged beam. Firstly, the wave propagation model used for the damaged beam is
presented, where the damage is represented with a polynomial stiffness characteritic
acting via boundary conditions. This model is then used to derive the Green-Volterra
series describing the input-output relationship of the system. A modal decomposition
of the Green-Volterra series is then given. Simulations are presented, and the pro-
posed approach is sucessfully compared to a state-of-the-art method based on finite
elements.

2 Modelisation of the damaged beam

2.1 Assumptions

In this paper, we consider a beam of length L and section S, with fixed boundary
conditions at both ends1 and a damage localized at x = d (see Fig. 1). The material is
homogeneous, isotrope and dissipative, with Young modulus E, volumic mass ρ and
damping factor γ; physical nonlinearity in the propagation is also taken into account,
with ε and β respectively the quadratic and cubic nonlinearity coefficients [9].

In order to represent the damage, we will consider that the beam is divided into
two sub-beams linked by a nonlinear spring (see Fig. 2), which is characterized by a

1 The presented approach is also valid for other types of boundary conditions, but for sake
of clarity and concision we restrict here the presentation to this case only.
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Fig. 2: Simplified model used for approximating a damaged beam.

polynomial stiffness relation, i.e.

K [x] =

+∞∑
n=1

Knx
n , (1)

with K [x] the force applied by the spring at its extremities in response to an elon-
gation x. We will respectively note Ωl = [0, d[ and Ωr = ]d, L] the left-part and
right-part domains.

2.2 Constitutive equations

We consider that the beam is excited by an external force f (x, t). Then, given the
previous assumptions, the longitudinal vibration u (x, t) follows the wave equation

ρS ∂2t u (x, t)+γ ∂tu (x, t)−ES
(

1− ε ∂xu (x, t) + β (∂xu (x, t))
2
)
∂2xu (x, t) = f (x, t)

(2)



for x ∈ Ωl ∪ Ωr. Furthermore, the fixed extremities at x = 0 and x = L give the
boundary conditions

u (0, t) = 0 , (3)

u (L, t) = 0 , (4)

and the damage imposes at x = d− and x = d+

ES ∂xu
(
d−, t

)
= K

[
u
(
d+, t

)
− u

(
d−, t

)]
, (5)

−ES ∂xu
(
d+, t

)
= −K

[
u
(
d+, t

)
− u

(
d−, t

)]
. (6)

The constitutive equations of the damaged beam model are thus given by

Σ :



(
1− ε ∂xu (x, t) + β (∂xu (x, t))

2
)
∂2xu (x, t)

for x ∈ Ωl ∪Ωr
− 1

c2L
∂2t u (x, t)− γ

F0
∂tu (x, t) =

1

F0
f (x, t)

u (0, t) = 0

u (L, t) = 0

∂xu (d−, t) = ∂xu (d+, t) = ∂xu (d, t)

F0 ∂xu (d, t) = K [u (d+, t)− u (d−, t)]

(7)

with cL =
√

E
ρ the longitudinal wave celerity, and F0 = ES a factor homogeneous

to a force.
The vibration u is thus solution of a non-homogeneous differential equations sys-

tem made up of one nonlinear propagation equation on Ωl ∪ Ωr, two homogeneous
Dirichlet boundary conditions at x = 0 and x = L, one homogeneous Cauchy bound-
ary conditions at x = d and one inhomogeneous Robin boundary conditions at x = d.
The following section will present an analytical solution of this problem using the
Green-Volterra formalism.

3 Analytical solution via Green-Volterra series

3.1 Volterra and Green-Volterra series

The Volterra series [5], which have been used for many decades to model a variety
of nonlinear dynamical systems, rely on the assumption that the output signal can
be described as an homogeneous series, i.e. that

u =
+∞∑
n=1

un (8)



where each order un is homogeneous of order n w.r.t. the input force f , i.e. un ∝ fn.
This idea allows to extend the idea of linear filter to each order of nonlinearity via the
introduction of Volterra kernels. One important property of Volterra series is that it
can approximate any nonlinear dynamical system with fading memory [6].

An extension of the Volterra formalism, the Green-Volterra series, has been intro-
duced in [7, 8] to model problems that were also space-dependent. In this model, each
homogeneous order of the output vibration un is written as a convolution between a
space-time Green-Volterra kernel gn and multiple product of delayed versions of the
input force f , i.e.

un (x, t) =

∫ L

0

· · ·
∫ L

0

∫ +∞

0

· · ·
∫ +∞

0

gn(x; ξ1, . . . , ξn; τ1, . . . , τn)×

fn(ξ1, t− τ1) . . . fn(ξn, t− τn)dξ1 . . . dξndτ1 . . . dτn (9)

Furthermore, it has been shown in [8] how to compute the kernels gn from an inho-
mogeneous differential equation where the nonlinearities are in a polynomial form,
and that it is only needed to find the Green kernel corresponding to the linear part of
the differential operator (and respecting the boundary conditions of the problem). In
the following, we will use this approach to derive analytical solutions for the problem
stated in Eq. (7).

