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2018). Although a few analytical solutions are generated for electro-
magnetic composites under remote loading conditions (Kuo, 2014;  
Rashidinejad and Shodja, 2019), more advanced computational tech-
niques require the application of more complex boundary conditions. 

With the continuous development of computational capabilities and 
increasing demand for multiscale analysis between structures and ma-
terials, there is reviving interest in developing advanced micro-
mechanics models to simulate the sophisticated piezoelectric-piezo-
magnetic coupling effects on the effective and localized responses of 
composite materials. For instance, Lee et al. (2005) employed the finite 
element (FE) technique to study the averaged properties of three-phase 
piezoelectric-piezomagnetic composites. Chen and Wang (2020) stu-
died the effect of a fully/partially-cracked interface on the stress and 
electric field re-distributions in unidirectional composites. Bishay et al. 
(Bishay and Atluri, 2015; Bishay et al., 2014) implemented the Trefftz 
concept into finite elements and developed the multi-physics compu-
tational grains for the analysis of both the effective and localized re-
sponses of electro-magneto-elastic composites. Sladek et al. (2017) used 
the meshless local Petrov-Galerkin (MLPG) technique to generate the 
effective properties of composites with multifunctional capabilities. 
Besides the numerical techniques, asymptotic homogenization methods 
(AHM) were also employed to study the coupled multiphysics behavior 
of smart heterogeneous materials (Espinosa-Almeyda et al., 2017; Tang 
and Yu, 2009). What's more, Haghgoo et al. (2019) employed the 
simplified unit cell method to investigate the effect of piezoelectric 
interphases on the effective multiphysics composites. Rabczuk et al. 
(2019) developed a nonlocal operator method based on the variational 
principle in solving the dynamic eigenvalue problem of electromagnetic 
solids. The advantage of the nonlocal operator method is directly em-
ploying the energy principle and avoiding the mesh entanglement. Each 
of the aforementioned techniques has unique advantages in simulating 
the electro-magneto-elastic materials in terms of either the computa-
tional efforts or physical capabilities. However, most of the those 
techniques place more emphasis on the effective coefficients instead of 
the localized field concentrations under various loading/boundary 
conditions that should be equally important in predicting possible crack 
initiations which usually start from the material level. 

In this contribution, we employ the finite-volume based micro-
mechanics with multiphysics capabilities to investigate the effective 
and localized response of composites reinforced with electro-magneto- 
elastic phases. Initially employed for the fluid mechanics, the finite 
volume technique was introduced to solid mechanics for analysis of the 
micromechanical behavior of periodic composites by Pindera and co- 
workers (Gattu et al., 2008; Khatam and Pindera, 2009), and func-
tionally graded materials (Cavalcante et al., 2007). In contrast with the 
FE-based technique wherein the minimization of global potential en-
ergy in the unit cell with sufficient mesh refinement leads to the ulti-
mate satisfaction of the unit cell's global equilibrium, the finite-volume 
technique is based on the direct satisfaction of the governing differ-
ential equations for every subvolume at each level of mesh refinement 
(Chen and Pindera, 2020; Chen et al., 2018b, 2018d). The finite-volume 
theory has been proved to be an attractive alternative to the finite- 
element technique in micromechanical modeling of piezoelectric com-
posites or magnetostrictive porous materials (Chen et al., 2018a; Chen 
and Wang, 2018). However, a fully coupled electro-magneto-elastic 
constitutive relationship has never been implemented into the FVDAM 
theory. 

Starting from the microstructural characterization, repeating unit 
cells (RUCs) are identified with periodic boundaries. A fully anisotropic 
electro-magneto-elastic coupled constitutive relation is implemented 
into each subvolume of the multiphysics FVDAM theory. The multi-
physics local stiffness matrices are constructed by relating the surface- 
averaged conjugated mechanical displacement-tractions and electric/ 
magnetic potential-electric/magnetic flux components. The accuracy of 
the theory in generating effective and localized responses are validated 
against the exact solutions under far-field loading conditions and the 

finite element simulations. More importantly, the efficiency of the 
corresponding program relative to the finite-element technique is tested 
through comparing the mesh discretization, degrees of freedom in the 
global system of equations, execution time, as well as the sparsities of 
the global stiffness matrix, where MFVDAM is superior in several per-
spectives. Finally, the MFVDAM is encapsulated into the particle swarm 
optimization algorithm to deduce optimal fiber volume fractions where 
the maximum electro-magneto coupling coefficients may be obtained. 
The identification procedure is made more precise by circumventing the 
traditional trial-and-error approach, substantially reducing the com-
putational cost. 

