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On the linear receptivity of trailing vortices

Tobias Bolle'>{, Vincent Brion', Jean-Christophe Robinet?, Denis Sipp!
and Laurent Jacquin'

I'DAAA, ONERA-The French Aerospace Lab, Université Paris Saclay, 92190 Meudon, France
2DynFLuid, Arts et Métiers Institute of Technology, CNAM, HESAM University, 75013 Paris, France

(Received 24 March 2020; revised 28 July 2020; accepted 2 October 2020)

The present work investigates the excitation process by which free-stream disturbances
are transformed into vortex-core perturbations. This problem of receptivity is modelled
in terms of the resolvent in frequency space as the linear response to forcing. This
formulation of receptivity suggests that non-normality of the resolvent is necessary
to allow free-stream disturbances to excite the vortex core. Considering a local (in
frequency) measure of non-normality, we show that vortices are frequency-selectively
non-normal in a narrow frequency band of retrograde perturbations while the rest of the
range is governed by an effectively normal operator, thus not contributing to receptivity.
Canonical decomposition of the resolvent reveals that vortices are most susceptible to
coiled filaments localised about the critical layer that induce bending waves on the
core. Considering Lamb—Oseen, Batchelor and Moore—Saffman vortices as reference-flow
models, we find free-stream receptivity to be essentially generic and independent of the
axial wavelength on the considered range. A stochastic interpretation of the results could
be a model for trailing-vortex meandering.

Key words: vortex dynamics, general fluid mechanics

1. Introduction

Trailing-vortex experiments systematically display an unsteady dynamics manifesting
as the lateral displacement of the vortex, called meandering. Despite having a broadband
spectral signature, kinetic energy is typically essentially concentrated in a low-frequency
bending wave (Devenport et al. 1996; Jacquin et al. 2001; Bailey et al. 2018). Similar
dynamics is observed for related configurations such as inlet vortices or tornadoes (Wang
& Gursul 2012; Karami et al. 2019) as well as in the interaction of canonical vortices with
turbulence (Melander & Hussain 1993; Marshall & Beninati 2005). For this reason, we
only consider helical perturbations with |m| = 1 (m is the azimuthal wavenumber).

Discussion of the origin of vortex unsteadiness divides researchers into two camps,
who attribute it either to intrinsic or extrinsic mechanisms. The former approach assumes
that the dynamics is governed in essence by the vortex in isolation, e.g. instability or
self-induction (Fabre & Jacquin 2004; Ting, Klein & Knio 2007). We assume the second
approach, assessing vortex unsteadiness as a consequence of external disturbances (e.g.
residual turbulence in wind tunnels or the atmosphere or residual vortex sheets from the
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roll-up of the vortex itself). The excitation of vortex-core perturbations by the surrounding
free stream is a (generalised) receptivity problem.

There is no reason to believe that receptivity in general should be a linear mechanism
(Saric, Reed & Kerschen 2002) and nonlinear studies have been pursued. Nevertheless,
trailing-vortex experiments provide evidence that variation of the free-stream turbulence
intensity only affects the displacement amplitude linearly (Van Jaarsveld et al. 2011,
p. 222) while the dominant meandering frequency is universal irrespective of the
turbulence intensity (Bailey er al. 2018, figure 7). These findings altogether suggest that
vortices tend to spatially separate dynamical regimes which interact linearly (at least
for the question of meandering). That is, on the one hand the free-stream dynamics is
nonlinear and complex whereas on the other hand the vortex response is governed by a
core dynamics of organised nature (Bandyopadhyay, Stead & Ash 1991; Devenport et al.
1996; Jacquin et al. 2001). This distinction is generic and independent of the (structural)
details of free-stream turbulence (at least sufficiently far from the wing, approximately
five chord lengths, say). For this reason, we neglect all internal structure and interactions
of the advective nonlinearity (~V ,u, u being the perturbation velocity about the reference
state U) but simply consider its compiled action in terms of the forcing field f = f(u)
(Kato & Fujita 1962, p. 244; Landahl 1967, p. 456; Sharma, Mezi¢ & McKeon 2016, p. 6).
Identification of the free stream with the given forcing field f'(¢), means that the exact
evolution equation for the perturbations u(¢) (cf. Joseph 1976, p. 8) takes on the form
of an inhomogeneous linear abstract Cauchy problem. The general solution in the time
domain is the sum of the homogeneous u,,(¢) and a particular solution u,(¢). By Duhamel’s
principle,

u(t) = up(t) + (1) = TOu0) + / At T(t— O)f (@), 120, (L1)
0

where t — T(?) is the propagator (semigroup) generated by the linearised Navier—Stokes
operator L (Kato 1980, p. 488; Engel & Nagel 2000, p. 436; see also Kato & Fujita 1962,
pp. 244-245; Sohr 2001, p. 8).

Alternatively, the solution in frequency space is obtained by Laplace transform of (1.1),

u(s) = R(s)(u(0) + f (s)) for admissible frequency s € C. (L.2)

The family of transfer operators s — R(s) = fooc dr exp(—st) T(¢) is called the resolvent
(Kato 1980, p. 484; Engel & Nagel 2000, p. 58). Equation (1.2) shows that the resolvent
determines the homogeneous and particular solution in frequency space. The steady-state
response of an asymptotically stable system (the case here) corresponds to the particular
solution in (1.1) and is characterised in frequency space by taking the Fourier transform.
Roughly speaking, setting s = iw, w € R in (1.2) and u(0) = 0 we study the response to
harmonic forcing.

So far, most analysis of linear vortex dynamics has concentrated on the representation
in the time domain. The homogeneous solution of (1.1) governs the transient dynamics
for all > 0 while asymptotic stability (as t — o0) is determined by the spectrum of L
(Joseph 1976, p. 9; Arnol’d 1992, p. 212). Linear stability of Lamb—Oseen, Batchelor
and Moore-Saffman vortices has been studied by Fabre, Sipp & Jacquin (2006), Fabre
& Jacquin (2004) and Feys & Maslowe (2014) among others. From these studies, one
concludes that vortices are asymptotically stable for typical parameters of aeronautical
applications. More importantly, the spectrum is the union of a discrete spectrum of isolated
eigenvalues (governing asymptotic stability) and two continuous spectra due to spatial
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unboundedness and an inviscid singularity, respectively (strictly speaking, continuity of
the latter is true only in the inviscid limit; Heaton & Peake 2007). It is in fact this latter
inviscid continuous spectrum which seems to be of primary importance for the transient
dynamics (Heaton & Peake 2007, p. 294; Mao & Sherwin 2012, p. 42).

As a matter of fact, despite asymptotic stability, transient energy growth is possible if
the linear operator L is non-normal (i.e. it does not commute with its adjoint) (Farrell &
Ioannou 1996; Trefethen & Embree 2005, § 14). Canonical decomposition (as in § 3.2) of
the propagator T(¢) for fixed # > 0 identifies those pairs of optimal initial and associated
final-time perturbations which maximise energy growth for the given ¢. The possibility of
transient growth has been shown numerically for Lamb—Oseen and Batchelor vortices by
Antkowiak & Brancher (2004), Pradeep & Hussain (2006), Heaton & Peake (2007) and
Mao & Sherwin (2012) among others. For helical perturbations with |m| = 1, the main
finding is the resonant excitation of core bending waves by remote filaments in the core
periphery (Antkowiak & Brancher 2004). This mechanism also applies for the Batchelor
vortex (Heaton & Peake 2007, p. 295).

Stochastic-forcing analysis in the time domain is concerned with the particular solution
of (1.1) assuming a stationary dynamics, viz. considering the ¢+ — oo limit (Farrell &
Ioannou 1996). The probability distribution of f'(¢) is a priori unknown and the forcing
is usually assumed to be Gaussian spatio-temporal white noise (Farrell & loannou 1996;
Fontane, Brancher & Fabre 2008; Towne, Schmidt & Colonius 2018). Stochastic-forcing
analysis has been conducted by Fontane et al. (2008) and Guo, Chen & Sun (2011) for
the Lamb—Oseen and Batchelor vortices, respectively. These studies identify the same
resonance prototype as in transient-growth analyses to contribute most to stationary kinetic
perturbation energy and covariance.

Fewer studies dealt with the solution in frequency space (1.2). Instead of analysing
the propagator, the transient dynamics can be described from tracing out contours of
the resolvent norm, i.e. the pseudospectrum, in the complex plane (Trefethen & Embree
2005, pp. 31-135). To the best of our knowledge, pseudospectra have only been computed
for axisymmetric (m = 0) perturbations of the Batchelor vortex (Mao & Sherwin 2011).
We compute the pseudospectrum of the Lamb—Oseen vortex for m = 1 and show that it
is qualitatively identical to the results of Mao & Sherwin (2011) despite the important
parametric difference.

However, by appeal to the above motivated physical model of trailing-vortex dynamics,
the majority of our analysis concerns response to harmonic forcing (i.e. for s = iw, € R
in (1.2) and u(0) = 0). As in transient-growth studies, canonical decomposition (§ 3.2)
of the resolvent R(iw) for fixed w € R yields pairs of spatial forcing and response
structures which are optimal in terms of energy amplification. Canonical decomposition
of the resolvent has been computed previously for Lamb—Oseen and Batchelor vortices
by Guo & Sun (2011) and Blanco-Rodriguez et al. (2017) for |m| € {0, 1, 2}. However, no
thorough attempt has been made to relate these results to physics and linear dynamics in
general. Recently, Viola, Arratia & Gallaire (2016) analysed the resolvent of perturbation
dynamics about the non-parallel, convectively unstable Batchelor vortex in a global
approach and compared their results to linear stability analysis and nonlinear simulations
of the Navier—Stokes equations. Their work focused on mode selection (i.e. identification
of dominant azimuthal wavenumbers) and concludes applicability of the resolvent for this
question.