3.2 Problem reformulation

Incorporating (8) into the model (7), and sorting terms by their homogeneity order
gives the sub-model that each order un must follow, i.e.

Σn :



∂2xun (x, t)− 1

c2L
∂2t un (x, t)− γ

F0
∂tun (x, t) = gn (x, t) for x ∈ Ωl ∪Ωr

un (0, t) = 0

un (L, t) = 0

∂xun (d−, t) = ∂xun (d+, t) = ∂xun (d, t)

F0 ∂xun (d, t)−K1un (d+, t) +K1un (d−, t) = rn (t)

(10)

with the “input force” gn given by

g1 (x, t) =
1

F0
f (x, t) (11)



and, for n ≥ 2,

gn (x, t) = ε
∑
m∈N2

m1+m2=n

∂xum1 (x, t) ∂2xum2 (x, t)

− β
∑
m∈N3

m1+m2+m3=n

∂xum1 (x, t) ∂xum2 (x, t) ∂2xum3 (x, t) ,
(12)

and the “residual force” rn at damage given by

r1 (t) = 0 (13)

and, for n ≥ 2,

rn (t) =
n∑
j=2

Kj

∑
m∈Nj

m1+···+mj=n

j∏
k=1

(
umk

(
d+, t

)
− umk

(
d−, t

))
. (14)

From (10) and the expression of gn and rn, we can remark that each order un is
solution of a linear differential problem with mixed boundary conditions, where the
“input force” and part of the boundary condition are function of lower orders um
with m < n. This means that, in order to find analytical solutions for un, it is only
needed to solve once the linear differential problem (10). Furthermore, this allows a
numerical simulation of our problem, where orders un will be computed iteratively.

In order to facilitate the resolution of Eq. (10), we will take the expression in the
Laplace domain:

Σn :



∂2xUn (x, s)− σ(s)Un (x, s) = Gn (x, s) for x ∈ Ωl ∪Ωr
Un (0, s) = 0

Un (L, s) = 0

∂xUn (d−, s) = ∂xUn (d+, s) = ∂xUn (d, s)

F0 ∂xUn (d, s)−K1Un (d+, s) +K1Un (d−, s) = Rn (s)

(15)
with

σ(s)2 =
s2

c2L
− γs

F0
, (16)

and where spatio-frequency signals Un, Gn and Rn are the Laplace transform of
spatio-temporal signal un, gn and rn.



3.3 Analytical solution

Let δ = L− d be the length of the right-part beam, and

Q (s) =
1

K1 sinh
(
σ(s)L

)
+ F0 σ(s) cosh

(
σ(s)δ

)
cosh

(
σ(s)d

) . (17)

Then, the solution of (15) is given by, ∀s 6= 0,

Un (x, s) =
K1

2σ(s)Q(s)

L∫
0

Fn(ξ, s)

(
cosh

(
σ(s)(L− |x− ξ|)

)
− cosh

(
σ(s)(L− x− ξ)

))
dξ

+
F0

2Q(s)
cosh

(
σ(s)δ

) d∫
0

Fn(ξ, s)

(
sinh

(
σ(s)(d− |x− ξ|)

)
− sinh

(
σ(s)(d− x− ξ)

))
dξ

+
sinh

(
σ(s)x

)
cosh

(
σ(s) δ

)
Q(s)

Rn (s)

(18)

for x ∈ Ωl, and

Un (x, s) =
K1

2σ(s)Q(s)

L∫
0

Fn(ξ, s)

(
cosh

(
σ(s)(L− |x− ξ|)

)
− cosh

(
σ(s)(L− x− ξ)

))
dξ

+
F0

2Q(s)
cosh

(
σ(s)d

) L∫
d

Fn(ξ, s)

(
sinh

(
σ(s)(δ − |x− ξ|)

)
− sinh

(
σ(s)(δ − x− ξ)

))
dξ

−
sinh

(
σ(s) (L− x)

)
cosh

(
σ(s) d

)
Q(s)

R (s)

