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Abstract 

During the last decades, a family of assumed-strain solid−shell finite elements has been developed with enriched benefits of solid and shell 

finite elements together with special treatments to avoid locking phenomena. These elements have been shown to be efficient in numerical 

simulation of thin 3D structures with various constitutive models. The current contribution consists in the combination of the developed linear 

and quadratic solid−shell elements with complex anisotropic plasticity models for aluminum alloys. Conventional quadratic anisotropic yield 

functions are associated with less accuracy in the simulation of forming processes with metallic materials involving strong anisotropy. For 

these materials, the plastic anisotropy can be modeled more accurately using advanced non-quadratic yield functions, such as the anisotropic 

yield criteria proposed by Barlat for aluminum alloys. In this work, various quadratic and non-quadratic anisotropic yield functions are 

combined with a linear eight-node hexahedral solid−shell element and a linear six-node prismatic solid−shell element, and their quadratic 

counterparts. The resulting solid−shell elements are implemented into the ABAQUS software for the simulation of benchmark deep drawing 

process of a cylindrical cup. The predicted results are assessed and compared to experimental ones taken from the literature. Compared to the 

use of conventional quadratic anisotropic yield functions, the results given by the combination of the developed solid−shell elements with 

non-quadratic anisotropic yield functions show good agreement with experiments. 
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1. Introduction

Finite element simulation of sheet metal forming processes 

is of utmost importance in the field of manufacturing processes 

being involved in wide spectrum of products. During the last 

three decades, the development of the numerical techniques has 

enabled us to predict more accurately the material behavior 

during the sheet metal forming process. Moreover, quantitative 

analyses of accuracy of the numerical results show that the 

choice of constitutive models, which are used in the simulation, 

has a significant influence on the accuracy of the predicted 

results. Keeping in the view, advanced material models, which 

are coupled with efficient finite elements, prove to be optimum 

solution for the numerical description of complex 

manufacturing processes, such as sheet metal forming. 

During the last few decades, considerable effort has been 

devoted to the development of solid−shell finite elements for 

the simulation of thin 3D structures [1-4]. These elements have 

inherent combined advantages of both shell and solid 

traditional elements. Recently, a family of solid−shell (SHB) 

elements has been developed consisting of linear hexahedral 

(SHB8PS) and prismatic (SHB6) solid−shell elements and their 

quadratic versions (SHB20 and SHB15, respectively) [3,5-8]. 

These elements have been found to be performing significantly 

good for thin structure problems [9-12]. 

In this paper, the basic formulation of the SHB elements is 

summarized first; then, different anisotropic plasticity 

functions, both quadratic (i.e., Hill’48) and advanced non- 

quadratic (YLD-91, YLD2004-18P) are presented and 

combined with SHB element to assess their performance for 

the simulation of deep drawing of a cylindrical cup. 

2. Formulation of SHB Solid−Shell elements

In this section, a unified formulation for all SHB solid–shell 

elements is briefly presented. More details for the formulation 

of each SHB element can be found in [3,5-8]. 

The geometry and location of integration points for 

SHB8PS, SHB6, SHB20, and SHB15 elements are shown in 

Fig. 1. The special direction ζ is chosen to represent the 

thickness direction, along which an arbitrary number of 

integration points can be arranged. Usually, for non-linear tests 

involving large strain and plasticity, which is the case of the 

benchmark tests in this paper, five integration points through 

the thickness are recommended [5]. see Fig. 1. 



(a) SHB6   (b) SHB8PS 

(c) SHB15    (d) SHB20 

Fig. 1. Geometry and location of integration points for SHB elements: (a) 

linear prismatic element SHB6 (b) linear hexahedral element SHB8PS (c) 

quadratic prismatic element SHB15 (d) quadratic hexahedral element SHB20. 

The SHB elements are formulated using classical 

isoparametric linear and quadratic interpolation functions for 

standard hexahedral and prismatic elements. Accordingly, the 

three-dimensional position and displacement of any point 

inside the element, xi and ui (i=1,2,3) respectively, can be 

defined using the shape functions NI (I= 1, 2…..., n) as: 
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where xiI and diI denote the Ith nodal coordinate and 

displacement, respectively. The lowercase subscript i 

represents the spatial coordinate directions, while n indicates 

the number of nodes per element. 