The resolvent for harmonic forcing is a convenient model for linear receptivity to
sustained excitation by the free stream (cf. also McKeon & Sharma 2010, p. 342).
Assuming the forcing to be the compiled action of the (turbulent) free stream that we have
no further knowledge of, f(¢) is naturally modelled as a random process. In this case the
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response u(t) is also a stochastic process (T(#), R(s) are deterministic) and U = const. is
the mean state. It should be noted that U + u(t) is the Reynolds decomposition where the
perturbation may be finite (Towne et al. 2018, p. 836). This setting is to be contrasted with
traditional linear analysis where U is the base flow (i.e. a fixed point of the Navier—Stokes
equations; Arnol’d 1992, p. 210) and u(¥) is an infinitesimal deterministic process. Despite
the motivation, the mathematical framework we employ does not distinguish between
deterministic or stochastic forcing, neither is the restriction to free-stream disturbances
essential and f'(r) could conceptually represent e.g. control. Our analysis only addresses
the operator properties of the (deterministic) resolvent, specifically its non-normality.

The notion of free-stream receptivity crucially relies on remote excitation in the sense
that forcing and response have spatially distinct support. Non-normality of the resolvent
is a means to excite core perturbations by radially disjoint forcing structures (cf. also
Trefethen & Embree 2005, p. 201). We conclude that non-normality is necessary for linear
free-stream receptivity (conjecture 3.1, § 2). Since non-normality is the essential feature
of linear vortex dynamics in general, we expect our results to be of fundamental interest
beyond the particular question of free-stream receptivity.

Against this backdrop, the main objective must be a thorough understanding and
quantification of the resolvent non-normality. Various scalar measures have been proposed
(cf. Trefethen & Embree 2005, § 48) which, however, might significantly overestimate the
effective non-normality and hence be misleading for actual dynamics. Trefethen & Embree
(2005, p. 446) conclude that ‘nonnormality is too complex to be summarised in a single
number’. We make use of resolvent bounds to classify non-normality of the linear vortex
dynamics in the frequency domain. While the governing operator is non-normal, it will
be shown that the effective behaviour for vortices depends on the excitation frequency, we
call this selective non-normality (conjecture 4.1, §§ 3 and 4). First studying the linearised
operator L for a generic vortex in § 4.1, we deduce that non-normality should be maximal
for forcing localised about the critical layer (radial location where the phase velocity equals
advection by the mean; Le Dizes 2004, p. 319). Assuming the (parallel) Lamb—Oseen
vortex as a reference state (base-flow model), we confirm this result numerically in §§ 4.2
and 4.4.

The second objective is the corroboration of these results under variation of the
reference flow and the axial wavenumber. For this purpose, we analyse the resolvent for
(parallel) Batchelor and Moore—Saffman vortices in § 5 which constitute approximations
to experimental mean flow (see §2.2). This sequence of reference states serves two
purposes, namely to assess differences between the dynamics about base and mean flows
as motivated above and to evaluate the impact of (weak) axial mean velocity in the vortex
core. We discuss the relation to previous linear studies throughout.

Lastly, results in frequency space are often easier related to experiments than
time-domain analysis. Still, idealising vortex meandering as a monochromatic wave, the
associated frequency in experiments corresponds to an infinity of wavenumber—frequency
pairs in theory by the Doppler relation. Nevertheless, by appeal to our results of selective
non-normality, in § 6 we show how the actually contributing frequency range can be
significantly reduced.

2. Linear receptivity in the resolvent formalism

Let the fluid domain be the entire Euclidean space R*® with cylindrical coordinates
x = (r, 0, z) and corresponding velocities v = (v,, vg, v,). The z coordinate is chosen to
coincide with the axis of mean rotation, » pointing radially outwards and 6 being such that
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{r, 0, 7} yields a right-handed system. The fluid is assumed incompressible with constant,
homogeneous material properties.

All physical quantities are non-dimensionalised on the length scale ry = 2,/vf,, where
to > 0 determines the vortex age and is chosen such that ry :=1 without loss of
generality, and the azimuthal mean velocity at this radius (27ry) "' I := 1. It follows the
circulation-based Reynolds number R := I/(2mv) = v~! (v is the kinematic viscosity).

2.1. Trailing-vortex dynamics as a generalised receptivity problem

The dynamics of trailing vortices in experiments is dominated by low-frequency
displacement waves (vortex meandering). In the intermediate wake (z < 10b, b is the
wingspan; Jacquin et al. 2001, p. 5) destabilising effects from consideration of the
counter-rotating pair are of second order (Crow ~ b~2; Jacquin et al. 2001, p. 17) and
the isolated line vortex is asymptotically stable for parameters of typical aeronautic
applications (Fabre & Jacquin 2004, p. 259). Rather, it appears that the observed dynamics
is due to temporally sustained excitation of the vortex by the surrounding free stream
(as already suggested by Baker et al. 1974, p. 331). This internalisation of external
disturbances is reminiscent of receptivity.

While strictly speaking the classical notion of receptivity applies to the transition
problem and the excitation of instability modes (Morkovin 1988, p. 76), it is used here
to describe the general reaction of a system to initial or temporally sustained external
disturbances (see also Fontane et al. 2008, p. 236). For these reasons, let us refer to the
problem of receptivity in the following generalised sense which is not restricted to laminar
reference states but straightforwardly extends to turbulent mean flows. (This generalised
perception of receptivity is also implicitly understood in McKeon & Sharma 2010, p. 342
and Towne et al. 2018, § 5.1 among others.)

DEFINITION 2.1. The excitation of general perturbations inside the vortex by external
disturbances is called (free-stream) receptivity.

The essential aspect of receptivity according to definition 2.1 is perturbation
internalisation in the sense that external disturbances in the free stream are converted into
internal perturbations inside the vortex. For this excitation to be well defined, we must
partition the fluid domain into a subset V identified with the interior of the vortex and its
complement R*\'V, viz. the free stream.

Trailing-vortex experiments provide considerable evidence that rather rapidly (within
approximately two wing chords ¢ at chord-based Reynolds number R, := U,.c/v ~ 10°;
Devenport et al. 1996, p. 68) the flow develops a coherent vortex in the sense of a
single concentration of streamwise vorticity which is axisymmetric and parallel to leading
order. For definiteness, we define the system boundary as a concentric cylinder at the
vortex-core radius r; = 1.12, corresponding to the location of the maximum azimuthal
velocity of a Gaussian vortex. Similar identification of the vortex core is used by Pradeep
& Hussain (2006, p. 266) and Takahashi, Ishii & Miyazaki (2005, p. 6) for example.
Thus, perturbations with radial support less than r; are interior to the vortex while those
disturbances supported on r > r; are external, viz. in the free stream. It must be stressed
that the notion of internalisation here only serves the purpose to highlight the essential
aspect of receptivity (according to definition 2.1) of being inherently related to a spatial
shift between forcing and response in the (spatio-temporal) fluid domain. In fact, as
discussed in § 3.1, free-stream receptivity may not require actual transport (e.g. of energy)
over the system boundary.


https://doi.org/10.1017/jfm.2020.898
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Trailing vortices are generically associated with an axisymmetric mean velocity of the
form U(r) = Uy(r)ey + U, (r)e,, blending rotational and jet kinematics. Restriction to
parallel vortices is justified by previous studies of Antkowiak (2005, figure 3.18), Heaton,
Nichols & Schmid (2009) and Viola et al. (2016, figure 5), showing numerically that
consideration of base-flow diffusion does not alter considerably transient-growth and
stability properties.

We consider receptivity of Lamb—Oseen, Batchelor and Moore—Saffman vortices. The
motivation for this sequence of reference flows is twofold. Firstly, it gradually shifts
between different conceptual points of view, viz. from base to mean flow. Considering the
Lamb-Oseen vortex as (an approximation to) a base flow yields receptivity of the laminar
state. On the other hand, the Moore—Saffman vortex rather constitutes an approximation to
the mean flow, thus building on the above generalised notion of receptivity in a turbulent
(stochastic) framework. Secondly, the effect of including an axial mean velocity on
free-stream receptivity can be assessed (we assume weak axial mean velocity as discussed
below).

The parallel approximation of the Batchelor vortex (Batchelor 1964) reads (see also
Fabre & Jacquin 2004, p. 242 and Heaton & Peake 2007, p. 285)

1—e™" 5
U =0, Us(N=-—""\ Um)=q'e". 2.1ac)
r

Equation (2.1a—c) is parametrised by the swirl number ¢ # O (the ratio of mean azimuthal
to axial velocity; Jacquin et al. 2001, p. 15). The Lamb—Oseen vortex is formally obtained
as the |g| — oo limit of the Batchelor vortex (2.1a—c).

The parallel approximation of the Batchelor vortex is typically considered as a base flow
in a stability analysis. Nevertheless, Iungo (2017, p. 1785) observe the Batchelor vortex
to fit experimental data well, which is also claimed by Heaton & Peake (2007, p. 272).
Qualitative matching is equally reported in numerical studies of Takahashi et al. (2005,
p.- 5) and Heaton et al. (2009, pp. 142—144). At least, the Batchelor vortex constitutes a
useful prototype, containing the essential aspects of trailing-vortex mean velocity.