(19)

for x ∈ Ωr. The static part, i.e. for s = 0, is given by

Un (x, 0) =
K1L

K1L+ F0

L∫
0

Fn (ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,L] (ξ)x− ξx

L

)
dξ

+
F0

K1L+ F0

d∫
0

Fn (ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,d] (ξ)x

)
+

x

F0 +K1L
Rn (0)

(20)



for x ∈ Ωl, and

Un (x, 0) =
K1L

K1L+ F0

L∫
0

Fn (ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,L] (ξ)x− ξx

L

)
dξ

+
F0

K1L+ F0

L∫
d

Fn (ξ, 0)

(
L− 1[d,x] (ξ)x− 1[x,L] (ξ) ξ

)
dξ

− (L− x)

F0 +K1L
Rn (0)

(21)

for x ∈ Ωr.
Equations (18) and (19) share the same first term, which is, to a factor, the

vibration of an healthy beam of length L fixed at both its boundaries. For the left part
(respectively the the right part), the second term is, also to a factor, the vibration
of an healthy beam of length d (resp. L − d) with boundary condition fixed-free
(resp. free-fixed). In both parts, the third and last term corresponds to the vibration
induced by the inhomogeneous mixed boundary condition due to the damage. The
same remarks can be made for the static solutions (20) and (21).

Direct numerical simulation of equations (18−21) requires:

– that damping be present; if not, discretization of the frequency domain will cause
leaking effects that disables the possibility to simulate transient response.

– to compute the spatial integral, which will introduce numerical approximations.

To alleviate those requirements, the next section presents a modal decomposition
that can be used to solve (15).

4 Modal decomposition

4.1 Determination of modal shapes

We search for an orthonormal family of modes φp such that, ∀p ∈ N∗, it respects

Φ :



φ′′p (x) + λ2 φp (x) = 0 for x ∈ Ωl ∪Ωr
φp (0) = 0

φp (L) = 0

φ′p (d−) = φ′p (d+)

F0 φ
′
p (d−)−K1 φp (d+) +K1 φp (d−) = 0

(22)

Depending whether the damage is positioned on an anti-node or not, the mode φp
can be of one of two form.



General case: In this case, the damage is not positioned on an anti-node, i.e.
φ′p (d) 6= 0, and therefore the modal shape φp has a discontinuity at x = d. Its
shape is given by

φp (x) =


A sin (λpx) for x ∈ Ωl ,

−Acos (λd)

cos (λδ)
sin
(
λp(L− x)

)
for x ∈ Ω ,

(23)

where the wavenumber λp is solution of the transcendental equation

0 =
F0

K1
+

sinc (λpd)

cos (λpd)
+

sinc (λpδ)

cos (λpδ)
. (24)

If we want the modal shape to have an unit norm, then the amplitude must be

A =

√√√√ 2 cos (λpδ)
2

d cos (λpδ)
2
(

1− sinc (2λpd)
)

+ δ cos (λd)
2
(

1− sinc (2λpδ)
) . (25)

Particular case: In this case, the damage is exactly on an anti-node, i.e. φ′p (d) = 0,
and the modal shape is continuous. This type of modal shape is quite rare, and
appears only if there exists (p, q) ∈ N2 such that

(p+ 1/2)π

d
=

(q + 1/2)π

δ
. (26)

Its shape is then given by

φp (x) = A sin

(
(p+ 1/2)π

d
x

)
. (27)

If we want the modal shape to have an unit norm, then the amplitude must be

A =

√
2

L
. (28)

Figure 3 shows the first modal shapes for a beam with L = 1 m, F0 = 2.1 · 107 N,
d = 0.7 m, K1 = 0.7 · 109 N/m. All modes are quite similar in shape to those of
an healthy beam with fixed boundary conditions at both its extremities, except for
the discontinuity at the damage position; the fifth mode, which is a particular case
where the damage position corresponds exactly to the fourth anti-node, is equal to
the corresponding healthy mode.
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Fig. 3: The first six modal shapes for a damaged beam (with L = 1 m, F0 =
2.1 · 107 N, d = 0.7 m and K1 = 0.7 · 109 N/m); the fifth one is a particular case,
where the damage position corresponds to the fourth anti-node.

