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ABSTRACT 

In this work, an elastic–plastic model with Hill’48 anisotropic yield surface is coupled with 
the continuum damage mechanics theory and combined with the bifurcation analysis, in order 
to predict strain localization in thin sheet metals. The resulting approach is implemented into 
the ABAQUS finite element code within the framework of large strains and plane-stress 
conditions. A sensitivity analysis with respect to hardening and damage parameters is carried 
out to identify the most influential parameters on strain localization predictions. 

Keywords: Strain localization, bifurcation analysis, ductile damage, thin sheet metals. 

 

INTRODUCTION 

The concept of Forming Limit Diagram (FLD) is one of the most common tools used to 
characterize the formability of sheet metals. The experimental determination of the FLD was 
first introduced by Keeler (1963). However, this experimental approach turned out to be time 
consuming, and involving non-negligible costs. Alternatively, FLDs can be predicted by finite 
element simulations, using various sheet metal forming processes (e.g., Nakazima test, 
Marciniak test, bulge test, etc.). In such numerical approaches, the accurate determination of 
FLDs requires coupling of a predictive localization criterion to an appropriate constitutive law 
with reliable material parameters. The latter must be identified at sufficiently large 
deformations (i.e., of the same order of magnitude as necking strains). 

Several theoretical and numerical approaches have been developed in the literature to predict 
the occurrence of localized necking in thin sheet metals. The Marciniak−Kuczyński 
approach (M−K) is the most adopted localized necking criterion for the determination of 
FLDs for sheet metals (Marciniak, 1967). It is based on the existence of an initially defective 
region, with an initial geometric or material imperfection, from which localized necking may 
initiate (see, e.g., Marciniak, 1967; Yamamoto, 1978). Another family of localized necking 
criteria is founded on bifurcation theory, and has been developed to predict strain localization 
in the form of shear band or localized necking (see, e.g., Hill, 1952; Rudnicki, 1975; 
Rice, 1976; Bigoni, 1991; Neilson, 1993). In contrast to the M−K approach, the bifurcation 
analysis does not require the introduction of arbitrarily user-defined parameters. However, it 
requires considering softening behavior, which may be introduced by coupling with damage. 
For the latter, two major theories have been developed in the literature, in the past few 
decades, to model the initiation and evolution of ductile damage. The first theory is based on a 
micromechanical analysis of void growth, which describes the ductile damage mechanisms in 
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porous materials. It has been initiated by Gurson (1977), modified by Tvergaard and 
Needleman (Tvergaard, 1981; 1984), and subsequently improved by a number of contributors 
(Rousselier, 1987; Pardoen, 1998; Benzerga, 2001; Monchiet, 2008). The second theory, 
known as continuum damage mechanics (see, e.g., Lemaitre, 1992; Chaboche, 1999), is based 
on the introduction of a damage variable, which represents the surface density of defects, and 
can be modeled as isotropic scalar variable (Lemaitre, 1985; Chaboche, 2006), or tensor 
variable for anisotropic damage (Chow, 1989; Chaboche, 1993; Abu Al-Rub, 2003). 

In this work, an elastic−plastic constitutive model, with Hill (1948) anisotropic plastic yield 
surface, is coupled with the Lemaitre isotropic damage approach. This fully coupled 
elastic−plastic−damage model is combined with the Rice bifurcation criterion (Rice, 1976) to 
predict the occurrence of localized necking in thin sheet metals. The resulting numerical tool 
is implemented into the finite element code ABAQUS, within the large-strain framework and 
plane-stress conditions. The material parameters associated with the fully coupled 
elastic−plastic−damage model are identified based on tensile tests, using an inverse 
identification procedure. A sensitivity study is conducted with respect to material parameters 
in order to identify the most influential parameters on the development of necking. The paper 
emphasizes the importance of identifying reliable material parameters for accurate prediction 
of FLDs. 

 

CONSTITUTIVE EQUATIONS 

In this work, an anisotropic elastic−plastic model is fully coupled with the continuum damage 
mechanics approach (Lemaitre, 1985), in which damage is introduced as an isotropic scalar 
variable d  ( 0 1d≤ ≤ ), which represents the surface density of microcracks. Using the strain 
equivalence principle (Lemaitre, 1992), the Cauchy stress tensor Σ  is related to the effective 
stress ɶΣ  of the equivalent undamaged material as follows: 

 
1 d

=
−
Σ

Σɶ . (1) 

By replacing the rate form of Eq. (1) in the hypo-elastic law for the effective stress, the 
Cauchy stress rate tensor can be expressed as 

 ( ) ( )p1 :
1

d
d

d
= − − −

−
Σ C D D Σ

ɺ
ɺ , (2) 

where C  is the fourth-order elasticity tensor, while D  and PD  are the strain rate tensor and 
plastic strain rate tensor, respectively. 