The remainder of the paper is organized as follows: Section 2 briefly 
introduces the theoretical framework of MFVDAM, a 0th-order homo-
genization theory of fully coupled multiphysics for unidirectional 
composites. Section 3 derives the generalized Eshelby solutions for 
piezoelectric-piezomagnetic composites under multiphysics remote 
loading. The validation and convergence study of the proposed tech-
nique is conducted in Section 4, indicating that the MFVDAM is effi-
cient in reducing the mesh discretization and promoting computational 
efficiency. Finally, the incorporation of the MFVDAM into the particle 
swarm optimization is illustrated in Section 5. Section 6 concludes this 
contribution. 

2. Multiphysics finite-volume direct averaging micromechanics

In this contribution, the generalized fully coupled electro-magneto- 
elastic relation is implemented into the FVDAM theory to study the 
coupling effect of the fibrous composites reinforced with piezoelectric- 
piezomagnetic constituents. This relation can be described by the 
generalized Hooke's law (Li and Dunn, 1998): 
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where ij, Di and Bi are the stress, electric displacement, and magnetic 
induction components, respectively, while ij, Ei and Hi are the strain 
components, electric and magnetic field components, respectively. Cijkl, 
ekij, qkij, as well as ij, µij and ij represent the elastic tensor, piezo-
electric tensor, piezomagnetic tensor, as well as dielectric, magnetic 
permeability and electromagnetic tensors, respectively. 

Equation (1) is further expressed in matrix and vector notations for 
an easier implementation into the FVDAM algorithm: 
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C e q
e
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2.1. Unit cell discretization 

The multiphysics FVDAM is a simplified version of the mathema-
tical homogenization theory or the so-called asymptotic homogeniza-
tion. The latter is based on a systematic asymptotic analysis of periodic 
media whose response is characterized by governing differential 
equations with periodically varying coefficients that reflect the spatial 
variation of the microstructures. The mathematical homogenization 
theory provides a consistent framework for taking into account the 
effect of macroscopic strain, electric field, and magnetic field variations 
in a periodic material whose microstructural scale is characterized by 
the small parameter . Within this framework, the macroscopic and 
local variations of displacements, electric potential, and magnetic po-
tential are described in a two-scale representation involving the global 
coordinates x for macroscopically homogeneous composite materials 
and the local coordinates y for the repeating unit cell, respectively, 
connected through the small parameter = x y/ which characterizes the 



size of the unit cell. The operator x/ i in the governing differential 
equations is then replaced by +x x y

1 which separates the gov-
erning differential equations into different orders of or scales. Work by 
Ammen et al. (Ameen et al., 2018) and He and Pindera (2020) provdes 
insight into the asymptotic homogenization. 

The current multiphysics FVDAM formulation is developed fol-
lowing the classical homogenization theory or the so-called 0th order 
homogenization theory. Two hypotheses have been made: the micro-
structural scale is infinitely small relative to the structural dimension. 
As a result, the strain/electric field/magnetic field gradient is neglected 
in the local stress/electric displacement/magnetic induction field re-
covery at lower microstructural scales (Yang et al., 2019; Zhu et al., 
2020). The mechanical displacement, electric potential, and magnetic 
potential in each phase of the microstructure are partitioned into 
average and fluctuating contributions dependent on the global and 
local coordinates, =x x x x( , , )1 2 3 and =y y y y( , , )1 2 3 , respectively, 
without considering the higher-order terms: 
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which produce local strain, electric field and magnetic field in the form: 
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where , Ēi and H̄i are macroscopic strain, electric field, and magnetic 
field, respectively. =u i( 1,2,3)i

q( ) , q( ) and q( ) are displacement, 
electric potential, and magnetic potential fluctuations of the q-th sub-
volume, respectively. Using Eq. (4), the following expressions are ob-
tained for the volume-averaged strain, electric field, and magnetic field 
taken over the analysis domain: 
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where V denotes the volume fraction of the repeating unit cell. As the 
fluctuating components are periodic functions on V , the integrals ap-
pearing on the righthand side of Eq. (5) are zero, implying the average 
strain, electric field and magnetic field taken over the RUC are con-
sistent with their definitions. 

In the present work, we limit our analysis to unidirectional com-
posites with continuous reinforcements, the response of which may be 
characterized by periodically repeating material microstructure with 
two-dimensional periodicity. The actual unit cell microstructure is 
discretized into quadrilateral subvolumes designated by the index q( ), 
and its location is specified by the subvolume vertices y y( , )p q p q

2
( , )

3
( , ) re-

ferred to the fixed RUC coordinate system (the fiber direction is denoted 
as y1). Following the convention by Cavalcante et al. [23–24], the 
vertices are numbered in counterclockwise manners starting from the 
lower-left corner y y( , )q q

2
(1, )

3
(1, ) and the faces are numbered in counter-

clockwise manners with the face Fp defined by the endpoints 
y y( , )p q p q

2
( , )

