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Abstract 

It is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the 

manufacturing processes, initial defects, such as inclusions and voids, are commonly present in the produced sheet metals. Plastic 

anisotropy is a direct outcome of the rolling process, where the resulting metal sheets exhibit preferred crystallographic 

orientations or strong texture. In the present study, the combined effect of plastic anisotropy and damage on localized necking is 

numerically investigated and analyzed. To this aim, an improved version of the GursonTvergaardNeedleman (GTN) 

constitutive framework is used to model the mechanical behavior of the studied sheet. This version, which is an extension of the 

original GTN model, incorporates Hill’s anisotropic yield function to take into account the plastic anisotropy of the matrix 

material. Particular attention is devoted to the derivation of the analytical tangent modulus associated with this constitutive 

model. This extended GTN model is successfully coupled with bifurcation theory to predict sheet metal ductility limits, which 

are represented in terms of forming limit diagrams (FLDs). The effect of some material parameters (e.g., anisotropy parameters 

of the metallic matrix) on the shape and the location of the predicted FLDs is then investigated and discussed through numerical 

simulations. 
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1. Introduction 

Sheet metal forming is one of the most used processes in manufacturing industries. This process involves plastic 

deformation of metallic sheets and is designed to obtain complex parts with fast cadence. Nevertheless, it happens 

that localized necking occurs in the drawn part before the end of forming operations. The onset of this localized 

necking represents the ultimate deformation that the drawn part can undergo, since this phenomenon is often 

precursor to material failure. Hence, efficient and reliable prediction of the occurrence of localized necking is 

required to help in the calibration of the process controlling parameters. The most common representation for the 

necking limit strains relies on the concept of forming limit diagram (FLD), which was initially proposed by Keeler 

and Backofen (1963). The prediction of such diagrams requires the combination of a plastic instability criterion and 

a constitutive model that describes the mechanical behavior of the studied sheet. Our attention in this paper is 

focused on materials exhibiting plastic anisotropy. Such anisotropic behavior is due to rolling operations, which are 

performed before the forming process. It is expected that plastic anisotropy plays a crucial role in the prediction of 

localized necking in sheet metals. Hence, accurate predictions of strain localization are needed, especially for 

anisotropic materials and for complex loading paths. The onset of localized necking may occur as a bifurcation from 

a homogeneous deformation state or it may be triggered by some assumed initial imperfection. Accordingly, two 

main classes of strain localization criteria can be found in the literature: 

 Imperfection approach: This approach has been initially developed by Marciniak and Kuczynski (1967). It is 

based on the assumption that an initial imperfection exists in the form of a narrow band across the section of 

the studied sheet. This approach, denoted hereafter as MK approach, has been first applied to rigid-plastic 

materials following the von Mises isotropic yield function. Then, the MK approach has been extended to 

take into account the plastic anisotropy of the metal sheets, by considering different formulations for the 

adopted yield functions. In this context, one can quote the work of Butuc et al. (2002), who used the Barlat 

yield function (Barlat, 1987), Cao et al. (2000), who used the Karafillis and Boyce yield function (Karafillis 

and Boyce, 1993), and Kim et al. (2003), who used the YLD 2000. In spite of the over-sensitivity of its 

predictions to the initial imperfection value, the MK approach has attracted a great deal of attention in both 

academic and industrial applications, due to its pragmatic character. 

 Bifurcation theory: In addition to its sound mathematical foundations, the bifurcation theory does not require 

any fitting parameter, such as the initial imperfection needed in the M–K analysis. This theory has been 

initially applied by Hill (1952) to materials obeying flow theory of plasticity. In the latter case, both 

hardening and plasticity were assumed to be isotropic. To predict ductility limits at realistic strain levels for 

the whole range of strain paths (i.e., from the uniaxial tensile state to equibiaxial tension), the bifurcation 

approach must be combined with constitutive models exhibiting some destabilizing effects. The development 

of such destabilizing effects may be due to the application of the deformation theory of plasticity (see, e.g., 

Stören and Rice, 1975), or the use of the Schmid law within the framework of crystal plasticity (see, e.g., 

