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Quasi-automated reconstruction of the femur from bi-planar X-rays
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aInstitut De Biomécanique Humaine Georges Charpak, Arts Et Métiers Institute of Technology, Paris, France; bDepartment of Orthopaedic Surgery,
CHU Montpellier, Montpellier, France

ABSTRACT
3D reconstruction from low-dose Bi-Planar X-Rays (BPXR) is a rising practice in clinical routine.
However, this process is time consuming and highly depends on the user. This study aims to
partially automate the process for the femur, thus decreasing reconstruction time and increasing
robustness. As a training set, 50 femurs are segmented from CT scans together with 120 BPXR
reconstructions. From this dataset, an initial solution for the bony contours is defined through
Gaussian Process Regression (GPR), using eight digitized landmarks. This initial solution is projected
on both x-rays and automatically adjusted using an adapted Minimal Path Algorithm (MPA). To
evaluate this method, CT-scans were acquired from 20 cadaveric femurs. For each sample, the CT-
based reconstruction is compared to the one automatically generated from the digitally recon-
structed radiographs. Euclidean distances between femur reconstructions and the segmented CT
data are on average 1.0 mm with a Root Mean Square Error (RMSE) of 0.8 mm. Femoral torsion
errors are assessed: the bias is lower than 0.1° with a 95% confidence interval of 4.8°. The proposed
method substantially improves 3D reconstructions from BPXR, as it enables a fast and reliable
reconstruction, without the need for manual adjustments, which is essential in clinical routine.
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1. Introduction

Three-dimensional reconstruction of the skeleton from bi-
planar X-rays (BPXR) is a rising practice in clinical routine.
Compared to standard imaging techniques such as
Computed Tomography (CT), this imaging modality enables
a faster 3D reconstruction of the skeleton in the upright/
standing position. The reconstruction of the femur, based
on bi-planar X-rays, is one of the most frequently discussed
topics in the literature. For example (Youn et al. 2017)
applied an iterative approach with uncalibrated X-rays yet.
However, the patient is required to adopt a posture, which
does not comply with the clinical standard. In a similar way
to (Baka et al. 2011), the authors used canny edge detection
for the segmentation process, which is known to be sensi-
tive to noisy data. Furthermore, methods based on
a database such as Active Shape Models (ASM) (Boussaid
et al. 2011), Statistical Shape Models (SSM) (Dong et al.
2007; Baka et al. 2011; Cerveri et al. 2017; Zheng et al.
2018) or Statistical Shape and Intensity Models (Sadowsky
et al. 2007; Väänänen et al. 2015; Klima et al. 2016) are
widely considered, but do not allow to model pathological
cases. On the other hand, algorithms based on free-form
deformation (Laporte et al. 2003; Galibarov et al. 2010;
Chaibi et al. 2012; Quijano et al. 2013; Karade and Ravi
2015) although less accurate for asymptomatic and non-
severe symptomatic cases, as less a priori knowledge is
used, perform better for symptomatic patients. The method,
used by (Quijano et al. 2013) is now applied on a routine
basis in the clinical environment and uses the EOS system

(EOS Imaging, Paris, France), a calibrated system for the
acquisition of low-dose BPXR. The system has been proven
useful for pre-operative surgical planning, especially for
patient monitoring through clinical parameters. The method
considers a two-stage fast reconstruction process (5 min for
both lower limbs). First, the operator selects landmarks on
both images. Based on these landmarks the geometrical
parameters characterising the femur are inferred using par-
tial least squares regression. An additional moving least
squares (MLS) deformation is performed to obtain the initial
solution. In the second stage, the operator adjusts the
projected contours of the initial model with respect to the
image contours. This is realised using handles to locally
drive the deformation process through MLS. This method
has been validated at the level of classical clinical para-
meters (mechanical femoral angle, hip-knee-shaft angle, cer-
vico-diaphyseal angle, femoral torsion and length). However,
to achieve a realistic representation of the bony surfaces,
sufficient training is required. Note that fine manual adjust-
ments are very time-consuming. To improve robustness and
to speed up the process, automatising the 3D reconstruc-
tion process is necessary. The aim of this study is to intro-
duce a novel approach to quasi-automatically reconstruct
the femur from BPXR, thus removing the need for fine
manual refinement.