3
( , ) and + +y y( , )p q p q

2
( 1, )

3
( 1, ) for =p 1,2,3,4 such that 

+p
yields

p1 when =p 4. The qth subvolume is generated by mapping 
the square-sided subvolume in the reference coordinates ( ) onto a 
quadrilateral subvolume resident in the actual microstructure, Fig. 1, 
using the Q4-type mapping function (Cavalcante et al., 2007): 
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where N ( , )p is the shape function given by: 
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2.2. Generalized local stiffness matrix 

The fluctuating displacements =u i( 1,2,3)i
q( ) , electric potential q( )

and magnetic potential q( ) in the qth subvolume are approximated 
using the following polynomial expansion in the reference coordinates 
( ): 
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where W q
.(..)
( ) are the unknown microvariables associated with each 

subvolume, which ensure that =¯ ¯ q
11 11

( ), =E E¯ ¯ q
1 1

( ) and =H H¯ ¯ q
1 1

( ) due to 
the continuous reinforcement in x1 direction. 

Considering the above polynomial expansion, the surface-averaged 
fluctuating mechanical displacements, electric potential, and magnetic 
potential on the pth face of qth quadrilateral subvolume are evaluated 
by (the superscript q is omitted for convenience): 
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Similar to Eq. (9), the surface-averaged interfacial tractions, normal 
electric displacements and normal magnetic induction components are 
defined by: 
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where =t ni ji j, =D D nn j j and =B B nn j j. n n[ , ]2 3 is the unit normal 
vector that defines the orientations of the surfaces of a given quad-
rilateral subvolume. 

The surface-averaged interfacial tractions, electric displacements, 
and magnetic inductions in Eq. (10) may be expressed in terms of the 
surface-averaged mechanical displacements, electric potential, and 
magnetic potential in Eq. (9) through the generalized local stiffness 
matrices. Towards this end, we first express the 25 unknown coeffi-
cients W q

.(..)
( ) in terms of the surface-averaged mechanical displacements, 

electric potential, and magnetic potential. The definition in Eq. (9) 

Fig. 1. Parametric mapping of a reference square subvolume in the co-
ordinate system onto a quadrilateral subvolume in the y y2 3 coordinate of the 
actual microstructure. 



provides 20 relations, which relates the first- and second-order coeffi-
cients W q

.(10)
( ) , W q

.(01)
( ) and W q

.(20)
( ) , W q

.(02)
( ) to the surface-averaged me-

chanical displacements, electric potential, magnetic potential as well as 
the zeroth-order coefficients W .q

.(00)
( ) The determination of the zeroth- 

order coefficients W q
.(00)
( ) within each subvolume requires 5 additional 

equations, which are obtained through the application of equilibrium 
equations and Maxwell equation in the large within each subvolume: 
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This eventually leads to a local system of equations which is sym-
bolically expressed as: 
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The generalized local stiffness matrices K q( ) are given explicitly by the 
subvolume geometry and material properties. 

2.3. Global stiffness matrix 

The unknown interfacial surface-averaged displacements, electric 
potential, and magnetic potential are determined by solving a global 
system of equations generated by first imposing traction, electric dis-
placement, and magnetic induction continuity conditions at common 
faces of adjacent subvolumes, followed by direct enforcement of fluc-
tuating mechanical displacement, electric potential, and magnetic po-
tential continuity conditions. The resulting global system of equations 
can be symbolically represented by: 

= Xˆ ¯ (13) 

where denotes the generalized global stiffness matrix, the vector ˆ is 
comprised of all unknown interfacial mechanical displacements, elec-
tric potentials, and magnetic potentials. The matrix represents the 
differences in the generalized local stiffness matrices of adjacent sub-
volumes. 

2.4. Homogenization 

Solution of the global system of equations, Eq. (13), produces the 
surface-averaged quantities Û . Thus, the generalized Hill's electro- 
magneto-elastic concentration matrices A q( ) for the qth subvolume is 
generated to relate the average strain, electric field and magnetic field 
to the macroscopic loading vectors (Chen et al., 2018a; Chen and Wang, 
2018): 

=X A X¯ ¯q q( ) ( ) (14) 

where the elements of the concentration matrix are determined by 
applying one component of the macroscopic strains, electric or mag-
netic fields at a time. Subsequently, the averaged macroscopic stresses, 
electric displacement and magnetic induction components for each RUC 
with a volume of V are calculated as: 
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where Vq and v q( ) are the volume and volume fraction of the qth

subvolume. Implementation of the localization equations, Eq. (14), and 
the volume-averaged constitutive relation in each subvolume yields the 
effective constitutive relations for the multiphase electro-magneto- 
elastic fibrous composites: 
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where Z is the effective matrix whose elements are functions of the 
subvolume geometry, constituent properties, as well as the electro- 
magneto-elastic concentration matrices. The structure of the matrix Z
is expressed as: 
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After solving the boundary value problems and establishing the ef-
fective constitutive equations, the effective electro-magneto-elastic 
coefficients and localized field distributions can be efficiently generated 
with the present technique. 