By considering the normality law for the plastic flow rule, the plastic strain rate tensor PD  is 
obtained as 

 p γ=D Pɶɺ , (3) 

where Φ= ∂ ∂P Σɶ  is the flow direction, normal to the yield surface defined by the potential 
Φ , and γɺ  is the plastic multiplier. 

The conditions of plastic loading / elastic unloading, which involve the plastic yield function 
and the internal state variables, can be written in the Kuhn–Tucker form 

 ( )Φ Σ Σ 0     ;     0     ;     Φ 0eq Y, γ γ′= − ≤ ≥ =Σ Xɶ ɺ ɺ , (4) 
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where ( ) : : ( )eq
′ ′Σ = − −Σ X M Σ Xɶ ɶ  is the equivalent stress, and ′Σɶ  is the deviatoric part of 

the effective stress. The fourth-order tensor M  contains the six anisotropy coefficients 
associated with the Hill (1948) quadratic yield criterion. For the studied material, the 
contribution to isotropic hardening is characterized by the size of the yield surface ΣY , while 

kinematic hardening is represented by the back-stress tensor X . 

Using the consistency condition 0Φ =ɺ , together with the above equations, the expression of 
the plastic multiplier γɺ  can be written as 

 
1

: :
Hγ

γ = P C Dɺ , (5) 

where (1 )d= −P Pɶ , and Hγ  is a scalar modulus given by 

 
Σ

: : :H Hγ = + +XP C P P Hɶ . (6) 

In the equation above, the second-order tensor XH  represents the kinematic hardening 

modulus, which is used to describe the evolution of the back-stress tensor X  (i.e., γ= XX Hɺ ɺ ), 

while 
Σ

H  is the scalar isotropic hardening modulus (i.e., defined such that 
Σ

ΣY H γ=ɺ ɺ ). 

To derive the stress‒strain relationship under the following rate form: 

 :ep=Σ C Dɺ , (7) 

the plastic multiplier ɺγ  derived in Eq. (5) is substituted in the hypo-elastic law (Eq. (2)). 

Accordingly, the analytical elastic‒plastic tangent modulus epC , which relies the Cauchy 
stress rate to the strain rate, is derived as follows: 

 
( ) ( ) ( ): : :

(1 ) dep
H

d
H Hγ γ

α
 ⊗ ⊗

= − − +  
 

C P P C Σ P C
C C

ɶ
, (8) 

where 1α =  for plastic loading and 0α =  otherwise, while d
H  is a scalar modulus defining 

the damage evolution (i.e., such that 
d

d H γ=ɺ ɺ ), which will be explicitly described later. In 

this work, kinematic hardening is not considered (i.e., =XH 0  in Eq. (6)), and isotropic 

hardening is described by the following Swift law: 

 ( )0

n
p

Y
k ε εΣ = +  (9) 

where k , 0ε  and n  are hardening-related material parameters, and pε  is the equivalent 

plastic strain. 

Finally, the evolution law for the damage variable is expressed by the following equation (see, 
e.g., Lemaitre, 1992; Haddag, 2009): 

 ( )
1

if
1

0 otherwise

s

e ei
e eiβ

d

Y Y
Y Y

Sd H d
γ

γ
 −  ≥  = =  −



ɺ
ɺ ɺ , (10) 
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where e
Y  is the elastic strain energy density release, and ( )eiβ,S,s, Y  are damage-related 

material parameters. 

 

LOCALIZED NECKING CRITERION 

The fully coupled elastic−plastic−damage model described by the above constitutive 
equations is combined in this work with the bifurcation approach (see Rudnicki, 1975; 
Rice, 1976), in order to predict the occurrence of localized necking in sheet metals. The 
adopted necking criterion is based on bifurcation theory, in which the localization of 
deformation in the form of a narrow band (see Fig.1) corresponds to loss of uniqueness for the 
solution of the rate equilibrium equations. In other words, the onset of localized necking is 
viewed as a transition from a homogeneous state of deformation towards a heterogeneous one, 
corresponding to a discontinuity in the velocity gradient. 