To do so, the challenging task of automatically detecting
the bone counters had to be resolved. Indeed, radiographs are
noisy and bone structures overlay at some regions. The
Minimal Path Algorithm (MPA) introduced by (Vincent 1998)
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was successfully applied to the femoral head (Ouertani et al.
2015). Also, Gaussian Process Regression (GPR) was recently
proposed for shape models (Lüthi et al. 2016) and can be
considered as a generalisation of (Laporte et al. 2003).
However, it still might fail in case of multiple contours super-
imposition. Therefore, the proposed method combines an
adapted MPA and GPR.

2. Material and methods

2.1. Gaussian process regression

GPR is a way to predict a posterior shape model composed
of n 3D anatomical landmarks out of which m � n are
known. Let Si; i ¼ 1; :::;N be N 3D shapes, SR a reference
shape and Ω a domain such that SR � Ω. Let us also con-

sider deformation fields u1; . . . ; uNf g; ui : Ω! R
3 where

uiðxÞ is the deformation field mapping the point x 2 SR to
the corresponding landmark uiðxÞ on Si. We can, therefore,
define a Gaussian process GPðμ; kÞ which characterises
deformations through the following mean function μðxÞ
and the covariance function kðxÞ:

μðxÞ ¼ 1
N

XN
i¼1

uiðxÞ and kðx; yÞ

¼ 1
N� 1

XN
i¼1

uiðxÞ � μðxÞð Þ uiðyÞ � μðyÞð ÞT (1)

Assuming that form points, with location PR ¼ p1R; . . . ; p
m
R

� �
; plR 2

R
3jl ¼ 1; . . .m on the reference surface, the corresponding loca-

tion on the target surface is defined as PT ¼ p1T ; . . . ; p
m
T

� �
; psT 2

R
3js ¼ 1; . . .m. Hence, the deformation for each of these match-

ing points can be calculated as follows:

L ¼ ðp1R; p1T � p1RÞ; . . . ; ðpmR ; pmT � pmR Þ
� �

:

¼ ðp1R; û1Þ; . . . ; ðpmR ; ûmÞ
� �

(2)

where ûl; l ¼ 1 are the deformations subject to a Gaussian noise

ε,N 0; σ2I3ð Þ, and I3 2 R
3�3 is the identity matrix of order 3. We

can now use these prior deformations to obtain from GPðμ; kÞ
a new Gaussian process known as a posterior model GPðμ; kÞ.
The posterior mean μ and the posterior covariance k can be
computed in closed form:

�μðxÞ ¼ μðxÞ þ KXðxÞT KXX þ σ2I3
� ��1

Û

�kðx; x0Þ ¼ k x; x0ð Þ � KXðxÞT KXX þ σ2I3
� ��1

KXðx0Þ
(3)

with KXðxÞ ¼ k x; plR
� �� �m

l¼12 R
3n�3; KXX ¼ k psT ; p

l
R

� �� �m
s;l¼12

R
3m�3m; Û ¼ û1 � μðxÞ; . . . ; ûm � μðxÞ� �T 2 R

3n.

2.2. Minimal path algorithm

MPA (Vincent 1998; Ouertani et al. 2015) has been proven
to be a robust way to detect linear features in grey images
using an initial solution. Starting from an initial contour
denoted C0, the method looks for a similar shape in a user-
defined searching zone. The initial contour is first uniformly
subsampled, resulting in ns 2 N points si, i ¼ 1; . . . ; ns. Then,

for each si, ne (ne 2 N), the points qij, j ¼ 1; . . . ; ne, are
sampled along the normal, on both sides of the contour,
defining a ribbon (see Figure 1). Intensity values at each qij
are obtained by linear interpolation of the pixel intensity
table and an image of size ns � ne can be built. To look for
the contour, the gradient map is computed and an oriented
graph is built, connecting all adjacent pixels and penalising
the pixels of diagonal. This yields a cost map. Finally, the
searched contour is the path that minimises the sum values
of the nodes traversed in this graph.