The Moore—Saffman vortex is defined by a system of differential equations (Moore
& Saffman 1973) which is solved numerically. From a practical point of view the
important aspect of this model is its parametrisation by the real value n € (0, 1), which
determines the radial decay of the velocity profiles and leads to jet—wake coexistence for
sufficiently small values. Generally, the Moore—Saffman vortex is observed to be a good
fit to the experimental mean velocity. There is considerable experimental evidence that
a representative value is about n 2 0.75 for trailing vortices. For instance, experiments
conducted at ONERA suggest a calibration with n € {0.79, 0.72, 0.80} in the streamwise
range of one to five wingspans (P. Molton, private communication). Similarly, experiments
and implicit large eddy simulation (iILES) of Garcia-Ortiz et al. (2019, figure 6b) report a
range of roughly n € [0.8, 0.95] over a streamwise range of 40 chords and chord Reynolds
number R, ~ 10*. For these representative values of n departure from a Gaussian vortex
is essentially negligible.

2.3. Resolvent for the linear dynamics of a trailing vortex

Let there be given a time-invariant reference state (U, P) of the form U(r) = Uy(r)ey +
U.(r)e; and P = P(r) (the pressure) defining the vortex in the sense of §2.1 by one
of the reference states of § 2.2, subjected to the perturbation (u, p) such that (U + u,
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P + p) solves the Navier—Stokes equations. Consider perturbations in the form of Fourier
modes u(t, r, 0, z) = u(s, r,m, a) exp(i(mf + az) — st) + c.c. whereasm € Z, a € R and
s = s, +1is; € C and equivalently for the pressure. For convenience, parameters in the
Fourier amplitudes will be dropped if unambiguous. Complex frequencies s are used
in the computation of spectra and pseudospectra (defined below) while the response to
temporally sustained forcing assumes purely imaginary values s = iw, v € R. We seek
perturbations with finite kinetic energy, thus endowing the solution space with the inner
product

00 3
(&1, D) := / drr> " wu(r)di(r), (2.2)
0 I=1

where an overbar (-) denotes complex conjugation.

Inserting the decomposition (U + u, P+ p) into the Navier—Stokes equations and
subtracting the equation for the reference flow yields a nonlinear transport equation for the
perturbation. Restriction only to linear terms yields the linearised perturbation transport
equation (Joseph 1976, pp. 7-8). In studying receptivity, we suppose a non-vanishing
inhomogeneity f to drive the system. Introducing the above Fourier ansatz into the
linear perturbation transport equation yields a boundary-value problem on r € [0, co) for
the system of linear ordinary differential equations, parametrised by the wavenumbers
m € Z,a € R and frequency s € C. For m = +1,

i f dit,/drl|o and diiy /dr]y = O, U
(L—sP) (?) = f such that Au / rIOA to/drlo (?) (r— o0) = 0.
p 0 u,(0) = p0) =0, 4

(2.3)
The restriction to perturbations with finite kinetic energy on an unbounded domain

requires faster than algebraic decay as r — 0o (Ash & Khorrami 1995, pp. 339-342).
The linear operators in (2.3) are formally given by the projection

1 0 0 O 1 0 0 L 00 o
01 0 O 01 0 +
P = oo 1 0ol=lo o1 0O 1 0 O0|=:BB 2.4)
0 01 0
00 0 O 0 0 O
and
im2 +iaU, — v (A —r7?) —282 + 2vimr~? 0 d/dr
W, — 2vimr—2 im$2 +ielU, — v (A — r’z) 0 imr~!
L:=
du,/dr 0 im2 +iaU, — vA io
—r~ ! —dydr —imr! —ia 0
2.5)
whereas
e 1d 2 U du,
=—+4+-—— (T) —o? and £ := —9, W, := 2 + ¢ (2.6a—c)
dr?  rdr r r dr

are the Laplace operator of a scalar field, the angular velocity and axial vorticity
of the reference flow, respectively. The radius r. € R for which mean advection
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mS2(r.) + aU,(r.) equals the perturbation frequency w =s; € R is called critical layer
(Le Dizes 2004, p. 319).
Suppose the inverse of (2.3) exists, then the solution formally reads

u(s) = B (L—sP)"'Bf(s) forall se p(L), (2.7)

and the operator-valued one-parameter family s — R(s; L) := B'(L — sP)'B is referred
to as the resolvent (Kato 1980, p. 173). Bounded inversion exists for frequencies which
do not pertain to the spectrum o (L). The subset of the complex plane for which the
resolvent is defined and bounded is called the resolvent set p(L) (Riesz & Sz.-Nagy
1956, § 132). For the asymptotically stable systems considered here iR C p(L) holds and
the resolvent is defined on the entire imaginary axis. The pseudospectrum is defined by
o.(L) := {s e Cl|R(s; )| > e’l} as contours of the resolvent norm (defined in § 3.2) for
fixed values of € > 0 (Trefethen & Embree 2005, p. 31).

The resolvent (2.7) is obtained numerically from finite-element discretisation of (2.3)
and inversion of the corresponding matrix, see the Appendix.

Due to symmetries of the linearised perturbation (2.3) the parameter space can be
reduced. For the Lamb—Oseen vortex it is sufficient to consider m, @ > 0 and w € R (Fabre
et al. 2006, pp. 241-242). Inclusion of an axial velocity component breaks azimuthal
symmetry, making a distinction between positive and negative azimuthal wavenumbers
necessary (Fabre & Jacquin 2004, p. 247; Heaton & Peake 2007, p. 289).

3. Estimation of linear receptivity by analysis of the non-normality

Let A be a formal operator on a Hilbert space (see e.g. Kato 1980, p. 146 for this
terminology) and denote by A" its formal adjoint. Then A is formally normal if the
commutator [-, -] of A and A is equal to zero, i.e. [A, A'] := AA" — ATA =0 (Riesz &
Sz.-Nagy 1956, p. 284; Kato 1980, p. 276).

3.1. Necessity of non-normality for linear free-stream receptivity

Receptivity according to definition 2.1 is intimately linked to the excitation of vortex-core
perturbations by spatially remote disturbances. For receptivity of vortices to free-stream
disturbances this implies a radial perturbation shift in order to internalise external
disturbances. Now, if the linear receptivity problem (2.7) is associated with a normal

operator R(iw; L) any forcing-response pair { f (w), u(w)} should have the same radial
support. On the other hand, Trefethen & Embree (2005, p. 10) states that resonance of
non-normal systems is the fundamental principle in receptivity. Indeed, the following may
be suggested (see also Roy & Subramanian 2014, p. 405).

CONIJECTURE 3.1. Let perturbations have finite kinetic energy, then non-normality of
R(iw; L) is necessary for the linear model of vortex receptivity to free-stream disturbances.

Assuming a linear dynamics, vortices are receptive to free-stream disturbances by
two distinct mechanisms, namely through (i) generalised eigenvectors pertaining to the
continuous spectrum ¢ °(L) (defined in §4.2) and (ii) critical-layer forcing discussed
in §§4.2 and 4.3. Efficiency of the former is typically significantly diminished due to
shear sheltering such that disturbances only slightly penetrate the core (Jacobs & Durbin
1998). In fact, the penetration mechanism is viscous (no penetration in the inviscid limit;
Jacobs & Durbin 1998, p. 2010) and should not be significant for high Reynolds numbers
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in experiments. Restriction to perturbations with finite kinetic energy in conjecture 3.1
excludes receptivity associated with generalised eigenvectors pertaining to o >°(L).

There is considerable evidence that a vortex essentially constitutes a material subset
of the fluid domain which does not exchange fluid particles with its surrounding (Haller
et al. 2016). Therefore, perturbation-energy amplification in the core must preclude
significant mass or momentum transport, e.g. through intermittent vorticity stripping or
ejection, as proposed by Bandyopadhyay et al. (1991, pp. 1629, 1633). Indeed, strong
ambient turbulence intensity is required to enable exchange of core fluid with the free
stream (Marshall & Beninati 2005, pp. 231-233). For low to moderate levels, numerical
experiments indicate that coiled vorticity filaments in the free stream cannot penetrate into
the core (Jacobs & Durbin 1998, p. 2006; Takahashi et al. 2005, p. 12). Low turbulence
intensities in experiments therefore call for receptivity mechanisms which excite core
perturbations without significant mass transport. The proposed receptivity mechanism by
non-normality does not require physical exchange of fluid, hence, constitutes a candidate
in moderate-turbulence regimes.

3.2. Canonical decomposition and bounds on the resolvent

The present study uses canonical decomposition of the resolvent, cf. (2.7). Let R(s; L) be a
compact linear operator and n > 0. Then, for all admissible forcing fields f, the expansion

i(s) = R(s: DF(s) = D m@u(s) (f(8). f (), s € p(b), 3.1)
k=1

converges, whereas orthogonality (f,(s), f,(s)) = (u(s), u;(s)) = &y holds and ¢, (s) >
M2 (s) > -+ > u,(s) > 0 (Riesz & Sz.-Nagy 1956, p. 203; Kato 1980, pp. 160-161 and
260-262). The pair {u(s), f(s)} defines a hierarchy of rank-1 operators and pu(s) is
referred to as singular value. From a physics point of view, each pair defines the radial
pattern of the kth-optimal response u;(s) to forcing f,(s). We call f,(s), f,(s) forcing
and response structures, respectively. The respective singular values p;(s) signify the
kth-optimal energy amplifications and the leading singular value is identical to the norm of
the resolvent 13 (s) = ||R(s; L)||*> which can be interpreted as the maximum amplification
obtained for all admissible forcing fields (Riesz & Sz.-Nagy 1956, p. 149).

The canonical decomposition (3.1) is inherently related to the respectively self-adjoint
eigenvalue problems (Kato 1980, p. 261)

R*Rfk = ,uifk and RR'u, = uiuk with u;, = M,{_IRfk, i =0. 3.2)

If R(s;L) is normal the two eigenvalue problems can be identified, implying that
forcing and response are structurally identical. By definition 2.1, receptivity relies on
perturbation internalisation, hence, forcing and response structures must have different
spatial support. This is possible if the resolvent is non-normal; cf. conjecture 3.1. The
degree of non-normality can be estimated from bounds on the resolvent norm.