The discrete gradient operator B defining the relationship 

between the strain field ( )s u  and the nodal displacement

field d is given by: 

( )s = B du   (3) 

The SHB element formulation is based on the assumed-

strain method, which corresponds to the simplified form of the 

Hu–Washizu variational principle [13]: 

( ) 0
e

T T extd  


=  −  = σ d f   (4) 

where   represents a variation, ε  the assumed-strain rate, σ 

the Cauchy stress tensor, d  the nodal velocities, and ext
f the 

external nodal forces. The assumed-strain rate ε  is defined 

using a B matrix, which is obtained by projecting the classical 

discrete gradient operator B involved in Eq. (3): 

= ε B d           (5) 

Inserting Eq. (5) into the variational principle (Eq. (4)), the 

element stiffness matrix eK and internal force vector int
f can 

be derived as: 

e

T ep

e GEOMd +


=   K B C B K       (6) 

e

int T d


=  f B σ  (7) 

where the additional term GEOMK in the expression of the 

stiffness matrix originates from the non-linear part of the strain 

field and is commonly called geometric stiffness matrix, while 
ep

C  is the elastic–plastic tangent modulus associated with the 

material behavior law. 

In addition to the basic formulation of the SHB elements 

described above, some special treatments are required for the 

linear SHB8PS and SHB6 elements in order to improve their 

performance. In particular, a physical stabilization matrix, 

computed in a co-rotational coordinate frame [5], is used in the 

formulation of the SHB8PS element in order to control the 

zero-energy modes, which are inherent in the reduced-

integration technique. Furthermore, an appropriate projection 

of the strains is required to eliminate some locking phenomena, 

for the linear SHB6 and SHB8PS elements [5-6]. 

3. Constitutive equations

The numerical simulation of sheet metal forming processes 

requires an accurate description of the plastic anisotropy of 

sheet metals. In order to improve the predicted results, with 

respect to experimental ones, several anisotropic yield 

functions have been proposed in the literature. In 1948, Hill 

introduced the Hill’48 quadratic anisotropic yield function, 

which is a generalization of the von Mises yield surface [15]. 

Hill'48 criterion is nowadays one of the most well-known 

anisotropic yield criteria, and due to its simplicity, it remains 

as one of the most widely-used yield surfaces for the 

description of the plastic anisotropy of sheet metals. However, 

it presents some limitations (being planar anisotropy) for 

highly anisotropic metals, such as aluminum and titanium 

alloys, involving the so-called anomalous behavior [16]. 

Moreover, having a small number of material parameters, 

Hill’48 yield surface is unable to predict more than 4 ears in the 

simulation of deep drawing of a cylindrical cup with highly 

anisotropic materials [17]. The occurrence of more than four 

ears, which is proved by experimental observations for highly 

anisotropic sheets, can be predicted only by specific yield 

surfaces. The latter are based on several anisotropy 

coefficients, which are identified along different planar 

directions. 

Over the years, Hill has proposed some non-quadratic yield 

criteria with the aim to properly describe the anisotropy of 

aluminum alloys [18-20]. Using the concept of linear 

transformations (i.e., substituting the stress tensor by a 

modified stress tensor by means of weighting coefficients), 

Barlat et al. [21] proposed an extension of the isotropic Hershey 

criterion to orthotropic symmetry, namely Yld91 yield surface, 

within the framework of three-dimensional formulation. 

Subsequently, Barlat et al. [22] developed a yield criterion 

restricted to plane-stress conditions, with eight anisotropy 



coefficients and using two linear transformations on the 

Cauchy stress tensor (namely Yld2000-2d yield criterion). 

Later, Barlat et al. [23] proposed a criterion within the 

framework of three-dimensional formulation, namely 

Yld2004-18p yield criterion, using 18 anisotropy coefficients. 

This high number of anisotropy coefficients was considered 

also by means of two linear transformations. Due to its high 

number of anisotropy coefficients, Yld2004-18p yield criterion 

can correctly predict the behavior of highly anisotropic metals, 

as shown by Yoon et al. [17]. Several other non-quadratic 

anisotropic yield criteria were also proposed in the last decades, 

as can be found in the literature [24-29]. 

In this work, the formulations of the SHB elements are 

coupled with various quadratic and non-quadratic yield 

functions, within the framework of a fully three-dimensional 

approach, for the simulation of deep drawing of a cylindrical 

cup with aluminum alloy. 

3.1. Constitutive Modeling of yield function 

The total strain rate tensor D  can be additively decomposed 

into elastic e
D  and plastic p

D  parts as follows: 

e p= +D D D         (8) 

In the local material frame, the Cauchy stress rate can be 

expressed using the following hypo-elastic law: 

: ( )e p= −σ C D D                         (9) 

where σ  is rate of Cauchy stress tensor and 
e

C  is the fourth-

order elasticity tensor. The general form of the plastic yield 

surface F can be written as: 

F = 0eqσ Y−      (10) 

where eqσ  is the equivalent stress, which depends on the 

plastic yield criterion. The isotropic hardening of the material, 

which characterizes the size of the yield surface, is modeled by 

the scalar function ( )plY  , function of the equivalent plastic 

strain 
pl . 