4.2 Modal solution

Once the modal decomposition for the damaged beam is computed, it is possible
to solve (15) if the assumption that the solution Un can be decomposed on a modal
basis is made. Because problem (15) contains one inhomogeneous boundary condition
(i.e. F0 ∂xUn (d, s) − K1Un (d+, s) + K1Un (d−, s) = Rn (s)), we also need to add
a particular solution that takes it into account. Therefore the modal solution of
problem (15) is given by

Un (x, s) = h (x)Rn (s) +

+∞∑
p=1

φp (x)Un,p (s) , (29)



where h is a spatial shape with null second derivative that respects condition F0∂xh (d)−
K1h (d+) +K1h (d−) = 1, given by

h (x) =


x

F0 +K1L
for x ∈ Ωl ,

− (L− x)

F0 +K1L
for x ∈ Ωr ,

(30)

and Un,p is the spectral response of the p-th mode of Un, given by the equation

s2Un,p (s)+
γs

ρS
Un,p (s)+λ2c2LUn,p (s) = −c2L〈Gn, φp〉 (s)+〈h, φp〉

( γs
ρS

Rn (s)−Rn (s)
)
,

(31)
or equivalently the ordinary differential equation

ün,p (t) +
γ

ρS
u̇n,p (t) + λ2c2Lun,p (t) = −c2L〈gn, φp〉 (t) + 〈h, φp〉

( γ

ρS
ṙn (t)− r̈n (t)

)
,

(32)
where the notation 〈a, b〉 corresponds to the spatial scalar product between a and b,
i.e.

〈a, b〉 =

∫ L

0

a(x)b(x)d x . (33)

The modal solution of (15) can thus be numerically simulated, for each order n, as
follows:

1. compute terms gn and rn from previous orders um, m < n; for n = 1, we have
g1(x, t) = f(x, t) and rn(t) = 0;

2. numerically solve (32) using a discretization method (Euler method, bilinear
transform, first-order hold, etc);

3. compute the solution using (29).

5 Simulation and comparison with state-of-the-art

In this section, we will compare numerical simulations of the two solutions of the
damaged beam problem (7) (given in Sections 3.3 and 4.2) with SDTools Matlab
Toolbox [10], a state-of-the-art analysis and simulation toolbox for vibration which
uses finite-elements method.

5.1 Simulation parameters

The base model is a steel beam of length L = 1 m, with a square section of surface
S = 1 cm2, a Young modulus of E = 210.0 GPa, a density of ρ = 7850.0, kg/m3,



and a damping factor of γ = 5.0 · 103 kgm−1s−1. For the simulation, the propagation
is supposed linear, i.e. ε = 0 and β = 0.

The damage is taken as a cubic spring, i.e. with a characteristic relation given by

K [x] = K1x+K3x
3 , (34)

where K1 = 0.7e · 109 N/m and K3 = 5.0 · 1027 N/m3. It is placed at d = 0.7 m.
The input force is taken as sine burst excitation, located at x0 = 0.3 m. It is

comprised of three cycles at f0 = 100 kHz multiplied by a Hann window of unit
amplitude, sampled at fs = 5 MHz. Output vibration is simulated for a duration of
1 ms.

For both simulation methods presented in this paper, only the N = 15 first orders
of the series are simulated. The analytical solution simulation uses a zero-padding of
50000 points to avoid leaking effects due to windowing. The modal solution simulation
uses a number of 100 modes and a first-order hold as discretization method.

5.2 Simulation results

Figure 4 shows the results for the three simulation. We can see that obtained results
are qualitatively similar for all three simulations, with small differences in the damp-
ing of the vibrations. The damage acts as a nonlinear semi-reflecting barrier, which
creates harmonic distortion (visible in the output spectra).

Furthermore, we can quantitatively compare simulations by computing the RMS
value of their difference, which gives:

– a value of −14dB between the analytical approach and the result given by SD-
Tools;

– a value of −13dB between the modal approach and the result given by SDTools;
– a value of −16dB between the modal and analytical approach.

Therefore, the simulations using both proposed approaches and through SDTools
obtain qualitatively and quantitatively similar results, thus validating the approaches.
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(b) Modal solution
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Fig. 4: Simulations of the damaged beam using (a) the analytical solution (see Sec-
tion 3.3), (b) the modal solution (see Section 4.2), (c) a state-of-the-art vibration
toolbox avalaible for Matlab; simulations parameters are presented in Section 5.1.



6 Conclusion

In this study, we have shown how the Green-Volterra formalism can be used to find
analytical solutions for the S0 mode nonlinear propagation and nonlinear damage
interaction in a damaged beam. Furthermore, those solutions can be decomposed
onto an appropriate modal basis for simulation purposes. Finally, we have shown
through a simulation example that both proposed approach for simulations gave
qualitatively and quantitatively similar results with a state-of-the-art finite element
method.

Future research will focus on using the obtained analytical model to derive SHM
tools for damage classification or quantification, as well as extending the proposed
approach to other types of vibration, e.g. transverse A0 mode or other Lamb wave
modes.
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