Let¢(L):=cl{s € C|s=(q, PLq), g=(u, p)" such that div u = divB'Lg = 0, ||u| = 1}
be the closure clf-} of the numerical range (Kato 1980, p. 267; Gustafson & Rao 1997, p. 1).
Then, for all s € p(L) which are in the complement of ¢ (L),

m <|IR(s; Dl < m, (3.3)

where d(s, 0 (L)) := inf .1y |s — 4| > 0 defines the distance of s € p(L) from the closest
element in the spectrum and analogously for d(s, ¢ (L)) with s & ¢ (L) (Kato 1980,
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thereom 3.2; Gustafson & Rao 1997, (4.6)—(7) and lemma 6.1-4). Equality with the lower
bound holds in (3.3) if the resolvent is normal (Kato 1980, pp. 272-277).

From a physical point of view, the left-hand side of (3.3) describes the ‘classical’
resonance behaviour of the equivalent normal operator (solely determined by its spectrum)
as the excitation frequency s differs from elements of the spectrum (Arnol’d 1992,
p- 235). In contrast, non-normal operators are principally amenable to significant
amplification even far from the spectrum (Trefethen & Embree 2005, p. 10). Contours
of the resolvent norm (i.e. the pseudospectrum) therefore represent generalised resonance
(pseudo-resonance) of the system. Comparison of the graphs of the lower bound with the
resolvent norm along the imaginary axis (s = iw) therefore reveals frequency ranges where
the resolvent is non-normal and thus pseudo-resonance outweighs ‘classical’ resonance
(cf. figure 3).

The right-hand side of (3.3), defining the distance to the numerical range ¢ (L), is
physically not associated with resonance but related to the capacity of energy growth
which we use in §4.1 to derive the location of the instantaneously most amplified
perturbation. Despite identical structure of the two bounds in (3.3), it should be
emphasised that we cannot use the upper bound to draw a meaningful graph (similar
to figure 3a) which bounds the pseudo-resonance ||R(s = iw; L)|| from above along the
imaginary axis. Rather, the intention is to gain insight into non-normality from patterns
the linear operator L defines in the complex plane. The smallest set characterising L
(sufficient for the dynamics of normal operators) is the spectrum o (L) while the numerical
range ¢ (L) is the largest set determining dynamics. Pseudospectra o, (L) C C, determining
the transient dynamics, continuously fill the gap whereas lim,_.o.(L) <> o (L) and
lim,_,» 0.(L) <> ¢ (L) (Gustafson & Rao 1997, p. 106; Trefethen & Embree 2005, p. 172).
We expect that resolvent non-normality can be inferred from differences in these sets.

4. Selective non-normality of linear vortex dynamics

Hill (1995, p. 183) noted that receptivity is determined by geometry, physical location
and frequency of the source as well as the reference-flow characteristics. Indeed,
wind-tunnel and numerical experiments provide evidence that vortices favour a response at
distinguished frequencies and to particular disturbance patterns (e.g. Marshall & Beninati
2005; Bailey et al. 2018). Adopting the linear model developed in § 2.3 the last of Hill’s
points is obvious since the formal operator is essentially determined by the reference-flow
profile as discussed below. Further assessment shows that the reference flow also imposes a
preferred position and frequency for disturbances contributing to free-stream receptivity;
we find that vortices are generally most susceptible to the archetypal forcing pattern of
coiled filaments aligned with the critical layer. As stated in conjecture 3.1 non-normality
is a necessary requirement for linear receptivity to free-stream turbulence and hence to
quantify the above aspects; we thus conclude the main result of this section:

CONJECTURE 4.1. Linear perturbation dynamics about axisymmetric vortices satisfying
U(r) = Uy(r)es + U,(r)e, is governed by an w-selectively non-normal linear operator. In
the inviscid limit, non-normality is maximised for critical-layer perturbations.

4.1. Analysis of the formal operator and its numerical range

To the best of our knowledge no analytic expression of the resolvent for three-dimensional
inhomogeneous perturbations about smooth viscous vortices exists today (e.g. Ash &
Khorrami 1995, p. 321; Roy & Subramanian 2014, p. 439). However, it can be shown that
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normality of a linear operator implies normality of its resolvent (Kato 1980, pp. 276-277)
so that we proceed by analysing L, expecting similar properties to hold for R(iw; L), too.

In order to attribute non-normality a physical significance, the linear operator in (2.3) is
written as the sum

L=Vy+VU-+A, 4.1

comprising contributions from advection V 7, mean-velocity gradient VU and the Stokes
operator A (governing the Stokes system; Sohr 2001, § 4), respectively. Pressure gradient
and continuity equation are contained in the Stokes operator by definition.

The formal adjoint of (4.1) is defined through the Lagrange identity (Friedman 1962,
p. 148) and reads

L=V, + (VU +A = -V, + (VU + A (4.2)

Comparing (4.1) and (4.2) element-wise, it is evident that the Stokes operator A is
(formally) self-adjoint and hence normal. Taken independently, the advection operator V¢
is formally skew—adjoint, thus also normal. (A skew—adjoint operator generates a unitary
(inner-product preserving) propagator, viz. T(1)" = T(t)~! for all ¢ (Engel & Nagel 2000,
p- 20).) While the dynamics on unbounded or periodic fluid domains (in the direction
of the mean flow) seems to promote actual self-adjointness, realisations on bounded
domains are associated with (inflow—outflow) boundary conditions which break the formal
behaviour. In terms of physics, this latter advective non-normality known in the global
approach manifests as the spatial separation (in z) of the direct and adjoint eigenfunctions
(Sipp et al. 2010, p. 7). From the three terms in (4.1) only the velocity-gradient operator
VU is inherently non-normal in isolation.

Since the Stokes operator is normal (independently) and increasing viscosity
consistently found to dampen non-normal dynamics, non-normality of L should result
from the inviscid advection and mean-velocity-gradient operators (Antkowiak 2005, p. 3;
Pradeep & Hussain 2006, p. 279; Heaton & Peake 2007, p. 278). It should be noted
though that the sum of normal operators is not necessarily normal, as shown e.g. for the
advection—diffusion operator by Reddy & Trefethen (1994, p. 1647).

Neglecting Ain (4.1) and (4.2), formal non-normality of the advection-velocity-gradient
operator is associated with the commutator [L,L'] — [V, 28]+ [VU, (VU)]
(recalling that advection is formally normal) where S := (VU + (VU)")/2 denotes the
Hermitian part of the velocity gradient. Explicitly,

—(W. +22)rd2/dr — (dU./dr)? 0 0
(L, L] — 0 (W, +22)rd2/dr  £2dU./dr
0 QdU./dr (dU./dr)?

(4.3)

Writing (W, + 202)rd$2 /dr = W2 — (2£2)* readily shows that the dynamics is formally
normal if the reference flow is that of a rigid-body rotation and translation (i.e. W, =
282 and U, = const.). In other words, non-normality is unaffected by the superposition of
rotation or translation as a rigid body and, in particular, indistinguishable for observers
being in rigid-body rotation or translation to one another, e.g. between aeroplane cruise
condition and laboratory experiment.

To get a deeper understanding of the resolvent non-normality, let us now consider the
upper bound in (3.3), which, as we re-emphasise, is not amenable to the same physical
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Contraction of equivalent

normal operator E

P(L)

o(L), L=L +iL,

FIGURE 1. Schematic comparison of the dissipative dynamics (contraction) generated by the
equivalent normal operator (i.e. solely defined by its spectrum o (L) and its convex hull
convo (L)) with the actual dynamics (determined by the numerical range ¢ (L)) showing that
non-normality is associated with the numerical abscissa (L) (see (4.5)). The unstable half-plane
is visualised by grey shading.

and graphical interpretation as the lower bound in terms of resonance but rather the
intention is the assessment of non-normality. In fact, the upper bound merely means that
the pseudospectrum o, (L) cannot be much larger than the numerical range ¢ (L) (Trefethen
& Embree 2005, p. 169). Figure 1 shows a qualitative sketch illustrating the principal
terminology used thereafter.

We write L = L, + i L; with the Hermitian part L, := (L + L")/2 and the skew-Hermitian
part L; := (L — L")/(2i), respectively. This decomposition implies the inclusion the
spectrum in the numerical range, o (L) C ¢ (L, +1L;) C ¢(L,) +1i¢(L;), which is shown
in figure 1 (Kato 1980, pp. 309-310; Gustafson & Rao 1997, pp. 6, 103). From a
physical point of view, the Hermitian part L, = S + A determines energy growth while the
skew-Hermitian part L; = —iVy + W (VU = S+ i W where W is the skew-Hermitian
mean-vorticity operator) is associated with conservative redistribution (cf. also the remark
in the context of Vy above). In agreement, Pradeep & Hussain (2006, p. 264) conclude
that mean vorticity promotes vortex waves which do not contribute to energy growth.
A priori this does not tell us anything about the origin of non-normality, however, our
interest in energy amplification suggests closer examination of ¢ (L,).