The plastic strain rate tensor p
D  is defined using the 

classical plastic flow rule, which follows the normality law 

with respect to the yield surface: 

Fp  


= =


D V
σ

          (11) 

where   and V  represent the plastic multiplier and the plastic 

flow direction, respectively. 

The plastic multiplier   is determined by using the 

consistency condition F 0= , which leads to the following 

expression: 

: :

: :
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where the scalar YH  is the hardening modulus involved in the 

evolution of the isotropic hardening. 

Finally, by substituting the expression of the plastic 

multiplier   into the hypo-elastic law (9), the elasto-plastic 

tangent modulus is derived as: 
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4. Anisotropic yield functions

The present work focuses on the combination of the SHB 

elements with the following fully three-dimensional 

anisotropic yield surfaces: the quadratic Hill’48 yield surface 

for general anisotropic sheet metals, and non-quadratic 

anisotropic yield functions, namely YLD-91 [21] and 

YLD2004-18P [23], which are more suitable for the modeling 

of plastic anisotropy of aluminum alloys. Brief description of 

each yield function is first presented in this section. Then, they 

are implemented into ABAQUS software, in conjunction with 

SHB elements, for the simulation of deep drawing process with 

a cylindrical cup. 

4.1. Barlat’s YLD-91 yield surface 

Barlat et al. [21] proposed the YLD-91 plastic yield surface, 

which is based on a linear transformation of the Cauchy stress 

tensor. Its expression writes: 

2 2 3 3 11F | | | | | | 2 0a a a aS S S S S S Y−= + + − − −  (14) 

where 1S , 2S  and 3S  are the principal values of tensor S , 

which is defined as a linear transformation of the Cauchy stress 

tensor σ : 

=S Lσ            (15) 

where L  contains six constant coefficients, which describe the 

plastic anisotropy of sheet metals. The expression of this linear 

transformation is given by 
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Hosford [30] and Logan and Hosford [31] have shown that 

the exponent “a” in Eq. (14) can be equal to 6 and 8 for BCC 

and FCC metals, respectively. It is worth noting that, when 

exponent 2a =  (or 4) and all coefficients wi are equal to one, 

the YLD-91 yield function reduces to the isotropic von Mises 

yield surface. 

4.2. Barlat’s YLD-2004-18P yield surface 

Later, Barlat et al. [23] proposed a 3D yield function that 

involves 18 anisotropy coefficients, which describes accurately 



plastic anisotropy of sheet metals. Compared to the YLD-91 

yield surface, the non-quadratic YLD-2004-18P yield function 

is based on two linear transformations of the Cauchy stress 

tensor. Its expression writes: 
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where (1)

1S , (1)

2S  and (1)

3S  are the principal values of the first 

linearly transformed stress tensor 
(1)

S , while (2)

1S , (2)

2S  and 

(2)

3S  are the principal values of the second linearly transformed 

stress tensor 
(2)

S . The latter write: 

k (k)=( )
S L S ,        where k =1,2   (18) 

where S = Tσ  is the deviatoric part of the Cauchy stress, 

defined using the transformation matrix T, which is expressed 

below using voigt’s notation: 
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The two transformation matrices (1)
L  and (2)

L  used for the 

two linear transformations contain 18 anisotropy coefficients, 

and their expressions are: 
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It should be noted that, by using the same values of 

coefficients for both transformation matrices 𝐿𝑘 , the yield

function YLD 2004-18P reduces to the YLD91 yield surface 

accounting for only one linear transformation. Note also that, 

when the ci anisotropy coefficients in Eqs. (20) and (21) are all 

equal to one and 2a =  (or 4), the YLD2004-18P yield surface 

reduces to the isotropic von Mises yield function [15]. 

4.3. Hill’48 quadratic yield surface 

Hill [14] developed a quadratic yield function for plastic 

anisotropy, which is an extension of the von Mises yield 

criterion. The quadratic yield function has the following form: 

2 2 2
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where F, G, H, L, M and N are the Hill anisotropy coefficients, 

which are function of the Lankford coefficients as follows: 
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It is worth noting that, the Hill’48 yield function reduces to 

the isotropic von Mises yield surface when 1 2F G H= = =  

and 3 2L M N= = = . Note also that, being planar orthotropic 

criterion, the quadratic Hill’48 yield criterion is unable to 

capture the anisotropy at varying angles to the rolling direction 

other than 00, 450 and 900. Due to a smaller number of 

anisotropy coefficients, Hill’48 yield surface can predict only 

four ears in the simulation of deep drawing of a cylindrical cup. 