2.3. Subjects and database

A first Gaussian Process denoted GP1 is built from 120 femurs
manually reconstructed from bi-planar X-rays (Nerot et al.
2017). They are aligned on their barycentre, encoding this
way the rigid rotation prior. Additionally, 50 segmented femurs
are collected from the Virtual Skeleton Database (Kistler et al.
2013). These femurs are used to build a second Gaussian
Process denoted GP2. They are registered with the same
method than Schlager and Rüdell (2017) and aligned through
the Generalised Procrustes Analysis.

The second part of our database is dedicated to the
validation process and is completely independent from the
previous one. Twenty femurs were segmented from cada-
veric CT-scans (0.75 mm thickness) using MITK-GEM
(Pauchard et al. 2016) (16 intact and 4 arthritic ones).
Additionally, 24 (mean age 27 year, 12 subjects, 6 males, 6
females) healthy and 16 (mean age 67 year, 10 subjects, 6
males, 4 females) pathological (osteoarthritis) femurs are
also reconstructed from bi-planar X-rays (0.186 mm resolu-
tion) using the method described in (Quijano et al. 2013).
Another set of 30 (mean age 55 years, 5 asymptomatic
patients, 10 arthritic ones) bi-planar X-rays was considered
for a reproducibility study. Note that all bi-planar X-rays in
the different databases were acquired using the low-dose
EOS-calibrated system (EOS imaging, Paris, France).

Figure 1. Sampling process of the ribbon.



2.4. Initial solution

Eight radiological landmarks (Figure 2) were digitised on each
X-rays: one Stereo-Corresponding (SCP) landmark (one sphere for
the femoral head), four Non-Stereo-Corresponding Points (NSCP)
on the frontal view (greater and lesser trochanter and themedio-
lateral points of the condyles), two on the sagittal view (the two
posterior condyle points). Note that there is no need to identify
which posterior condyle point is medial or lateral.

At this stage, the SCP is used through the Gaussian process
regression using GP1 (ie. computing the posterior mean according
to (3)). One of the landmarks is randomly assigned to the medial
posterior points, the other one as the lateral posterior landmark.
Then, two successive GPR are applied, using first the posterior
points, then the lateral one. Contrary to the previous point, they
are NSCP, only the line they belong to is known. Therefore, to get
an approximate 3D location of the vertex, the corresponding one
on the current femur shape is projected onto this line. The two
possible configurations for the assignment of medial and lateral
condyles are tested and the one with the highest probability
shape score regarding the Gaussian process is kept.

2.5. 3D reconstruction algorithm

Once the initial solution is obtained, it is projected onto the
radiographs and femur contours can be computed. In the
contour extraction process of the mesh, two kinds of con-
tours are considered, the external ones which basically cor-
respond to the silhouette and the internal ones which are
generated from local bumps. Internal contours are com-
puted in a similar way to (Dong et al. 2007). The outer
contours of the projected mesh are obtained first projecting
all triangle faces, then iteratively merging them using Vatti’s
algorithm (Vatti 1992). This process ensures a clean silhou-
ette extraction and enables identification of the vertices
belonging to this one.

A recursive median filter and an adaptive histogram
equaliser filter are first applied on the region of interest.
Then, a modified MPA is applied, followed by a deformation
step restricted to some regions Ri depending on the itera-
tion i. While the maximum displacement condition is not
reached or i< 20, the process iterates again (Figure 3,
Algorithm 1).