Franz et al., 2013). This destabilizing effect may also be due to some softening behavior introduced in the 

constitutive modeling through coupling with damage (Mansouri et al., 2014). To account for the effect of 

plastic anisotropy on localized necking predictions, the constitutive models are usually coupled with 

anisotropic yield criteria. In this field, one can quote Hill’48 yield function, which has been coupled with the 

deformation theory of plasticity in Jaamialahmadi and Kadkhodayan (2011), and with the Lemaitre damage 

model in Haddag et al. (2009). This coupling allows analyzing the effect of plastic anisotropy on the shape 

and the level of FLDs predicted by bifurcation theory. The main objective of the present contribution is to 

expand these earlier investigations by coupling an improved version of the GursonTvergaardNeedleman 

(GTN) damage model with the bifurcation theory. This improved version extends the original one to take into 

account the plastic anisotropy of the matrix material. The Hill’48 yield function is used to model this plastic 

anisotropy.  

The present paper is organized as follows: 

 In Section 2, the constitutive equations describing the improved GTN model are presented. 

 Section 3 details the coupling between the bifurcation theory and the improved GTN model. 
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 The various numerical predictions are presented in Section 4.  

 

Nomenclature 

K , 
0
ε , n  Swift’s hardening parameters of the dense matrix  

pε   equivalent plastic strain of the dense matrix 

σ  flow stress of the dense matrix 
p

D  macroscopic plastic strain rate tensor (dense matrix+voids) 

γ   plastic multiplier 

Σ  macroscopic Cauchy stress tensor 

F,G,H,L,M,N  Hill’s matrix components 

Η  Hill’s anisotropy matrix  

0
r , 

45
r ,

90
r  Lankford’s coefficients  

q  anisotropic equivalent stress 

m
Σ  hydrostatic part of the macroscopic stress Σ  

1
q , 

2
q ,

3
q  damage constants 

GTN
Φ  yield function of the improved GTN model 

f  total void volume fraction (also called porosity) 

c
f  critical void volume fraction 

F
f  final void volume fraction 

g
f  volume fraction of grown voids 

n
f  volume fraction of nucleated voids 

N
f  volume fraction of inclusions tending to nucleate 

u
f  ultimate void volume fraction 

*f  modified volume fraction of voids 

N
ε   equivalent plastic strain for which half of inclusions have nucleated 

N
s   standard deviation on 

N
ε  

e
C  fourth-order elasticity tensor  

ep
C  elastic-plastic tangent modulus 

L  analytical tangent modulus  

I  second-order identity tensor  

2. Constitutive equations 

In this work an improved GTN model is used to take into account the plastic anisotropy of the matrix. In addition 

to the classical equations that are common to conventional elastic-plastic constitutive models (i.e., decomposition of 

the deformation into elastic and plastic parts, hypo-elastic law…), the current version of GTN model is defined by 

the following supplementary equations: 

 The expression of the yield function: 

2

2 1* *22 m

GTN 1 3

q Σq
Φ q f cosh q f

σ κσ

  
     
   

,  (1) 
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where q  and 
m

Σ  are equal to : : / 2Σ Η Σ  and  tr / 3Σ , respectively, while κ  is a coefficient reflecting the 

plastic anisotropy effect and which depends on 
0

r , 
45

r  and 
90

r  through coefficients 
i

h  (Benzerga and Besson, 2001): 

1.6 0.8
    

      
    

1 2 3

1 2 2 3 1 3 4 5 6

h h h 1 1 1
κ

h h h h h h h h h
. (2) 

The matrix   used to compute the anisotropic equivalent stress q  is expressed by the following relation: 

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

G H H G

H H F F

G F F G

N

L

M

   
 
  

 
   

  
 
 
 
  

 . (3) 

The components F,G,H,L,M  and N  are related to the 
0

r , 
45

r  and 
90

r  coefficients by the following relations: 

   
 

0 90 45

90 0

2 13
; ; ; ;

1 2 2 1

 
     

 

0

90 0 0

r r rrH H
F G H L M N

r r r r r
. (4) 

As demonstrated by Eq. (1), the yield surface strongly depends on the plastic anisotropy of the matrix material. 

This dependency is reflected by the introduction of Hill’s matrix Η  into the expression of the equivalent stress q , 

on the one hand, and by the introduction of the scalar parameter κ  into the 'cosh', on the other hand. It must be 

noted that when coefficients 
0

r , 
45

r  and 
90

r  are equal to 1 (case of isotropic materials), the classical GTN yield 

surface is obviously recovered. Indeed, in this particular case, the scalar functions q  and κ  become equal to 

(3 / 2)
d d

:Σ Σ  (
d
Σ  being the deviatoric part of Σ ) and 2, respectively. 