This reasoning is reflected in the Hille—Yosida generation theorem (Engel & Nagel 2000,
pp. 73-76). Let ¢ € R be a constant (which we identify with the numerical abscissa 1 (L)
below), then the propagator T () is a pseudo-contraction if and only if

1
ITOI <e” Yi>=0<% [|R(s DI < . s> (4.4)

r

By definition, the associated generator L is contractive if its numerical range does
not protrude into the unstable half-plane while it is pseudo-contractive if it becomes
contractive upon a constant shift L — ¢ (Kato 1980, pp. 278-279; Engel & Nagel 2000,
p- 75). Physically, a contractive propagator represents dissipation (of energy; ¢ =0 =
IT()] < 1) whereas a pseudo-contraction is dissipative beyond a certain threshold c.
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If L was a normal operator, the numerical range would be the convex hull of its spectrum
¢ (L) = conv o (L) as sketched in figure 1 (Gustafson & Rao 1997, theorem 1.4—4). Since
the considered vortices are asymptotically stable this would imply ¢ = 0 in (4.4) and
the equivalent normal operator would describe pure dissipation. The present deviation
from this equivalent normal dynamics is a consequence of non-normality and in a sense
proportional to the protrusion of the numerical range into the unstable half-plane. The
maximum protrusion (recall that divu = 0)

§O = sup 5, = sup Lt gy, (7 VAW

4.5)
sep(L) u#0 [|2]? u#£0 [ 2e]|?

is called the numerical abscissa (Trefethen & Embree 2005, p. 174). The operator S — vA
in (4.5) is self-adjoint and the numerical abscissa is identical to its largest eigenvalue. Since
the viscous term is necessarily negative (Sohr 2001, p. 101) and by the above remarks on
the damping effect of viscosity for the non-normal dynamics, we assume an inviscid fluid
in the following.

In terms of physics, the numerical abscissa represents the maximum instantaneous
energy growth. Let v =0 in (4.5), then the momentary change of integral energy is
governed by the inviscid Reynolds—Orr equation for all # > 0 (Joseph 1976, p. 10)

] 0 rd2/dr dU,/dr
= (u(1), 5 rd$§2 /dr 0 0 u(t), |lu@©@]| =1, (4.6)
du,/dr 0 0

d Ju@)]?
de 2

assuming the generic reference flow U(r) = Uy(r)e, + U, (r)e,. Searching for the
maximum of (4.6), the right-hand side is seen to coincide with the definition of the
numerical abscissa (4.5) in the limit as t — 0. This is equivalent to d|| T(t — 0)||/dt =
n(L) where the numerical abscissa is the largest eigenvalue of S for an inviscid fluid
(see also Trefethen & Embree 2005, theorem 17.4). Comparing (4.6) with the commutator
(4.3) confirms that energy growth in an asymptotically stable system is possible only for
reference states which are not in rigid-body motion (cf. also Joseph 1976, p. 10). The actual
maximum energy-amplification capacity serves as a measure to assess non-normality.
The Hermitian part of the velocity gradient is self-adjoint, hence, the spectral theorem

guarantees existence of real eigenvalues 4, =0, 4, 3:=+1= :I:\/ (rd$2 /dr)?2+(dU,/dr)?/2
and mutually orthogonal eigenvectors

0 +24
vy =|—-dU/dr|, wvy,3;=|rd2/dr]. (4.7a,b)
rd$2 /dr dU,/dr

Physically, the eigenvectors (4.7a,b) span three orthogonal eigenspaces for which
the production bilinear form in (4.6) vanishes (zero strain) and is negative/positive,
respectively. The maximum eigenvalue corresponds to the numerical abscissa which is
attained if the perturbation projects identically on the associated eigenvector vs.
Eigenvectors v, 3 only differ in the sign of the radial component while their projections
onto a cylinder of radius r, v := v, 3 — e.(e,, v,.3) say, are identical and are conveniently
represented in terms of their streamlines rdf /vy = dz/v.. On the other hand, an analogous
representation on the cylinder holds for arbitrary perturbations z and the streamlines
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take on the form of helices due to the assumed symmetry. The pitch of the perturbation
streamlines (streamwise increment dz per azimuthal increment rdf) defines the angle

1dz m . 1dz 1dU./dr
=—— while —-— =

= = - (4.8)
rdo ro rdd  rdr$2/dr

is the streamline angle of the eigenvector projection. In order that perturbation and
eigenvector align, it is necessary that the above angles match, i.e.

m 1dU;/dr

ra r dr$2/dr

d
& a(m.Q +aU,) =04 m2 +alU, = v = const. 4.9)

which is precisely the critical-layer condition (cf. § 2.3). Perturbation alignment on the
cylinder is necessary but not sufficient for energy growth. It is in fact the radial component
41 in (4.7a,b) that decides whether energy is amplified or attenuated. The situation
of energy attenuation through critical-layer perturbations is known as Landau damping
(Antkowiak 2005, p. 13; Fabre et al. 2006, p. 255).

The importance of stationary values of m$2(r) + aU,(r) — w for inviscid instability
was previously shown by Leibovich & Stewartson (1983) (see also Ash & Khorrami
1995, p. 332). Approximate alignment of viscous and inviscid instability modes with
the principal eigenvector was shown by Abid (2008, p. 28) for the Batchelor vortex and
increases with ¢ < 1 (see (2.1a—c)). Nevertheless, while perturbation alignment has been
identified as the condition for maximum energy growth before, it seems that equivalence
with the critical-layer condition (4.9) has not been stated explicitly, yet. Moreover,
we are not aware of any previous result relating critical-layer perturbations directly to
non-normality.

In order to quantify non-normality for Batchelor (Lamb—Oseen) and Moore—Saffman
vortices, figure 2 shows graphs of the mean profiles U,(r), dU,(r)/dr, £2(r) and W_(r).

With regards to the axial mean velocity and its gradient, shown in figure 2(a) for the
Batchelor and Moore—Saffman vortex, the most essential aspect for the present work is
the substantial localisation in the vortex core. For the Batchelor vortex (2.1a—c), Uf is
exponentially confined to the core. For the Moore—Saffman vortex UM (r) ~ (n~' — 1)
r~" as r — oo holds by definition (Moore & Saffman 1973, (3.5)). Nevertheless, jet—wake
coexistence renders this asymptotic irrelevant for the practically pertinent behaviour in
the core vicinity where the Moore—Saffman vortex behaves effectively identically to the
Batchelor vortex. This substantial confinement of the axial mean velocity is in agreement
with its importance for the discrete spectrum (discussed in § 4.2) and suggests negligible
pertinence for disturbances located in the free stream. The critical-layer location for peak
amplification of the Batchelor (Lamb—Oseen) vortex (m = 1, w = 0.1, ¢ = 4) is indicated
by a straight line at . &  where no measurable effect of the axial mean flow is to be
expected any more.

The second direct source of non-normality is by differential mean angular velocity
§2 #const. and mean streamwise vorticity W,, shown in figure 2(b). Vorticity is
again substantially localised in the core, obeying an exponential law for the Batchelor
(Lamb-Oseen) vortex (2.1a—c) and qualitatively similar behaviour for the Moore—Saffman
vortex. From the characteristic reference-flow profiles shown in figure 2, angular velocity
§2 is the only quantity which is not (almost) exponentially decreasing. As a matter of fact,
(r) ~ r""lasr — oo holds for all models, whereas n = 1 corresponds to the Batchelor
(Lamb-Oseen) vortex (Moore & Saffman 1973, (3.5)) and n = 0.75 is a lower bound for
the Moore—Saffman vortex fitting experimental trailing vortices (see § 2.2).
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(@ 10 (b) 2.5

FIGURE 2. Comparison of radial mean-flow profiles for Batchelor (B) and Moore—Saffman
(MS) vortices (n = 0.75). Axial velocity and mean-shear profiles in (a) show (at least visually)
exponential localisation in the core region, restricting significant contribution to » < 2. Mean
angular velocity §2 and axial vorticity W, in (b) show essentially identical behaviour for the two
models, the latter being also strongly localised. For reference the vortex core is shown in grey
shading as well as the critical layer r, of the Lamb—Oseen vortex for o = 0.1, m = 1.

We conclude that receptivity to the free stream should be largely independent of the
vortex model and subsequent discussion will focus on the Lamb—Oseen vortex. Variation
of the reference flow will be further discussed in § 5.

4.2. Selective non-normality of the Lamb—Oseen vortex

According to the left-hand side of (3.3), the difference between the resolvent norm and
the reciprocal of the shortest distance of any given frequency iw € p(L) to the spectrum
is a local measure for non-normality. Comparing graphs of these two functions we
find vortices to be effectively non-normal only on a narrow frequency band (termed
(w-)selective non-normality).

All results of this section are obtained for the Lamb—Oseen vortex and R, = 5000,
m=1, « =1.55 as in Guo & Sun (2011, p. 3191). By (3.1) a compact resolvent can
be expanded in a convergent series of rank-1 operators, weighted by the associated
singular value. We find the singular values to be rapidly decreasing for all considered
frequencies, thus, restricting to leading-order structures henceforth (constituting the rank-1
approximation of the resolvent by (3.1)). It should be noted though that this is not true for
steady perturbations (w A 0) due to the continuous spectrum o °(L) introduced below.

Figure 3(b) shows nested isocontours of the pseudospectrum in the complex s-plane
for values of € = ||R(s; L)||~! € {10" : n = —1, —1.5, =2, —=2.5, =3, —4, —5}, effectively
approaching the spectrum shown by dots (for details on pseudospectra see e.g. Trefethen &
Embree 2005). The particular case of s = iw is shown in figure 3(a) and will be discussed
thereafter.
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FIGURE 3. Comparison of the resolvent norm for the Lamb—Oseen vortex (m = 1, o = 1.55,
Rr =5000) with the reciprocal distance in (a) assuming a harmonic ansatz w =s; € R
and s, = 0, revealing w-selective non-normality approximately for 0 < @ < 1. Distinction of
dynamical regimes of the resolvent: N signifying a nominally normal operator and {F, R, C}
being associated with non-normality due to critical-layer singularity. The latter distinguishes
the dynamics essentially situated in the far field (F) and core (C), respectively, while only
the intermediate range critical-layer forcing (R) is associated with receptivity. Solid dots
mark frequencies of forcing/response structures shown in figure 4. Numbering refers to the
(pseudo)spectrum in (b), showing nested isocontours of the resolvent norm and the spectrum
(solid dots) in the complex s-plane.