Figure 2. Initial digitisation of the femur from bi-planar X-rays. (a) From proximal to distal, the annotated landmarks are the femoral head and posterior condyle
points. (b) From proximal to distal, the annotated landmarks are the femoral head, the greater trochanter, the lesser trochanter, medial and lateral extreme points
of the condyles.



Algorithm 1 Pseudo code of the reconstruction process

Manual digitalisation
Shape initialisation using GPR with GP1
i 0
while i< 20 do

Segmentation process with MPA
Two steps deformation process restricted to Ri using GPR
with GP2 and dual kriging
if maximum L2 norm displacement is higher than 0.5 mm
then

return
else

Shrink the ribbon (eq. 5)
if i > 5 then

Statistical cost map deactivated
end if

end if
i iþ 1

end while

Modifications in the minimal path algorithm consist of the intro-
duction of two additional cost maps to increase robustness to
noise and superimposition of structures. A cost map is intro-
duced to constrain the path to go through digitised landmarks.
To do so, we first define the uncertainty range σ related to the
operator’s expected accuracy for each point (Schlatterer et al.
2009). All weights of the costmap around the selected landmarks
in a σ range are set as infinite values. Then, the cost map in the
neighbourhood of these landmarks is also weighted again with
a Gaussian filtering operation with the same σ parameter. This
aims to smoothly drive the path near the operator selection.

The last cost map is a statistical one. To each candidate point
on nj, a constraint line can be associated. And, to each of this
constraint line a 3D point can be calculated as the projection of
the 3D shape onto this line. Then, considering the posterior GP1
with a mean μ and a kernel �, for two neighbour candidates

ðc1; c2Þ 2 R
3 along nj, similar to (Huang et al. 2015), the paired

statistical energy is defined as:

Estatðc1; c2Þ ¼ 1
2

X2
i¼1

exp � 1
2
ðci � μÞ��1ðci � μÞT

� �� �
(4)

This energy is particularly efficient to discriminate outliers. For
example, on the proximal part, when diaphyses are close from
each other, and parallel enough, the statistical cost function
ensures the right contour of the right diaphysis is detected.

Finally, the directed graph can be solved using dynamic pro-
gramming as proposed in (Ouertani et al. 2015) (Figure 4).

At this stage, the MPA finds a contour which follows the
gradient edges. Thanks to the sampling process, paired points
between the current contour and the one which is detected
are automatically set. To compute a plausible new 3D location
of each vertex belonging to the contour, the associated one to
the current 3D shape is projected on the constraint line com-
ing from the image paired point. The vertices which belong to
the contour are used in a GPR with GP2. It is, therefore,
necessary to also rigidly align the new matched vertices coor-
dinates with the mean shape. For that reason, General
Procrustes Analysis (GPA) is realised between the matched
vertices and the corresponding mean ones of the GP. To
model uncertainty of the new locations of the concerned
vertices, anisotropic Gaussian noise is introduced with
a variance of 20 mm2 in the direction of the constrained
line, 2 mm2 otherwise. A second deformation stage is
achieved; this time, a dual kriging (Trochu 1993). This enables
to capture finer details and optimise the global position of the
bone. Finally, the obtained shape is projected and the same
last steps are applied again.

Because particular matched regions are not reliable at first
sight, they are deactivated during the first iterations. For exam-
ple, the lesser trochanter and the anterior distal part near the
patella are activated after five iterations. Meanwhile, these
regions are driven by the GPR and therefore get closer and
closer from the target shape.

Simultaneously to this process, the ribbon is shrunk, discard-
ing outliers in noisy areas. Considering rw0 as the initial ribbon
width, sf the shrinking factor and i the number of iterations,

rw ¼ rw0sf
i (5)

rw0 and sf are arbitrary defined through a trial-and-error meth-
odology Table 1. For instance, rw0 is set to 120 px and sf to 0.9
for the frontal silhouette.