 

 

Fig. 1 - Schematic illustration of a localization band 
 

Introducing the nominal stress tensor N , the constitutive equation can be expressed within 
the large-strain framework as follows: 

 = :Ν L Gɺ , (11) 

where G  is the velocity gradient, and L  is the fourth-order tangent modulus given by 

 1 2 3
ep= + − −L C T T T , (12) 

with 1T , 2T , and 3T  fourth-order tensors containing Cauchy stress components. Their 

expressions write (see Haddag, 2009) 

 ( )

( )

1

2

3

T Σ

1
T Σ Σ

2
1

T Σ Σ
2

ijkl ij kl

ijkl ik lj il kj

ijkl ik lj il jk

δ

δ δ

δ δ


=


 = +

 = −

. (13) 

At the occurrence of a localization band, which is defined by its normal n  (see Fig. 1), the 
continuity of the nominal stress rate vector across the discontinuity surfaces can be written as 

 ⋅ =n N 0� �ɺ
� �� � , (14) 
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where + −= −N N N� �ɺ ɺ ɺ
� �� �  denotes the jump in the nominal stress rate across the localization band 

planes. Using Maxwell’s compatibility condition, the jump in the velocity gradient can be 
written in the following form: 

 	 
= ⊗G λ n , (15) 

where vector λ  defines the localization bifurcation mode (e.g., shear mode when ⊥λ n ). By 
combining equations (11), (14) and (15), the critical condition, which corresponds to the loss 
of ellipticity of the associated boundary value problem, can be derived for a non-trivial 
solution for vector λ , and writes (Rice, 1976) 

 det det( ) 0= ⋅ ⋅ =A n L n , (16) 

where A  is the so-called acoustic tensor. 

The above loss of ellipticity condition is numerically solved by computing the determinant of 
the acoustic tensor A  for each loading increment. The numerical detection of localized 
necking is achieved when the minimum of the determinant of the acoustic tensor A , over all 
possible normal vectors to the localization band, becomes non-positive. 

 

NUMERICAL RESULTS AND DISCUSSIONS 

The proposed approach, which consists in combining the fully coupled 
elastic−plastic−damage model with the bifurcation-based localization criterion, is 
implemented into the finite element code ABAQUS, within the framework of large plastic 
strains and plane-stress conditions. This approach is applied in this work to the prediction of 
localized necking in sheet metals subjected to in-plane biaxial loading. 

Identification of the material parameters 

The material considered in this work is an AA6016-T4 aluminum alloy sheet, which is 
modeled using the constitutive equations described above, in conjunction with the Swift 
isotropic hardening law. The Hill’48 anisotropy coefficients are determined using the three 
values of Lankford’s coefficients 0r , 45r  and 90r  obtained from uniaxial tensile tests 

performed on rectangular specimens cut at 0°, 45° and 90°, respectively, with respect to the 
rolling direction. The Swift hardening parameters have been identified by Kami (2015) using 
an inverse identification procedure based on the least squares method and experimental 
hardening curves. The associated anisotropy coefficients and hardening parameters are 
summarized in Tables 1 and 2, respectively. 

 

Table 1 - Hill’48 anisotropy coefficients for AA6016 aluminum taken from Kami (2015) 

Hill’48 coefficients F
 

G H L
 

M N 

Value 0.647705 0.643956 0.356043 1.5 1.5 1.174250 
 
 

Table 2 - Swift’s hardening parameters for AA6016 aluminum taken from Kami (2015) 

Material k  [MPa] 0ε  n  

AA6016-T4 525.77 0.011252 0.2704 
 



 

 6

The damage parameters associated with the Lemaitre model are identified using a numerical 
inverse identification procedure based on simulated and experimental load−displacement 
responses of a standard tensile test. The identified damage parameters are summarized in 
Table 3. 

 

Table 3 - Identified damage parameters for AA6016 aluminum 

β  S  s  
ei

Y  

12 4 1.3 0 
 

Figure 2 compares the simulated load−displacement response for the tensile test, which is 
obtained using the above identified parameters, to the experimental one given in Kami (2015). 
It can be seen that the predicted curve is in good agreement with the experimental data, 
especially in the softening regime where the sudden drop in the load−displacement response is 
well reproduced by the proposed fully coupled elastic−plastic−damage model. 
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Fig. 2 - Comparison between the simulated and experimental load−displacement response, 

up to final fracture for the tensile test 
 
Prediction of FLD using the localization bifurcation analysis 

In this section, the occurrence of localized necking in the AA6016-T4 aluminum sheet is 
investigated using the proposed Lemaitre damage−Rice approach. In order to restrict the 
analysis to only material-type instabilities, the simulations are performed using a single finite 
element with one integration point (i.e., C3D8R ABAQUS finite element). The material 
parameters for the AA6016-T4 aluminum sheet are those identified in the previous section 
(see Tables 1, 2, and 3).The full details regarding the adopted boundary conditions and the 
procedure used for determining the FLD can be found in Bouktir (2016). 