It should be noted that the spectrum is organised into the same branching structure as the
spectrum shown in Fabre er al. (2006, figure 7) for the Lamb—Oseen vortex with m = 1,
o = 3 and R = 1000. Even more, qualitatively the same pseudospectrum and eigenvalue
scattering is reported in Mao & Sherwin (2011, p. 8) for the Batchelor vortex with m = 0,
o = 10, R ~ 2000 and g = 3. These findings provide further support for conjecture 5.1
that the linear vortex dynamics is generic as discussed in § 5.

The spectrum of the linear operator L governing the three-dimensional perturbation
dynamics about vortices comprises contributions from discrete eigenvalues o,(L) as well
as a (semi-infinite) continuous spectrum ¢>°(L) due to spatial unboundedness. The latter
is argued to be o>°(L) = {s =5, +is; € Cla®v < s, < 00, s5; = 0} (Fabre et al. 2006,
appendix A; Mao & Sherwin 2011, p. 14 and appendix B) and can be anticipated
from eigenvalue and contour clustering along the real axis in figure 3(b). Receptivity
of the Batchelor vortex to axisymmetric disturbances has previously been related to
long-wavelength generalised eigenmodes pertaining to ¢>°(L) which penetrate into the
core (Mao & Sherwin 2011, pp. 1-10 and figure 3). We exclude this mechanism by
restricting to finite kinetic energy solutions and rather emphasise remote receptivity
without mass transport across the system boundary (cf. discussion at the end of §2.1).
Rather 0>°(L) is an artefact of the mathematical model of an unbounded domain and the


https://doi.org/10.1017/jfm.2020.898
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

associated perturbations are considered irrelevant here (cf. also Heaton & Peake 2007,
pp- 275-295).

Considering an inviscid fluid, an additional inviscid continuous spectrum ¢? = {s €
C|si = w=m82(r), s, = 0} exists as a consequence of a critical-layer singularity of the
homogeneous problem (Le Dizes 2004, p. 319; Roy & Subramanian 2014, §3.2). For
non-vanishing viscosity it degenerates to a discrete spectrum of a large number of stable
discrete modes (Heaton & Peake 2007, p. 282) which are algebraically localised in the
core vicinity, referred to as potential modes by Mao & Sherwin (2011, p. 2). This viscous
remnant of the inviscid continuous spectrum, denoted o (L), is observed as the apparently
random eigenvalue scattering in the rectangular central part of figure 3(b). Small values
and shape of the (¢ = 1073)-pseudospectrum (innermost thick contour in figure 3b) led
Mao & Sherwin (2011, p. 10) to speculate that the spectrum in fact remains continuous.

The distinguished situation of neutral harmonic perturbations corresponds to a cut at
s; = w, s, = 0 which yields the resolvent norm shown in figure 3(a) in comparison with
the graph of the reciprocal distance. By (3.3) we observe the resolvent to be selectively
non-normal in a frequency band of roughly 0 < @ <1 while it is effectively normal
outside this range. Considering the associated perturbation structures we will show in
§ 4.3 that the non-normality frequency interval is essentially correlated with the critical
layer, as already anticipated from analysis of the operator structure in § 4.1.

Applying the same numbering in figure 3(a,b) indicates that peaks in the resolvent norm
match with the least damped elements of the spectrum. Furthermore, the response modes
associated with peaks 1, 4 and 5 belong to the D-, V- and C-families in the classification
of Fabre etr al. (2006) and are equivalent to the modes obtained from the eigenvalue
problem for L. The associated peak forcing structures are identical to the eigenmodes of the
adjoint L. A thorough classification of perturbations in the (w, a)-plane is postponed to
§ 5 (cf. also figures 7-9).

These observations suggest that perturbations for which roughly o ¢ [0, 1] the
dynamics is governed by an effectively normal operator and hence irrelevant for
receptivity according to definition 2.1 by conjecture 3.1. From a physical standpoint,
the dynamic regimes labelled N in figure 3(a) constitute classical resonance between
congruent perturbation patterns, e.g. f,(w;) = u;(w;) where [ € {1, 4, 5} labels the peaks.
Amplification away from the singularity is simply d~'(iw, {®;}), @ € R, in these cases
(cf. (3.3)).

In order to gain further insight into the mechanisms of free-stream receptivity, let
us now turn to the perturbation structures. Typical patterns of forcing-response pairs
{u;(w), f,(w)} for gradually increasing frequencies w € {0.05,0.1, 0.5, 0.9} are shown
in the top and bottom row of figure 4. Contours and colouring represent the streamwise
component of the curl of the forcing and response structures. Magnitudes are understood
to be qualitative and not uniform across panels to emphasise the relative locations and
perturbation patterns. For this purpose a solid circle of radius r; = 1.12 indicates the
vortex boundary, revealing that forcing structures are gradually located closer to the
core as the frequency is increased. The forcing structure crosses the vortex boundary at
a frequency of w ~ 0.5 and hence disqualifies perturbations from w = 0.6 (say) from
contributing to free-stream receptivity as defined in definition 2.1 for the absence of
radial transport, despite local non-normality. Associated forcing-response pairs are not
congruent but systematically located in the vortex core and, for this reason, are referred to
as C-regime, cf. figure 3(a).

Significant amplification is observed for quasi-steady excitation w ~ 0 in figure 3(a).
Considering the sequence w \ 0, the associated forcing and response structures are
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FIGURE 4. Streamwise component of rot f(w) and rotu;(w) for w € {0.05,0.1, 0.5, 0.9}
(solid dots in figure 3a) in (a—d) and (e—h), respectively, for the Lamb—Oseen vortex (m = 1,
o = 1.55, R = 5000). Positive and negative values correspond to blue and red colouring, the
scale not being chosen uniformly across different panels. The solid circle of radius r; = 1.12
indicates the vortex-core boundary.

found to be located at increasingly large radii as shown in figure 4. The most important
implication for receptivity is that below a certain frequency forcing and response structures
take on the form of localised wave packets of comparable shape that are both far outside
the vortex core, labelled F-regime in figure 3(a). This kind of forcing, although causing
large amplification, is unable to cause (at least directly) core perturbations. For this reason
it is assumed to be irrelevant for linear receptivity. The two cases of F- and C-regimes
underline that by conjecture 3.1 non-normality is necessary but not sufficient, the actual
range of free-stream receptivity (R-regime) is indicated in figure 3. This considerable
restriction of the receptivity frequency band suggests that vortices behave like strongly
selective filters to free-stream turbulence (see also Antkowiak 2005, p. 72).

4.3. Critical-layer alignment of the forcing structures

As shown in §§ 4.1 and 4.2, the range of effective non-normality is essentially correlated
with the inviscid continuous spectrum. The inviscid nature of the linear non-normal
dynamics and the retained importance of the singular continuous spectrum even for a
viscous fluid (cf. also Heaton & Peake 2007, pp. 278-279, 287) is underscored by tracking
the radial location of the forcing structures as a function of frequency, closely following
the critical layer, in figure 5.

In § 2.3 we recalled the definition of the critical layer as the radial location where mean
advection equals perturbation propagation. Using the spatio-temporal Fourier ansatz of
§ 2.3 the material-derivative operator (including streamwise transport for now) becomes a
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FIGURE 5. Archetypal critical-layer perturbations of the Lamb—Oseen vortex for o = 1.55,
m = 1, Rr = 5000. Candidate wave frequencies w in the critical layer (red line) and modulus of
the streamwise component of rot f' (w) for selected forcing structures (thick black graphs) being
centred around the critical layer and getting sharper as w increases (as they approach the core)
in (a). Prototype of the critical-layer forcing-response pair at @ = 0.1 showing the perturbation
shift from the critical layer into the vortex core in (b). The shaded region signifying the vortex
core delimited by r; = 1.12 in panels (a,b).

multiplication operator associated with the symbol

ad a a
Y + .Q(r)a—e + UZ(r)B_Z — m82(r) +aU,(r) — . (4.10)
Discussion in § 2.2 suggests that U, is (nearly) exponentially localised in the core such that
for disturbances in the free stream

m82(r) +alU.(r) —o~mS2(r) — o 4.11)

and receptivity to critical-layer forcing should be essentially independent from the
axial mean velocity in practice. Thus, Lamb—Oseen, Batchelor and Moore—Saffman
vortices are expected to have essentially identical critical-layer dynamics with regards to
receptivity. Let m = 1, the critical layer of the Lamb—Oseen vortex becomes the locus {r €
(0, 00)|82(r) — w = 0}, shown in figure 5(a) as a thick red line. The associated frequency
range for critical-layer forcing is somewhat smaller than the range of non-normality shown
in figure 3(a). Deviations from the Lamb—Oseen critical layer in figure 5(a) due to
axial mean velocity (Batchelor or Moore—Saffman vortex) are essentially restricted to the
core, unless @ >> 0 or ¢ — 0. Both situations are excluded here since the trailing-vortex
dynamics is of long wavelength (meandering) and dominated by mean rotation rather than
axial velocity (i.e. jet behaviour).

Forcing structures in figure 5(a) are indeed systematically localised about the critical
layer which strongly suggests a relation to the inviscid continuous spectrum and
critical-layer forcing as the essential mechanism for receptivity. Archetypal free-stream
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FIGURE 6. Real and imaginary part of the leading-order forcing and response structures (hollow
red and solid black symbols, respectively) for the Lamb—Oseen vortex (m = 1, R = 5000) at
w=0.1 and o € {0, 1, 2, 3} in comparison with the archetype at « = 1.55 (thick line; cf. also
figure 5). The characteristic forcing structures have essentially identical radial patterns in the
vicinity of the critical layer at r. & m. Resonantly excited forcing structures show comparable
behaviour with spatial complexity increasing with «.

receptivity is associated with the characteristic forcing-response patterns displayed in
figure 5(b), showing the modulus of the streamwise curl component in figure 4 for
o = 0.1. The most important aspect qualifying this forcing-response pair as a candidate
for free-stream receptivity is the fact that forcing and response structures have (almost)
disjoint radial support, showing that vortices are susceptible to disturbances which do not
physically penetrate the core.