2.6. Evaluation

The 3D reconstruction is first evaluated in terms of shape and
femoral torsion accuracy. For each cadaveric CT-scan, a 3D
mask has been drawn to remove one lower limb, as the two
femurs are each time strictly aligned. From these masked 3D
volumes, digitally reconstructed radiographs (DRR) are created
to simulate bi-planar radiographs with the same calibrated
radiological environment of the EOS.

The 3D reconstruction of the femur from DRRs is then com-
pared to a segmented object considered as the gold standard. As

Figure 3. Whole pipeline of the reconstruction process.



the DRR is generated in the EOS environment, point-to-surface
distances can be computed directly. All the reconstructed femurs
have the same topological mesh since they are generated from
theGP. Therefore, a distancemap is calculated projecting the 2372
vertices onto the target segmentation. At each of these vertices,
mean and the Root Mean Square Error (RMSE) are calculated. The
global mean error is also estimated and twice the RMSE is

Figure 4. Result of the MPA using the projected contours of the initial solution – red, contour of the initial solution – green, search area – blue, new detected contour.

Table 1. Ribbon parameters defined through trial-and-error methodology for
each contour region.

Contour region Frontal view Sagittal view rw0 (px) sf
Femur silhouette x 120 0.9
Femur silhouette x 100 0.9
Greater trochanter x 40 1.0
Trochlea x 30 1.0
Condyles x 40 0.95



considered as the shape uncertainty. Femoral torsion, considered
as the major clinical parameter is automatically extracted from
both shapes, our 3D reconstruction and the gold standard.

The semi-automated 3D reconstruction is also evaluated on
real bi-planar X-rays. From the database of 40 patients, this
method and Quijano et al. 2013 method have been both
applied and compared in terms of femoral torsion and time.
A Bland–Altman plot (Altman and Bland 1983) is also used to
compare the two methods.

Finally, the 15 bi-planar X-rays aim to assess the reproducibility
of our method. Each reconstruction of the femur was performed
once by three different operators (a beginner, an intermediate and
an expert). The entire protocol follows the ISO 5725–2 standard.

3. Results

3.1. Comparison to the CT-scan

The point-to-surface distance between the 3D quasi-automated
reconstruction of the femur (Figure 5), and the 3D reference
shows a global mean value of 1.0 mm and 2 RMSE 1.6 mm. The
higher errors appear on the interior part of the greater trochan-
ter. The femoral torsion error is presented through the Bland–
Altman plot (Figure 6). The bias of the femoral torsion error is
reported as 0.1° (2.2° for (Quijano et al. 2013)) and the 2 standard
deviation (SD) as 4.7° (not defined in (Quijano et al. 2013)).

3.2. Comparison to the previous method

The bias of the computed femoral torsion parameter obtained
with our method as compared to the one obtained from
(Quijano et al. 2013) is reported as −1.1° with a 2 SD of 5.5°.
As previously, the Bland–Altman plot provides a more detailed
overview (Figure 7). Note the 2 SD reproducibility error in
(Quijano et al. 2013) study is estimated as 3.8°. With respect
to the reconstruction times previously reported (for both lower
limbs) as 3–4.6 min, we speed up the manual landmark annota-
tion (Figure 3) process (2.5–3.5 min). These lower and higher
time values are calculated on this same database.

3.3. Reproducibility study

The reproducibility study involving 3 operators aims to com-
pute (Table 2) the standard deviations of reproducibility
according to the ISO 5725–2 standard.

4. Discussion

The aim of this study was to introduce a quasi-automated
reconstruction method for the femur using bi-planar X-rays.

4.1. 3D reconstruction method

The reconstruction method of (Quijano et al. 2013) required
two steps: initial solution and contour adjustment. The recon-
struction pipeline proposed here only needs 2D digitisation;
adjustment is now fully automated reducing operator time.
Regarding the initial solution, it is less operator-dependent
since medio-lateral condyles do not have to be distinguished

anymore. Meanwhile, the number of radiological landmarks
have been lowered (40 s to select them against a minute for
the previous approach).