The expression of 
*f  is given by the empirical formula introduced in Tvergaard and Needleman (1984). 

 The evolution of void volume fraction: the porosity rate f  is additively decomposed into nucleation and growth 

contributions, denoted 
n

f  and 
g

f , respectively: 

   
2

1
exp 1

22

p

p pN N

n g

NN

f
f f f f tr

ss

 




  
       
   

D , (5) 

where 
p

D  is related to 
GTN

Φ  by the normality rule: 

p GTN
Φ







D
Σ

. (6) 

 The expression of the flow stress   of the fully dense matrix, which is defined by the Swift law:  

  0

n
pK    .  (7) 
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 The equivalence between the rates of macroscopic and microscopic (matrix) plastic work:  

 1  p pf    Σ D . (8) 

3. Bifurcation approach 

The bifurcation theory (see, e.g., Rice, 1976) is used to predict the onset of plastic strain localization in the 

studied sheet metals. In this approach, bifurcation should be interpreted as the occurrence of a nonhomogeneous 

strain mode, in the form of an infinite localization band defined by its normal n , within a continuous medium that 

is subjected to a homogeneous strain state. Making use of the equilibrium and compatibility conditions, it is possible 

to derive the following localization criterion, namely the singularity of the acoustic tensor, which only involves the 

normal n  to the localization band and the analytical tangent modulus L :  

 det 0 .  . n L n . (9) 

The analytical tangent modulus L  is related to the elastic-plastic tangent modulus ep
C  by: 

1 2 3   ep
L C C C C , (10) 

where 1C , 2C  and 3C  are fourth-order tensors that can be expressed, after some mathematical derivations, as: 

   1 2 3

1 1
; ;

2 2
    ijkl ij kl ijkl jl ik jk il ijkl ik jl il jkΣ δ δ Σ δ Σ δ Σ δC C C . (11) 

The elastic-plastic tangent modulus ep
C  is determined by expressing the improved GTN yield function and the 

plastic multiplier in the Kuhn–Tucker form as follows: 

0 ; 0 ; 0.GTN GTNΦ γ Φ γ    (12) 

This form is convenient because it reveals that there is no plastic flow (i.e., 0γ ) when 0GTNΦ  , while a strict 

plastic loading (i.e., 0γ ) necessarily implies that = 0GTNΦ  and = 0GTNΦ . The latter represents the consistency 

condition, and can be developed as follows: 

: 0*

*

GTN σ f
Φ V σ V f   

Σ
V  . (13) 

The derivatives ,  σV
Σ

V  and *f
V  are obtained analytically in the following forms: 

** 2

2 1 2 21 2

2

*2
1 3

3 32 : 2
+ sinh ; 3 sinh

3
2 cosh .*

m m m

m

f

q Σ q q f Σ q Σq q f q
V

q Σ
V q q f


         

 

      
            

      

  
    

  

Σ

H
V




 (14) 

The rate form of the hypo-elastic law allows us to express the stress rate in terms of the plastic multiplier γ : 
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 : :e epγ  
Σ

Σ C D V C D . (15) 

After some mathematical derivations involving the normality rule (6) and Eqs. (13-15), the elastic-plastic tangent 

modulus is obtained as follows: 

   : :e e

ep e

γH


 

Σ Σ
C V V C

C C , (16) 

where γH  is defined by the following relation: 

   
 *

: :
: : 1 :

1 1

σ p
e n

γ GTNf

V
A

H V f
f f



 
 


         

Σ Σ
Σ Σ Σ

V V
V C V V

 
 .  (17) 

4. Results and discussion 

The constitutive equations of the improved GTN model are numerically integrated, using a fully implicit time 

integration scheme (Ben Bettaieb et al., 2011), and implemented into the ABAQUS finite element (FE) code via a 

user material subroutine UMAT. To predict the ductility limits, the bifurcation condition (9) is combined with the 

above constitutive equations and checked at every time increment. In practice, localized necking is predicted when 

this condition of singularity of the acoustic tensor is verified. The material parameters of the GTN model and of the 

hardening law are those adopted for an AA5182 sheet metal according to Mansouri et al. (2014). These parameters 

are summarized in Table 1.  