The receptivity prototype shown in figures 4 for = 0.1 and 5(b), i.e. coiled forcing
filaments in the critical layer resonantly exciting a core bending wave, is analogous to
findings in transient-growth studies (Antkowiak & Brancher 2004; Pradeep & Hussain
2006). Its importance for receptivity to sustained (stochastic) forcing has been pointed
out previously by Fontane et al. (2008, p. 250) who speculated that it might constitute
a potential mechanism for vortex meandering (see also Viola et al. 2016, p. 545). While
these two approaches formally discuss solutions to (2.3) in the time domain, the resolvent
provides an analysis in frequency space (cf. (1.1)-(1.2) in § 1). All three approaches are
mathematically related since the resolvent is the Laplace transform of the propagator
(cf. § 1). All linear studies are complementary and analysis in frequency space (as opposed
to time domain) has the same principal advantages and inconveniences as in the analysis
of a time signal, for example. Specifically, it identifies those frequencies which contribute
most to complex temporal dynamics (such as vortex meandering). As such, it is the
natural framework for receptivity, characterising the vortex as a selective filter with
frequency-dependent susceptibility.
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FIGURE 7. Resolvent norm of the Batchelor vortex in the (o, w)-plane for R = 6000 and g = 4
showing (thin) nested contours for amplification levels {10" : n = 0.5, 1.0, 1.5, ..., 4.5} peaking
at the thick lines, comparing m = —1 (a) and m = 1 (b). Superposition of the least damped
eigenvalues obtained from solution of the eigenvalue problem (thick lines) reveals alignment
with the peaks of the resolvent norm. Grey shading measures effective local non-normality
defined by logy [|Rm,«(w; Dl/d(®, om.q (L))" € [0, 00), a € [0, 3], the lower bound being
perfect local normality (white). Non-normality happens to be essentially correlated with the
possibility of having critical-layer forcing. Inclined graphs D = D(S,,) indicate the loci of
candidate (w, a)-pairs for the experimental meandering frequency S, (from Bailey et al. 2018,
figure 7a) obtained from the Doppler relation.

4.4, Variation of the axial wavenumber

So far, (arbitrarily) fixing o = 1.55 we showed that vortices are receptive in a narrow
frequency band to a particular disturbance pattern localised in a certain radial range of the
free stream. Despite this selectivity in w and r, we will provide evidence that receptivity
is largely insensitive to variations in the axial wavelength. To illustrate that the choice of
o is not essential for values on the considered interval, figure 6 shows the variation of
forcing-response pairs taken for o € {0, 1, 2, 3} keeping @ = 0.1 = const. in comparison
with the receptivity prototype at o = 1.55 (thick line). Apparently, forcing structures
(red lines, hollow symbols) are almost indistinguishable for all cases and localised about
the critical layer. The excited responses (black lines, solid symbols of same shape) all
have radially disjoint support and are localised in the core (indicated by grey shading).
Nevertheless, the complexity of the response, measured in terms of its roots, say, is seen
to increase with the axial wavenumber.

This finding provides evidence for the archetypal receptivity structures shown in
figure 5(b) existing in principle over the considered range of wavenumbers irrespective
whether the resolvent norm peaks or not and further underscores the generality of the
mechanism. It would appear that our conclusion is consistent with Antkowiak (2005, figure
3.26), yet contrary to previous statements that receptivity characteristics depend on « (e.g.
Fontane et al. 2008, p. 245). Further corroboration of insensitivity to variations in o will
be presented in § 5 when discussing resolvent-norm surfaces over (w, «) in figure 7.

The observed selectivity in w and r but not in « is consistent with the matching of
critical layers for all vortex models discussed in § 4.3.
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5. Robustness of linear vortex receptivity

It is well known that a sufficiently strong jet component in the core is necessary to
destabilise an isolated unstrained vortex. This fact suggests that linear stability (i.e. the
discrete spectrum) quite crucially depends on the precise vortex structure. In contrast,
receptivity according to definition 2.1 is rather insensitive to major changes in the reference
flow as will be affirmed henceforth by comparing different vortex models. We believe that
this makes sustained forcing a better candidate to explain the trailing-vortex dynamics
which is found to obey universal characteristics, too.

Assessment of Lamb—Oseen, Batchelor and Moore—Saffman vortices as reference-flow
models suggests the following generality conjecture which will be detailed thereafter.

CONJECTURE 5.1. Receptivity of a trailing vortex to free-stream disturbances (as defined
in § 2.1) in the framework of § 2.3 is generic for the reference flows introduced in § 2.2.

Results for the Batchelor vortex have been computed for the case discussed in Fabre
& Jacquin (2004, p. 259) with regards to the vortex-meandering experiments of Jacquin
et al. (2001) with ¢ = 4 and R; = 1500, corresponding to R = 6000. (Rs := rydU,/v is
related to R through the swirl number as R = |g| R; (Fabre & Jacquin 2004, p. 242).)
The Moore—Saffman vortex is parametrised on n € {0.7, 0.8}. While parameters in § 4
were chosen for the sake of comparability to other theoretical approaches, the present
choice is realistic for wind-tunnel experiments.

Contours (thin lines) of the resolvent norm in the (o, w)-plane are shown in figure 7
for m = £1 in comparison with curves of the least damped eigenvalues (thick lines).
Essentially the same amplification contours and perturbation families are obtained for
the Lamb—Oseen and Moore—Saffman vortex (not shown). This already suggests some
generality of the perturbation dynamics with @ > 0, m = 1 and for ¢, R sufficiently large.

Perturbations are conventionally classified according to their relative motion with
respect to the reference flow. Thus, comparing signs of the azimuthal phase and mean
velocity we define modes with sgn w/m # sgn U, as countergrade, modes with sgn w/m =
sgn Uy and |w/m| € [0, 1] as retrograde and modes with sgn w/m = sgn Uy and |w/m| > 1
as cograde (cf. Fabre et al. 2006, p. 241). The different regimes are indicated in
figures 7 and 8. As for the Lamb—Oseen vortex, one broadly distinguishes four families
of perturbation structures, namely of core C, viscous V, displacement D and mixed L type
(see Fabre et al. 2006, pp. 247-255). Countergrade perturbations with m = —1 belong to
the D and L1 families (Fabre et al. 2006, figure 14a) with increasing structural complexity
in r for subsequent branches as « is increased. Generally, forcing structures having n > 0
zero crossings induce response with n > 0 roots, both being essentially localised in the
core.

Different shapes of the resolvent norm ||R,, ,(iw; L)|| for m = %1 are due to the axial
mean-velocity breaking azimuthal symmetry (cf. § 2.3). However, this distinction seems to
be not fundamental since co-, retro- and countergrade perturbations are always associated
with essentially the same families. This similarity between results for m = =£1 is further
highlighted in figure 8.

Selective non-normality can be quantified by inspection of the quantity

| Rin,o (i L) ||

1 P b L
%810 (@, oma (L)

€[0,00), «€[0,3], m==Il. (5.1)

By the left-hand side of (3.3) the argument is identically unity if R, ,(iw; L) is (locally)
effectively normal, hence, corresponding to the lower bound. As for the Lamb—Oseen
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FIGURE 8. Resolvent norm of the Batchelor vortex for Ry = 6000 and g = 4 comparing
m = —1 (plotted on the negative frequency axis —w) and m = 1 for & = 1.55, as well as the
resolvent norm for the Lamb—Oseen vortex (R = 5000). The critical-layer region of candidate
receptivity is shaded in grey while the darker subset indicates the receptivity regime R indicated
in figure 3.
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FIGURE 9. Comparison of resolvent-norm spectra for the Lamb-Oseen, Batchelor and
Moore—Saffman (MS) vortices for« = 0.5,m = 1, R = 5000, Rs = 1000 and g = 10, showing
that axial velocity has a significant effect for perturbations in the core only.

vortex, countergrade waves are always associated with an effectively normal resolvent. On
the other hand, for retrograde waves, pseudo-resonance exceeds classical resonance of the
equivalent normal operator by up to three orders of magnitude. Most importantly, figure 7
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confirms conjecture 4.1 that effective non-normality, and thus receptivity, are strongly
confined to a small frequency band, correlated with the critical layer. These findings hold
irrespective of the considered vortex model, m = £1 and «.

Figure 7 clearly shows that the resolvent norm of the Batchelor vortex develops sharp
distinguished crests, all being aligned with the least stable eigenvalues. Each of the
crests induces a dynamic regime in its neighbourhood such that the entire (w, «)-plane
is partitioned into different parameter subsets associated with distinguished dynamic
behaviour. Therefore, the spectral signature (w and «) of the forcing field will in general
matter as it favours a response to different perturbation subspaces (D, L, etc.). However, as
already anticipated in figure 6, grey shading in figure 7 affirms that receptivity is confined
to a universal frequency band and the generic family of critical-layer waves with only small
variations in alpha.