3. Electromagnetoelastic eshelby problem

In order to validate the MFVDAM theory, we develop the general-
ized Eshelby analytical solution for an electromagnetoelastic compo-
site, which describes an infinite piezoelectric-piezomagnetic material 
that is embedded with a distinct electromagnetic fiber and subjected to 
transverse far-field electric loading D̄2 (or magnetic loading B̄2 ). Using 
the transformation relations between the Cartesian and cylindrical co-
ordinates, the boundary conditions at infinity can be applied as: 
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The solution of the Eshelby problem for a composite electro-mag-
neto-elastic material that is composed of two different phases starts 
from the coupled constitutive relation in the cylindrical coordinate: 

Table 1 
Magnetoelectromechanical constants of constituent phases (Chan and 
Unsworth, 1989; Li and Dunn, 1998).       

CoFe2O4 BaTiO3 PZT-7A  

C11/GPa 269.1 162 131 
C12/GPa 169.6 77.99 74.2 
C13/GPa 169.6 77.99 74.2 
C22/GPa 285.7 166 148 
C23/GPa 172.7 76.97 76.2 
C33/GPa 285.7 166 148 
C44/GPa 56.49 44.5 35.9 
C55/GPa 45.3 43 25.3 
C66/GPa 45.3 43 25.3 
e11/Cm−2 0 18.6 10.99 
e12/Cm−2 0 −4.4 −2.324 
e26/Cm−2 0 11.6 9.31 
q11/Cm−2 699.7 0 0 
q12/Cm−2 580.3 0 0 
q26/Cm−2 550 0 0 

11/nCV−1m−1 −0.093 −12.6 2.081 
22/nCV−1m−1 −0.08 −11.2 3.984 
11/nCV−1m−1 0 0 0 
22/nCV−1m−1 0 0 0 

µ11/nCV−1m−1 −157 −10 0 
µ22/nCV−1m−1 590 −5 0 



Fig. 2. A repeating unit cell containing 0.05 fiber content in square array and a detailed close-up used for comparison with the generalized Eshelby solution for an 
inclusion embedded in an infinite matrix. 

Fig. 3. Comparison of selected local field distribution in the region occupied by the unit cell obtained from the generalized Eshelby and dilute multiphysics FVDAM 
solutions during far-field loading =D 1 C/m2

2 condition. 
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The stress equilibrium equations and the Maxwell conservation 
equations read: 
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The strain-displacement and electric/magnetic field-electric/mag-
netic potential relations can be expressed as: 
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Substitution of Eq. (21) into Eq. (19) and then into Eq. (20) leads to 
the generalized equilibrium equation and Maxwell equations in terms 
of the mechanical displacement, electric and magnetic potentials: 
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By solving Eq. (22), the solutions for the axial displacement, 
transverse electric and magnetic potentials are obtained as series ex-
pansions: 
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for the fiber (i = f) and matrix (i = m) phases, respectively. It should be 
pointed out that the higher-order terms are eliminated by 
comparing the internal functions in Eq. (23) and far-field 
boundary conditions in Eq. (18) within which only the first-order har-
monic terms (cos and sin ) are involved. In addition, we set 

= = = = = =H H F F G G 0f f f f f f
3 4 3 4 3 4 of Eq. (23) since the displacement, 

electric and magnetic potentials are bounded in the fiber domain. 
By employing Eqs. (19) and (21), the corresponding axial shear 

stress, inplane electric displacement, and magnetic induction are ex-
pressed as: 

Fig. 4. Comparison of radial electric displacement Dr , magnetic flux density Br , and shear stress zr , around the fiber/matrix interface obtained from the generalized 
Eshelby and dilute multiphysics FVDAM solutions. 
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Again, a comparison between Eq. (24) at infinity (r ) and the 
boundary conditions in Eq. (18) leads to 
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The remaining unknown coefficients are solved through applying 
the continuities at the fiber/matrix interface: 
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which leads to the following final system of equations: 
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The unknown coefficients can be determined from Eqs. (25) and 
(27). The solution is employed to validate the present MFVDAM tech-
nique in the next section. 

4. Numerical results

As explained in Sections 2-3, the MFVDAM enforces volume-aver-
aged equilibrium and conservation equations within each subvolume 
and adopts surface-averaged continuity conditions between adjacent 
elements (Fig. 1), while the finite-element methods are based on the 
variation of total Lagrange multipliers and node-to-node continuities. 