Figure 3 shows the FLD predicted with the present approach along with the experimental 
FLDs taken from Kami (2015) and Lademo (2009). It can be observed that, in the whole, the 
FLD predicted with the proposed approach is in good agreement with experiments, especially 
in the left-hand side of the FLD (strain-path loadings from uniaxial tension (UT) to plane-
strain tension (PST)). For the right-hand side of the FLD, the limit strains are well predicted 
with respect to experiments near the balanced biaxial tension (BBT) loading path, while they 
are overestimated for the other biaxial tension loading paths. 
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Fig. 3 - Comparison between the FLD predicted with the proposed approach and the 

experimental FLDs from Kami (2015) and Lademo (2009) 
 

Effect of material parameters on localized necking predictions 

In order to identify the most influential parameters on the prediction of FLDs, a sensitivity 
study with respect to material parameters is conducted in this section. For this purpose, 
numerical FLDs are determined by varying one parameter at a time, while the remaining 
parameters are kept to their values reported in Tables 2 and 3. In addition, the effect of 
material parameters on the load−displacement response for the tensile test is also investigated. 
For conciseness, only the parametric study with respect to the hardening exponent n  and the 
damage parameter β  is reported here. 
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Fig. 4 - Effect of variation of the hardening exponent n on the predictions of (a) the FLD 

and (b) the load−displacement response for the tensile test 
 

Figure 4 shows the effect of the hardening exponent n  on the FLD predictions and on the 
load−displacement responses for the uniaxial tensile test. It can be seen that increasing the 
hardening exponent n  leads to an increase of all limit strain points of the FLD. Also, this 
parameter has a significant impact on the entire load−displacement response for the tensile 

(a) (b) 
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test. This trend is consistent with the literature findings, where it has been shown that 
hardening parameters have a non-negligible effect on strain localization (see, e.g., 
Doghri, 1995; Hora, 1996). Furthermore, the effect of the hardening exponent n  on the 
Cauchy stress−strain curve and on the evolution of damage along the three particular strain 
paths of UT, PST, and BBT is illustrated in Fig. 5. These figures clearly show the impact of 
strain hardening on the damage evolution and, thereby, on strain localization. 
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Figure 6 shows the effect of varying the damage parameter β  on the FLD predictions and on 

the load−displacement responses corresponding to the uniaxial tensile test for the studied 
material. It can be seen that the damage parameter β  has a small effect on the left-hand side 
of the FLD, while its effect is significant in the right-hand side of the FLD. These trends are 
confirmed with the evolution of the Cauchy stress and the damage variable given in Fig. 7 
along the particular strain paths of UT, PST, and BBT. In this figure, it is revealed that the 
damage level at localization is small for the UT and PST strain paths (less than 5% and 3%, 
respectively), compared to that found for the BBT strain path (around 40%). In the latter, both 
the hardening and damage parameters have a significant impact on strain localization, while 
for the UT and PST strain paths, only hardening parameters play a key destabilizing role in 
triggering plastic flow localization. Furthermore, the load−displacement response 
(see Fig. 6(b)), which corresponds to the UT strain path, is not affected by the variation of the 
damage parameter β  in the range of uniform elongation, i.e. before the onset of diffuse 
necking, corresponding to the maximum load point (see Considère, 1885). In the softening 
regime, starting from the maximum load point and up to final fracture, the damage parameter 
β  has a slight effect on the load−displacement response for the uniaxial tensile test, which 
makes it difficult to properly identify this parameter in the post-necking range. Consequently, 
several values for the damage parameter β  are potentially possible, leading to a non-
negligible error on the prediction of the FLD. These results suggest incorporating several 
mechanical tests, involving various strain paths, in the identification procedure in order to 
improve the reliability of the material parameters and, in particular, damage-related 
parameters. 
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Fig. 6 - Effect of variation of the damage parameter β  on the predictions of (a) the FLD 

and (b) the load−displacement response for the tensile test 
 

 

CONCLUSION 

In this work, a fully coupled anisotropic elastic−plastic model with the Lemaitre damage 
theory has been combined with Rice’s bifurcation criterion, in order to predict the occurrence 
of localized necking in AA6016-T4 aluminum sheet. The resulting approach has been 
implemented into the finite element software ABAQUS/Standard, within the framework of 
large strains and plane-stress conditions. The damage parameters have been first identified 
using an inverse identification procedure based on uniaxial tensile tests. Then, the identified 
parameters have been used to predict the FLD of the AA6016-T4 aluminum sheet, based on 

(b) (a) 
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the proposed approach. The obtained FLD showed good agreement with the experimental 
results. A parametric study with respect to strain hardening and damage parameters has been 
conducted in order to identify the most influential material parameters on strain localization. 
This study revealed that strain hardening has a significant impact on strain localization, which 
is consistent with the literature findings. As to damage parameters, the latter showed a small 
effect on the left-hand side of the FLD, as well as on the load−displacement response for the 
uniaxial tensile test, while their impact on the right-hand side of the FLD was found 
significant. This work emphasizes the importance of the mechanical tests used in the 
identification procedure in order to determine reliable material parameters and, thus, accurate 
predictions for the FLDs. 
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