Table 1. Values for GTN material parameters. 

E [GPa] ν n K (MPa) 0  0f  cf  Ff  1q  2q  3q  Ns  N  Nf  

70 0.33 0.17 371.2 0.00324 10-3 0.00213 0.15 1.5 1 2.15 0.1 0.27 0.035 

A sensitivity analysis is performed to investigate the effect of the Lankford coefficient 0r  on the ductility limits. 

In this parametric study, three different sets of Lankford coefficients are considered. The first set, referred to as Set 

1, assumes isotropic behavior for the AA5182 material. In order to emphasize the effect of 0r  on the ductility limits, 

this 0r  Lankford coefficient is varied by setting its value to 1.4 and 0.7, which correspond to Set 2 and Set 3 

respectively, as shown in Table 2. 

Table 2. Selected sets of Lankford coefficients associated with Hill’48 quadratic yield criterion. 

Lankford coefficients 
0

r  
45

r  
90

r  

Set 1 (isotropic) 1 1 1 

Set 2 1.4 1 1 

Set 3 0.7 1 1 

 

Fig. 1(a) shows the evolution of the analytical tangent modulus component 1111L  for the different sets of 

Lankford coefficient 0r , in the case of equibiaxial tensile loading path. The observed trends for the evolution of 

1111L  are quite similar until a value of 0.05 for the macroscopic strain component 11E , which corresponds to the 

onset of coalescence. Starting from this strain threshold, a rapid drop of the stiffness occurs, and differences are 

evidenced gradually between the isotropic profile and the others. Fig. 1(b) shows the evolution of the minimum of 

the determinant of the acoustic tensor, min(det( . . ))n L n , with respect to the logarithmic longitudinal strain for 

equibiaxial tensile loading path. This function, denoted min(det( . . ))n L n , represents the minimum of the 
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determinant of the acoustic tensor over all possible orientations for the normal n  to the localization band, and it 

illustrates the evolution of the bifurcation indicator until strain localization is detected. Hence, earlier strain 

localization is recorded for the largest Lankford coefficient 0r , due to premature void coalescence. To confirm this 

trend, further simulations are performed for the whole range of strain paths, and the corresponding FLDs are plotted 

for the different sets of Lankford coefficients considered.  

   
(a)        (b) 

Fig. 1. Prediction of strain localization during equibiaxial tensile loading path. (a) Component L1111 with the longitudinal strain E11. (b) Evolution 

of the minimum of the determinant of the acoustic tensor with the longitudinal strain E11. 

Fig. 2(a) reveals, through plots of complete associated FLDs, a strong dependence of the ductility limit on the 

Lankford coefficient 0r . These observed effects of plastic anisotropy are more significant for negative strain paths. 

By contrast, they are less pronounced for plane strain and equibiaxial tension, although still noticeable. As has been 

shown previously, the initiation of strain localization is strongly dependent on the void volume fraction f , through 

the expression of the analytical tangent modulus L  (see Eqs. (10)(17)). The evolution of the porosity f  depends 

in turn on the Lankford coefficients, as expected and demonstrated in Fig. 2(b). This explains the sensitivity of the 

shape and the level of the predicted FLDs to the plastic anisotropy. 

 

   
(a)      (b) 

Fig. 2. (a) FLDs obtained for linear strain paths applied along the rolling direction, and (b) evolution of the volume fraction of voids for different 

values of Lankford coefficient 
0r  for the case of equibiaxial tensile state. 
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Conclusions 

An extended GTN model accounting for plastic anisotropy effects has been numerically integrated, using an 

implicit time integration scheme, and successfully implemented into the FE code ABAQUS. In order to predict 

FLDs for sheet metals under in-plane biaxial stretching, the current version of GTN model has been coupled with 

the bifurcation approach. The predicted FLDs show a strong dependence to the Lankford coefficient 0r , especially 

in the negative strain-path range.  Less pronounced, but still noticeable effects on the ductility limits are observed in 

the positive strain-path range, suggesting different damage behavior depending on the variation of 0r . These 

findings indicate that the predicted ductility limits may be quite different for a given loading path, depending on the 

values of Lankford coefficients. For anisotropic sheet metals, it is well known that the consideration of the effect of 

plastic anisotropy on the ductility limits is crucial in order to determine the actual conditions of strain localization 

and subsequent failure. 
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