Figure 5. Points-to-surface metrics comparing the proposed method to the gold
standard.



Moreover, automated segmentation has been achieved
combining a minimal path algorithm with different prior
knowledge, GPR and dual kriging. This overcomes the
issue of containment (Lüthi et al. 2016) to the database on
which SSM-based methods are usually subject to.

4.2. Metrics accuracy

Compared to the literature the proposed method is the best
trade-off between simplicity and robustness. Few studies dealt
with the entire femur. Among them, in term of points-to-
surface distances, they, respectively, obtained for the mean

Figure 6. Bland–Altman plot comparing computed femoral torsion from the proposed method to the gold standard – bias in green – 2SD in red.

Figure 7. Bland–Altman plot comparing computed femoral torsion from the proposed method to (Quijano et al. 2013) – bias in green – 2SD in red.



and 2 RMSE: (Klima et al. 2016) (1.0 mm, 1.35 mm), (Chaibi et al.
2012; Quijano et al. 2013) (1.0 mm, 2.4 mm), (Zheng 2010)
(1.1 mm, 2.8 mm) and our method (1.0 mm, 1.6 mm).

Regarding the proposed 3D reconstruction, maximum errors
appeared on the inner part of great trochanter, but this will not
impact clinical parameters. Besides, femoral torsions measured
on cadaveric subjects were close from the values obtained with
the previousmethod. We also successfully applied ourmethod in
real conditions and for pathological cases which has rarely been
reported in the literature (Chaibi et al. 2012; Quijano et al. 2013).
We then compared the femoral torsions to those obtained in
(Quijano et al. 2013) and did not notice any real differences
between pathological and healthy patients. However, the errors
were seen little higher compared to cadaveric subjects.

The reproducibility study shows for every clinical parameters
a systematic precision gain compared to previous works. It is
also important to notice here that only one operator was an
expert. This proved a short training (30 min) is sufficient to
obtain results close to those of the expert.

4.3. Limitations and future works

As main limitation of this study, only the femur is considered
and not the entire lower-limb. Furthermore, shape accuracy is
only validated on DRR but we expect even better results in
real clinical environment since bi-planar images have higher
contrast and resolution. Another limitation of this approach
and the previous ones is to consider femur shapes as
a continuous representation. Therefore, discontinuous struc-
tures such as fractures, or unfused bones in children cannot be
modelled with these methods. This may be solved if we were
able to segment the different bone fragments and deform
each separated part. Still, it would be necessary to assess our
reconstruction process on children to verify such outliers with
regard to the database can also be accurately reconstructed.
Furthermore, small sharp features such as osteophytes cannot
be accurately modelled since our minimal path algorithm
tends to consider them as noise. Considering local abnormal-
ities is part of future work. The whole process takes 3 min in
a non optimised MATLAB version. The most time-consuming
part lies in the projection of the contours and will have to be
improved in future works.

To speed up the reconstruction process, it would also be inter-
esting to compare the greedy dynamic programming used with
a stochastic solver even though global convergence would be no
longer insured. The new pipeline we design leads to a robust
detection of the contours thanks to a shrinking ribbonmechanism
and a region activation/deactivation strategy. Therefore, MPA is

well suited for these tasks. However, further investigation will be
led to compare different methods for segmentation purposes.

5. Conclusion

A quasi-automated method of 3D reconstruction of the femur
from bi-planar X-rays has been introduced, reducing the process
of manual annotations and deleting the fine manual adjustment
phase. A new set of landmarks has been proposed. In particular,
the operator is not asked anymore to perform the challenging
and error-prone task of identifying medial and lateral condyles
on the sagittal view. Forty seconds are needed to identify the
landmarks against a minute for the method available in clinical
routine. More benefits are obtained on the refinement stage
which is now strictly automated (2 min by femur using the
previous approach). The method has been proven to be accu-
rate and reproducible in terms of shape and clinical parameters.
It should be extended soon to the full lower limb and pelvis.
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