Fig. 5. Selected homogenized elastic moduli of a unidirectional BaTiO3/CoFe2O4 composite as a function of BaTiO3 volume content.  



Hence, the equilibrium equations and conservation equations are not 
satisfied at the element level in the FE simulation. Validating the 
FVDAM-generated results against the Multiphysics FEM and Eshelby 
solutions in both the effective response and localized elastic-electric- 
magnetic concentrations provides robust credence of the developed 
MFVDAM results. In the meantime, the computational efficiency and 

convergence of the present approach relative to the finite-element re-
sults are illustrated. 

The constituents of the fibrous composites studied in this section are 
composed of the CoFe2O4 matrix reinforced with piezoceramic BaTiO3 

fibers. The material constants found in the reference (Li and Dunn, 
1998) are listed in Table 1. It should be noted that although the 

Fig. 6. The effective piezoelectric and piezomagnetic coefficients of a unidirectional BaTiO3/CoFe2O4 composite as a function of BaTiO3 volume content.  



materials investigated herein are transversely isotropic, the MFVDAM 
admits fully anisotropic electro-magneto-elastic phases. 

4.1. Analytical verification 

The multiphysics FVDAM are firstly validated by comparison with 
the exact solution for a dilute case where an electro-magneto-elastic 

fiber is embedded in an infinite matrix which is further subjected to far- 
field loading conditions. This is the generalized Eshelby problem de-
scribed in Section 3. To simulate the far-field loading in the analytical 
solution, a square repeating unit cell with 5% fiber volume fraction is 
adopted in the MFVDAM simulation. The detailed mesh discretization is 
illustrated in Fig. 2 with a zoom-in screen of the meshes. 

In this situation, a far-field unit electric displacement is applied in 

Fig. 7. The dielectric, permeability and electromagnetic coefficients of a unidirectional BaTiO3/CoFe2O4 composite as a function of BaTiO3 volume content.  



the transverse direction =D 1 C/m2
2, where the resultant distributions 

of electric displacement D y y( , )2 2 3 , magnetic induction B y y( , )3 2 3 , as 
well as the axial shear stress component y y( , )12 2 3 are compared be-
tween the derived Eshelby solutions and MFVDAM predictions. As ob-
served in Fig. 3, the differences between the two computational ap-
proaches are almost invisible. We note that while the magnitude of 
electric displacement D y y( , )2 2 3 in the fibrous domain is much higher 
than that in the matrix phase, almost zero values are observed for the 
magnetic and stress fields in the fiber domain. In a more direct com-
parison, the converted radial electric displacement D y y( , )r 2 3 and 
magnetic induction B y y( , )r 2 3 , as well as the stress y y( , )zr 2 3 from the 
Cartesian coordinates are quantitatively compared at the fiber/matrix 
interface, Fig. 4. The MFVDAM simulation coincides with the exact 
solution almost everywhere of the entire angular position. A close look 
at the axial shear stress reveals a slight difference and the stress mag-
nitudes predicted by the Eshelby solutions are slightly larger than the 

MFVDAM results. The differences between the elasticity and numerical 
solutions can be attributed to the applied boundary conditions. While 
far-field separable loading condition is applied in the former case 
(Section 3), the periodic boundary conditions are implemented in the 
latter one (Section 2). We have verified that the difference vanishes 
when a smaller fiber volume fraction is utilized. 

4.2. Numerical verification 

After ensuring the accuracy of the localized stress/electric/magnetic 
field distributions, the MFVDAM-generated effective coefficients are 
tested against the in-house finite-element results (Chen and Wang, 
2020), which provide a gold standard. It is important to point out that 
the finite-element results have been generated in an uncompiled MA-
TLAB environment that mimics the unit cell solution methodology 
employed by the multiphysics FVDAM theory, where the mechanical 

Fig. 8. Discretizations of hexagonal unit cells with different mesh refinements.  

Table 2 
Comparison of the convergence between the present MFVDAM and finite element technique.            

Meshes Discretization Degrees of freedom Nonzero elements Density Execution timea/s 

MFVDAM MFEM MFVDAM MFEM MFVDAM MFEM MFVDAM MFEM  

A 180 1800 2700 32376 76430 0.9993% 1.0484% 1.86 4.65 
B 720 7200 10800 129271 305174 0.2494% 0.2616% 5.11 53.29 
C 2880 28800 43200 516815 1219535 0.0623% 0.0653% 162 846 

a Averaged based on three runs.  