5. Simulation of deep drawing of a cylindrical cup

5.1.  Description of the finite element model 

The above anisotropic yield criteria have been combined 

with the formulation of SHB elements presented in section 2. 

The resulting solid−shell elements have been implemented into 

the finite element code ABAQUS/Standard. The performance 

of the SHB elements is assessed in this section through the 

simulation of deep drawing process of a cylindrical cup, 

involving large strain, anisotropic plasticity, and double-sided 

contact. The predicted results with SHB elements are compared 

both with those given by ABAQUS linear solid element with 

incompatible modes (i.e. C3D8I), using the same constitutive 

equations presented above, and with experiment measurements 

taken from the literature. 

The geometry and dimensions of the drawing setup are 

shown in Fig. 2 [17]. 

 



Fig. 2. Schematic view for the cylindrical cup drawing process. 

The material of the sheet is an AA2090-T3 aluminum alloy, 

with an initial thickness of 1.6 mm. During the simulation, a 

constant holder force of 22.2kN is applied, and the coulomb 

friction coefficient associated with the contact between the 

sheet and the forming tools is taken equal to 0.1. 

  (a)  (b) 

Fig. 3. Initial in-plane meshes for one quarter of the circular sheet: (a) 

prismatic elements and (b) hexahedral elements. 

Due to symmetry considerations, only one quarter of the 

circular sheet is modeled. The quarter of the sheet is meshed 

with the following nomenclature: N1×N2, where N1 is the 

number of elements in the plane of the sheet, while N2 is the 

number of elements in the thickness direction. Mesh details for 

the used finite elements are reported in Table 1. 

Table 1. Details of meshes for a quarter of sheet. 

C3D8I SHB6 SHB8 SHB15 SHB20 

800×3 1350×1 800×1 510×1 255×1 

Figure 3 shows the initial in-plane meshes of a quarter of the 

sheet with prismatic and hexahedral elements. The elasto-

plastic parameters associated with AA2090-T3 aluminum alloy 

are summarized in Table 2, in which the following Swift 

hardening law has been considered to describe isotropic 

hardening: 

0

pl pl( ) ( )nY K =  +            (23) 

Table 2. Material properties of Al2090-T3. 

E (MPa)  K n 0 r0 r45 r90 

70,500  0.34 646 0.227 0.025 0.2115 1.5769 0.6923 

Anisotropy coefficients for yield functions Hill’48, YLD-91 

and YLD2004-18P are reported in Tables 3, 4 and 5, 

respectively. 

Table 3. Hill’48 anisotropy coefficients for Al2090-T3 aluminum alloy. 

F G H L M N 

0.25217 0.82542 0.17457 1.5 1.5 2.23805 

Table 4. YLD-91 anisotropy coefficients for Al2090-T3 aluminum alloy. 

w1 w2 w3 w4 w5 w6 a 

1.0674 0.8559 1.1296 1.2970 1 1 8 

Table 5. YLD2004-18P anisotropy coefficients for Al2090-T3 aluminum 

alloy. 

c1
 -0.069888 c 11 0.476741 

c 2 0.936408 c 12 0.575316 

c 3 0.079143 c 13 0.866827 

c 4 1.00360 c 14 1.145010 

c 5 0.524741 c 15 -0.079294 

c 6 1.363180 c 16 1.404620 

c 7 0.954322 c 17 1.147100 

c 8 1.069060 c 18 1.051660 

c 9 1.023770 a 8 

c 10 0.981171 

Figure 4 shows a qualitative comparison of the geometric 

shape of the completely drawn cup, as obtained with the linear 

SHB8PS element, using the Hill’48 and YLD2004-18P yield 

functions. It can be seen that the linear SHB8PS element 

predicts four ears with the quadratic Hill’48 yield surface, 

while six ears are predicted with the YLD2004-18P. The latter 

results are consistent with the experimental observations for the 

studied aluminum alloy [23]. Similar results have been 

obtained with quadratic hexahedral SHB20 element as well as 

prismatic SHB elements, which are not shown in Fig. 4. 

   (a)   (b)  

Fig.4. Final deformed shape of cylindrical cup using SHB8PS element: (a) 

with Hill’48 yield surface and (b) with YLD2004-18P yield surface. 