In order to gain further insight into axial-flow induced non-normality, figure 8 shows
a comparison of the resolvent norm extracted from figure 7 at « = 1.55 for m = £1 and
for the Lamb—Oseen vortex. For the ease of comparison, the m = —1 spectrum is plotted
on the negative frequency (i.e. reflected along the vertical axis at w = 0). In all cases the
central peaks of the L family are universally observed as well as the general behaviour
away from steady forcing. Receptivity candidates at higher frequencies are labelled V as
in Fabre et al. (2006, p. 252) to emphasise their viscous nature. In fact, the discussion in
§ 4 indicates that they are transitional structures between the pure critical-layer receptivity
structures L and core perturbations C. The only noticeable difference in the three cases is
the location of the peaks of the D and L1 families. In the light of the above discussion this
suggests that for vortices non-normal dynamics is generic while the normal dynamics is
more sensitive to the reference state.

Generality and robustness is further highlighted in figure 9, showing a comparison of the
resolvent norm for the three different reference states and m = 1. The essential behaviour
is unchanged by modification of the reference flow. As to be expected from discussion of
the linear operator in § 4.1, differences mostly manifest for core perturbations associated
with the C family.

Together, figures 8 and 9 provide evidence that for vortex receptivity, and thus
presumably vortex meandering, the detailed core structure of the reference state is of
minor importance. These considerations support conjecture 5.1, at least for the considered
dynamics, and hence a posteriori justify limitation to the canonical case of a Lamb—Oseen
vortex in § 4. It should be noted that this conclusion is in agreement with Antkowiak (2005,
p. 47) and Pradeep & Hussain (20006, p. 252).

Our study affirms that generally vortices are most receptive to disturbances in the
critical layer. Heaton & Peake (2007, p. 272) and Mao & Sherwin (2012, pp. 42-44) come
to the related conclusion that transient growth of the Batchelor vortex is essentially a
consequence of the interaction of non-orthogonal eigenvectors pertaining to the inviscid
continuous spectrum, with negligible contributions from the discrete spectrum. (Different
from Antkowiak 2005, stating that combination of discrete and (unbounded) continuous
spectrum.) Roy & Subramanian (2014, p. 405) demonstrate how the inclusion of singular
modes pertaining to the inviscid continuous spectrum enables interaction between vortex
and free stream, suggesting that a linear model of receptivity to ambient turbulence is
intimately related to the inviscid continuous spectrum.

More generally, optimal localisation of input disturbances in the critical layer is
universally observed in shear flows. In the context of boundary-layer flow, analysis of
the eigenmodes of the adjoint, led Hill (1995, p. 185) to conclude that perturbations are
most sensitive to forcing in the critical layer. Systematic alignment of perturbations with
the critical layer in boundary-layer flow similarly to our figure 5(a) is equally shown in


https://doi.org/10.1017/jfm.2020.898
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

McKeon (2017, figures 7, 8 and 10). The importance of critical-layer dynamics is also
reported for pipe and Couette flow as well as for exact coherent states (e.g. Hall & Sherwin
2010; McKeon & Sharma 2010).

6. Frequency selection in meandering experiments

Trailing-vortex experiments reveal that meandering is principally associated with a
broadband power spectral density (Devenport et al. 1996, p. 93), however, the principal
energy-carrying structures are confined to a narrow frequency band (Jacquin et al. 2001;
Bailey et al. 2018). Sufficiently far downstream (more than five chord lengths, say),
experiments consistently report convergence towards the universal Strouhal number of
Sy := fiur1/Us ~ 1072 (m stands for meandering), while closer to the wing, energy may
be concentrated at a higher frequency (Bailey er al. 2018, figure 7). Hence, despite its
formal broadband nature, the trailing-vortex dynamics bears spectral coherence in the
sense that the most energetic feature (i.e. meandering) happens at a specific frequency
irrespective of free-stream intensity, suggesting idealisation in terms of a monochromatic
wave. Experiments of Bailey ef al. (2018, figure 7) identify the peak frequencies S,, €
{0.02, 0.3} for measurement stations z < 5¢ and z 2 Sc, respectively.

Direct comparison of these characteristic experimental frequencies with the spectral
signature of the resolvent is, however, complicated since the two analyses do not
use the same reference frames. The principal issue is a manifestation of the Doppler
effect for space—time signals (Landau & Lifshitz 1959, § 68). In experiments, probing
a spatio-temporally varying signal at a fixed position in space, spatial and temporal
variations are indistinguishably recognised as temporal unsteadiness. Consequently, the
experimentally obtained frequencies in fact correspond to the locus D(S,,) := {(w, @) €
R?|S,, — (w + aUs)/(2m) = 0} (up to changes in non-dimensionalisation; | /ry = 1.12),
assuming constant background advection Uy /(Iy/(21trg)) = 1.83 (Bailey et al. 2018).
The loci D(S,,) C R? for S,, € {0.02,0.3} are shown in figure 7 for the case of the
Batchelor vortex.

If vortex meandering is due to generalised receptivity, assessment of the effective local
non-normality (shown in grey shading in figure 7) allows us to restrict considerably the
range of candidate (w, «)-pairs identified from the Doppler relation. Taking into account
that receptivity relies on radial perturbation transport, S,, = 0.3 would be composed from
1.3<ao <17 and 0 < w < 0.6 while S, = 0.02 would have contributions from 0 <
o S0.1and 0 < w < 0.3. Tt should be noted that (nearly) steady excitation is excluded
since the associated forcing-response structures are both localised in the free stream. The
resolvent norm along the Doppler curve for §,, = 0.3 is qualitatively identical to that
shown in figure 8. Since the resolvent norm peaks sharply at the frequency—wavenumber
pair of (w, a) ~ (0.15, 1.6) it is expected that the response should be dominated by this
monochromatic contribution.

7. Conclusion

We have investigated linear vortex receptivity by means of the resolvent (i.e. a family
of transfer operators mapping the external forcing to the vortex response in frequency
space). Discussion of (1.1) and (1.2) makes clear that the present study is complementary
to previous linear approaches. In fact, the resolvent is at the root of all linear theories.
Similarity of our results with those reported in the literature is therefore of structural rather
than physical origin. Nevertheless, analysis of the resolvent is best suited for the question
of free-stream receptivity. Furthermore, analysis in frequency space allows us to relate the
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spectrum (determining the equivalent normal dynamics) and non-normal dynamics. Our
findings confirm previous results of Heaton & Peake (2007) and Mao & Sherwin (2012)
in time domain (analysis of the propagator T(¢)).

The essential prerequisite for linear receptivity is non-normality. Formulation of the
problem in terms of the resolvent is appropriate to quantify non-normality locally (in
frequency space). Despite the governing operator being non-normal, it was shown that
the effective behaviour for vortices depends on the excitation frequency (called selective
non-normality). To the best of our knowledge, this work contains the first systematic use
of resolvent bounds to classify non-normality of the linear vortex dynamics (considerable
use of these bounds can be found in e.g. Reddy, Schmid & Henningson (1993), too).

We found non-normality of linear vortex dynamics to be essentially restricted to
frequencies aligned with the inviscid continuous spectrum (characterising a perturbation
dynamics with stationary material advection). Accordingly, the associated forcing
structures are localised in the critical layer. Using an upper bound of non-normality in
terms of the numerical range, we showed that disturbance alignment with the critical
layer is necessary to maximise non-normality. This finding is given physical meaning by
consideration of the instantaneous variation of the integral kinetic energy.

Considering Lamb—Oseen, Batchelor and Moore—Saffman vortices as reference states,
we found the above features of non-normality to be robust. In particular, irrespective of
the vortex model, linear dynamics turns out to be frequency-selectively non-normal on
the same range with forcing structures being systematically localised about the critical
layer. On the contrary, non-normality is almost invariant under variations of the axial
wavenumber in the considered range. We conclude that free-stream receptivity as a
consequence of non-normal dynamics is largely independent of the precise vortex-core
structure and in particular does not rely on axial mean velocity. This is in stark contrast to
results of asymptotic stability (discrete spectrum) which crucially depends on the vortex
model. Yet, universality of experimental trailing-vortex dynamics suggests that it should
be associated with a robust mechanism, common for a large class of vortices. As motivated
in § 1, we suggest a model of trailing-vortex dynamics as a linear system driven by the
advective nonlinearity.

Acknowledgements

This work has been supported by the French Ministry of Civil Aviation (DGAC) under
PHYWAKE (PHYsics of WAKE vortices) research program. We are grateful to the
anonymous referees for their exceptional investment and insightful suggestions.

Declaration of interests

The authors report no conflict of interest.

Appendix. Numerical implementation, verification and validation

The present study relies on canonical and spectral decomposition of the linear operators
R(s; L), L and L™ as given in (2.3) which are approximated using a finite-element
discretisation (see §2 of Sipp & Marquet 2013 for details). The implementation uses
freefem++ (Hecht 2018) which uses the ARPACK library to solve eigenvalue problems
(Lehoucq, Sorensen & Yang 1997). Finite-element functions are fixed to the linear
P1 and quadratic P2 Lagrangian finite elements for pressure and velocity, respectively
(Hecht 2018, pp. 174—175). The radial domain in all computations is R = (0, 7,,.,) =
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(0, 171U (1, 6] U (6, Fpur) = Ry U Ry U R3 with r,,,,, = 30. The number of elements in each
part of this partition is 200, 200 and 150 for R;, R, and Rj3, respectively. Grid refinement
studies have been done for verification and convergence of the presented results is assured
by variation of the maximum radius r,,,, € [30, 200].

The results of the canonical decomposition of the resolvent have been validated
against the studies of Guo & Sun (2011) and Blanco-Rodriguez et al. (2017). Spectral
decomposition of L is validated by comparing with the results of Fabre et al. (2006). To the
best of our knowledge spectral decomposition of the adjoint L™ has not been reported for
vortices before; validation of the computation is therefore obtained by assuring condition
(i) o (L) = o (L") on the spectra and (ii) bi-orthogonality to hold (Friedman 1962, p. 112;
Kato 1980, theorem 6.22).
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