Fig. 9. Nonzero element distributions in the global stiffness matrix for the type-C mesh.  



displacements, electric/magnetic potentials are expressed in terms of 
two-scale expansions and the continuity and periodic boundary condi-
tions are enforced at the common nodes of the adjacent elements. 
Therefore, the two sets of results may be compared on a one-to-one 
basis. We note that there are two fundamental differences between the 
finite-element and multiphysics FVDAM approaches in the manner of 
satisfying the governing differential equations and applying the con-
tinuity and periodicity conditions. Firstly, while the minimization of 
total potential energy within the finite-element framework leads to the 
ultimate satisfaction of the unit cell's global equilibrium and con-
servation with sufficient mesh refinement, the MFVDAM approach en-
forces equilibrium and conservation in the integral sense for every 
subvolume at each level of mesh refinement. Secondly, the continuity 
and periodicity conditions are enforced only on the adjacent nodal 
displacements and electric/magnetic potentials of the discretized unit 

cells in the finite-element approach, whereas the continuity and peri-
odicity conditions are applied on both the surface-averaged tractions, 
electric displacement, magnetic induction and mechanical displace-
ments, electric/magnetic potentials in the multiphysics finite-volume 
technique. 

First of all, selected homogenized elastic moduli were generated for 
a BaTiO3/CoFe2O4 material system with both square and hexagonal 
fiber configurations for fiber volume fractions in the range of 
V [0,0.65]f , Fig. 5. Perfectly matched results are obtained between the 
finite-element and finite-volume techniques, providing solid credence 
of the present technique. The selected moduli vary linearly with in-
creasing fiber content, including the transverse normal and shear 
moduli. 

Variations of the effective piezoelectric and piezomagnetic coeffi-
cients as a function of fiber content are illustrated in Fig. 6. The 

Fig. 10. Comparison of transverse magnetic flux densityB2 distribution with imposition of unit macroscopic. =B̄ 1 N/Am2

Fig. 11. Comparison of axial shear stress distribution 13 with imposition of unit macroscopic. =B̄ 1 N/Am2



piezoelectric/piezomagnetic coefficients are used to measure the con-
version between the mechanical energy and the electric/magnetic en-
ergy and they are thus important indicators for the energy-converting 
effect. Accurate prediction of the corresponding coefficients helps to 
understand the composites’ application in the smart structures. Since 
the BaTiO3 fiber is a piezoelectric material while the CoFe2O4 is a 
piezomagnetic material, the effective piezoelectric coefficients increase 
from zeros with the increase of the fiber volume fraction, while the 
effective piezomagnetic coefficients exhibit an opposite trend. 

More interesting results are generated in Fig. 7 for the dielectric, 
permeability, and electromagnetic coefficients. It is reported in the 
literature that the coupling electromagnetic coefficients ij, which are 
important to indicate the energy conversion between electricity and 
magnetism, are difficult to obtain for any monoclinic material. How-
ever, the present results suggest that the non-zero electromagnetic 
coefficients can be generated in composite materials even though the 
corresponding coefficients are zeros in either constituent, Table 1. Once 
again, the finite-volume and finite-element methods generate highly 
agreeable results. 

It is important to note that the microstructural effect is negligible on 
either mechanical or electric/magneto properties, especially at low and 
intermediate volume fractions. This is due to the fact that, for the 
present material system, the property contrast between the BaTiO3 and 
CoFe2O4 phases is insignificant. The array effect becomes noticeable at 
larger fiber-volume fractions where the fiber-fiber interaction is more 
pronounced. The multiphysics FVDAM is hence consistent with this 
observation, demonstrating the method is sufficiently sensitive to cap-
ture these small effects. 

We proceed to test the convergence of the multiphysics FVDAM for 
generating the local stress/magnetic/electric field distributions as a 
function of mesh discretization. Three different mesh discretizations are 
employed with progressively greater refinement. Fig. 8 illustrates the 
meshes of a hexagonal repeating unit cell with 180, 720, and 2880 
subvolumes, respectively, all of which are implemented into the in- 
house FE programs to generate reference results. The fiber volume 
fraction is fixed at 0.25 in this simulation. The corresponding degrees of 
freedom (DOFs) of the three meshes in the two computational ap-
proaches are listed in Table 2, where MFVDAM usually consumes two- 
thirds of the total DOFs by MFEM. Fig. 9 illustrates the non-zero ele-
ment distribution within the global stiffness matrix for the mesh C 
discretization. Due to the applied periodic boundary conditions, the 
global stiffness matrix is sparse but not banded. Therefore, inverting the 
global stiffness becomes more computationally demanding. The 
number of non-zero elements in the global system of equations of 
MFVDAM approach is drastically smaller than that of the MFEM of the 
same mesh discretization, with a concomitant decrease of density of the 
nonzero elements in the global system of equations in the case of 
MFVDAM calculation, hence an improvement in computational effi-
ciency. The execution time by the MFEM and MFVDAM based on three 
runs are enclosed in Table 2 for comparison. It is demonstrated that the 
MFVDAM sees a significant reduction in execution time relative to the 
MFEM in the case of the same mesh discretizations. 