5.2. Results and discussion 

First, for validation purposes, the non-quadratic anisotropic 

yield function YLD2004-18P has been used to recover the 

isotropic von Mises criterion using the SHB8PS element. The 

obtained results, in terms of cup heights, are compared in Fig. 

5 to the ones provided with ABAQUS C3D8I element, using 

the von Mises criterion. As can be seen, no ear has been 

predicted with both yield surfaces, which is consistent with the 

isotropic von Mises plasticity model. 

Then, the deep drawing of the cylindrical cup is simulated 

using the SHB elements in conjunction with the three 

anisotropic yield surfaces (i.e., Hill’48, YLD-91 and 

YLD2004-18P). The obtained results, in terms of cup heights, 

are compared in Figs. 6 to 12 with the simulated results using 

ABAQUS C3D8I element, along with the experimental 

measurements provided by Yoon et al. [17]. 



Overall, it can be observed from these figures that the cup 

height profiles predicted with the quadratic Hill’48 yield 

surface as well as the non-quadratic YLD2004-18P yield 

criterion are in good agreement with experimental ones, while 

the non-quadratic YLD-91 yield surface overestimates the 

experimental earing profile in the range around the 

experimental peak value. More specifically, at 0° and 90° from 

the rolling direction, the predicted cup heights are 

underestimated with the quadratic Hill’48 yield surface, while 

the results given by the non-quadratic YLD2004-18P yield 

criterion are the closest to the experimental heights.  

Moreover, although SHB family elements are using only a 

single element layer through thickness, they are performing 

more efficiently and accurately than ABAQUS element C3D8I, 

thus capturing accurate results particularly at 00 and 900 from 

the rolling direction, as can be seen in Figs. 11 and 12 for non-

quadratic yield surfaces. 

In order to compare the computational cost for the deep 

drawing simulations, the respective CPU times required by the 

proposed SHB elements and ABAQUS C3D8I element are 

reported in Table 6 using Hill’48 and YLD2004-18P yield 

surfaces. This table shows that the CPU times associated with 

the SHB elements are the lowest, although their computer 

implementation is not yet optimized. 

Table 6. Computation details for the deep drawing of a cylindrical cup. 

CPU Time (s) C3D8I SHB6 SHB8PS SHB15 SHB20 

Hill48 7773 3412 3199 2514 2239 

YLD2004-18P 11221 7413 6201 3856 3499 

Fig.5. Predicted cup height profiles obtained using the isotropic von Mises 

yield surface. 

Fig.6. Predicted cup height profiles obtained using ABAQUS C3D8I element: 

quadratic vs non-quadratic yield surfaces. 

Fig.7. Predicted cup height profiles obtained using SHB6 element: quadratic 

vs non-quadratic yield surfaces. 

Fig.8. Predicted cup height profiles obtained using SHB8PS element: 

quadratic vs non-quadratic yield surfaces. 
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Fig. 9. Predicted cup height profiles obtained using SHB15 element: 

quadratic vs non-quadratic yield surfaces. 

Fig.10. Predicted cup height profiles obtained using SHB20 element: 

quadratic vs non-quadratic yield surfaces. 

Fig.11. Comparison of cup height profiles obtained with SHB elements and 

ABAQUS C3D8I element using the YLD2004-18P yield surface. 

Fig.12. Comparison of cup height profiles obtained with SHB elements and 

ABAQUS C3D8I element using the YLD-91 yield surface. 

6. Conclusion

In this paper, linear prismatic and hexahedral solid−shell 

(SHB) elements, along with their quadratic counterparts, have 

been combined with various advanced anisotropic plasticity 

models for the simulation of three-dimensional sheet metal 

forming process of highly anisotropic aluminum alloy. The 

resulting SHB elements have been implemented into the finite 

element code ABAQUS/Standard, in the framework of large 

strain and fully three-dimensional constitutive equations. The 

performance of the proposed SHB elements has been assessed 

through the simulation of deep drawing of a cylindrical cup, 

involving large strain, strong plastic anisotropy, and double-

sided contact. The obtained results have been compared with 

those yielded by ABAQUS solid elements, as well as with 

experimental results taken from the literature. Compared to the 

results provided by ABAQUS solid element, the earing profiles 

predicted by the SHB elements, using non-quadratic yield 

surfaces, were found to be in good agreement with experiments 

at lower computational cost. The present work clearly shows 

that the proposed SHB elements are able to successfully model 

complex forming process with advanced constitutive 

equations, using only a single element layer with few through-

thickness integration points. 
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