What's more, the localized inplane magnetic induction B2 , as well as 
the out-of-plane shear stress component, 13 are illustrated in Figs. 10 
and 11, respectively. Similar to the previous cases, both the MFVDAM 
and eight-node FEM elements are employed for comparison. Due to the 

Fig. 12. Effect of interfacial bonding state on the electric displacement D3 distribution with imposition of unit macroscopic =B̄ 1 N/Am2 generated by the MFVDAM 
(left) and MFEM (right). 



higher-order internal trial functions employed in the finite-element 
scheme, the convergence of the local fields generated by the MFEM 
with mesh refinement is faster than that of MFVDAM technique. The 
MFVDAM technique requires a greater mesh discretization to achieve 
the same smoothness of the local stress/electric/magnetic fields as 
those of the MFEM, where the discontinuity of stress/field gradients 
becomes invisible only for the finest mesh discretization. Nonetheless, 
the basic characters of the local stress/magnetic/electric fields gener-
ated by the MFVDAM are captured with sufficient accuracy even in the 
case of a coarse mesh (Mesh A), providing additional evidence of the 
proposed multiphysics FVDAM technique. 

In the application of multiphysics composites, the interfacial 
bonding state plays an important role in affecting the localized re-
sponses and hence the homogenized properties of the composites. Based 
on the credence of the previous simulation, we further investigate the 
effect of interfacial microcracks on the electrical displacement D3 dis-
tribution of a square unit cell subjected to unit magnetic loading 

=B̄ 1 N/Am2 , Fig. 12. The fiber volume fraction is prescribed as 20%. A 
pair of symmetric cracks were prescribed along the ± °30 arc segment of 
the interface. The continuities of displacements and electric/magnetic 
potentials are no longer satisfied at the cracked interface. It is observed 
that the microcracks along the interface significantly affects the internal 
electric-displacement distributions. Meanwhile, a singular electric field 
appears at the crack tips, leading to further damage development. The 
FVDAM results coincide with the FEM prediction, even at the crack tips. 

4.3. Experimental verification 

Figures of merits are used to assess the utility of piezoelectric 
composites in specific application scenarios. Various parameters are 
defined to evaluate the performance of the piezoelectric composites 
(Chen et al., 2018a):  

a) The piezoelectric coupling constant: =k C C1 / ¯t 11 11 , where
= +C C e¯ /11 11 11 11.

b) The acoustic impedance =Z C̄11 , where is the density of the 
composite given by = +V V(1 )f f m f , where =i f m( , )i is
the density of either the fiber or matrix phase, Table 1.

c) The longitudinal acoustic velocity is related to material piezo-
electricity and density: =V C̄ /1 11 .  

d) The piezoelectric charge coefficient: = + +d d d dh 11 12 13, where
= =d e S i j( , 1,2,3)i j ji1 1 , and Sji is the effective compliance compo-

nent and calculated from =S C[ ] [ ] 1.

Fig. 13 compares all of the above four calculated parameters against
the experimental data (Chan and Unsworth, 1989) for PZT-7A/Araldite 
D composites. The elastic and piezoelectric properties of PZT-7A fiber 
are listed in Table 1 with the density of the PZT-7A prescribed as 
7700 kg/m3, while the properties of the isotropic Araldite D matrix are: 
Young's modulus =E 4.877GPa, Poisson's ratio =v 0.355 , and density 

= 1150kg/m3. It should be noted that the measured value d11 for a 
randomly chosen PZT-7A ceramic is 163–167 × 10−12 m/V. Hence, 

Fig. 13. Comparison of figure of merits generated by the in-house multiphysics FVDAM theory and experimental data (Chan and Unsworth, 1989).  



=e 12.2511 C/m2 (which corresponds to = ×d 167 1011
12m/V) was used 

in comparison with experimental data. A good agreement is obtained 
where the experimental data (open circles) are randomly distributed in 
the vicinity of the generated effective parameters (solid lines). For 
better engineering applications, a high piezoelectric coupling constant 
kt and a low acoustic impedance Z are desired to improve the 

performance of piezoelectric composites. Inspired from Fig. 13, in-
creasing the fiber volume fraction is capable of enhancing the piezo-
electric coupling constant kt until V 0.4f but with a diminishing rate. 
In the meantime, the acoustic impedance keeps increasing at almost a 
constant speed. The observed phenomenon also offers a general idea of 
designing the multiphysics composites through tailoring the micro-
structural details (such as fiber volume fraction and constituent prop-
erties) to achieve the optimal parameters, which is introduced in the 
next section. 

5. Application

The interaction between magnetism, electricity and elasticity in the
unidirectional piezoelectric-piezomagnetic composites produces a un-
ique property that reflects the magnetoelectric coupling effect. This 
suggests potential usage in magneto-electro-mechanical transducers 
and sensors. It has been already recognized that the fiber volume 
fraction has a remarkable influence on the magnetoelectric coupling 
coefficients of the composites. However, the change of these magne-
toelectric coupling coefficients in terms of the fiber volume fraction 
cannot be described using a simple formula. Herein, the identification 
of the accurate fiber volume fraction that yields the maximum mag-
netoelectric coupling coefficients is accomplished by incorporating the 
MFVDAM theory into the particle swarm optimization algorithm in 
order to avoid tedious computations in the traditional trial-and-error 
approach. The MFVDAM-driven particle swarm optimization algorithm 
facilitates the rapid search of the candidate solutions in all possible 
fiber volume fraction space via minimizing the objective function: 

= + +OBJ
f

a
f

a
f

a
1

11

2

22

3

33 (28) 

where fi are the weights of the three magnetoelectric coupling coeffi-
cients. Herein, we set = = =f f f1, 01 2 3 because the value of a22 and a33
are negligible when compared with the value of a11. The magnified a11
can thus be obtained by minimizing the objective function in Eq. (28). 

The particle swarm optimization is advantageous in the sense that it 
avoids the gradient matrix inversion that could cause numerical in-
stability and instead adopts the concept of social behavior of birds/ants 
in the process of food search. The general idea is to initiate a group of 
swarm population whose positions are the initial candidate solutions 
that will be optimized. For instance, the i-th particle of the population is 
denoted by its position xm and moving velocity vm, respectively. The 

Fig. 14. Updating algorithm of the MFVDAM-based optimization.  

Fig. 15. Illustration of computational efficiency of the optimization: (a) objective function as a function of iteration numbers and (b) convergence of population after 
four iteration steps. 



initial position of the i-th particle carries the information of the guessed 
fiber volume fraction. The updating algorithm of the i-th particle at k 
+1-th iteration is thus expressed as: 

= ++ +x x vm
k

m
k

m
k1 1 (29) 

where the moving velocity consists of three components, including its 
velocity at k-th iteration, the i-th particle's local best experience and the 
population's global best experience: 

= + ++v wv c p x c g x[ rand()( ) rand()( )]m
k

m
k

m
k

m
k

m
k

m
k1

1 2 (30) 

where pm
k and gm

k are the local and global best experiences, respectively. 
c1 and c1 are the acceleration numbers, respectively. rand() is a random 
number between [0,1]. w is weight factor to constrain the velocity of 
the last step and is defined in terms of its initial and final values. is 
introduced in Eq. (30) to ensure convergence by tailoring the updating 
distance. 

A group of 15 particles is created within a range between [0,0.75], 
each particle represents the potential value of the parameter to be op-
timized – fiber volume fraction. A maximum of 20 iterations is set as the 
stopping criterion to prevent the ceaseless loop. The detailed updating 
algorithm is referred to Fig. 14. In this particular situation, we set the 
error tolerance as 0.01, which is an extremely demanding case, and thus 
the optimization procedure is continuously updated until the maximum 
iteration number is reached. A final optimized fiber volume fraction of 

=V 0.4429f optimum is obtained as the magnetoelectric coupling coeffi-
cient is magnified to 2.789 CV−1m−1 from zeros from both composite 
phases. Fig. 15 tests the optimization's computational efficiency by 
generating the objective function as a function of iteration numbers and 
illustrating the population's locations after several different iteration 
steps. It is seen that the optimization is almost converged to a value of 
OBJ = 0.3586 after the fourth iteration, which is also proved by  
Fig. 15(b) where a few particles already reach the lowest point after the 
5-th iteration and all particles converge to the same point after the final 
iteration. 

6. Summary and conclusions

The 0-th order finite volume direct averaging micromechanics is
extended with fully coupled piezoelectric-pizeomagnetic capabilities to 
simulate the effective and localized responses of periodic unidirectional 
composites. For composites with generalized constituents, the present 
theory admits fully anisotropic material constitutive relationship for 
subvolumes. The repeating unit cells (RUCs) with square or hexagonal 
geometry are adopted to mimic different fiber arrangements. The pre-
sent MFVDAM theory is validated against the in-house higher-order 
finite elements and generalized Eshelby technique. The computational 
efficiency of the MFVDAM is tested by directly comparing against the 
in-house MFEM in the effort of implementing mesh discretization, 
stiffness matrix densities as well as the execution time. It is concluded 
that the present MFVDAM can significantly enhance the computational 
effort without sacrificing accuracy. We also conclude that the electro-
magnetic coupling coefficients can be generated by combining pure 
piezoelectric and piezomagnetic constituents, which offers more flex-
ible options in the design of electric-magnetic conversion micro-
machines. 
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