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Résumé — Strain gradient crystal plasticity (SGCP) represents a very promising way to account for size
effects in miniaturized components, thanks to the intrinsic length scale(s) embedded. Most of the existing
SGCP models are based on a quadratic form of defect energy. However, it has recently been shown
that this form leads to physically unrealistic results concerning the size-dependence of the mechanical
response of miniaturized components. A generalized non-quadratic form is proposed in this work which
aims to study the influence of the defect energy order on the global response of size-dependent materials.
Mots clés — Strain gradient crystal plasticity, size effects, generalized defect energy, non-quadratic form

1 Introduction

In recent years, there has been a great demand for miniaturized products in many high-technology
fields such as microelectronics, microbotics and micromedicine due to the advantages in terms of hi-
gher material utilizing rate, higher productivity and better mechanical performance. However, when the
dimensions of miniaturized products are in the range of few tens of micrometers, the flow strength is
no longer scale-independent and the peculiar phenomenon “smaller is stronger” appears. Conventional
plasticity theories cannot predict the size-dependent behavior, due to the lack of intrinsic length scale(s)
allowing for correct prediction of gradient effects. To overcome this limitation, Aifantis [1] has proposed
in a pioneering work a strain gradient plasticity (SGP) model. The attractive idea of such a model has
led to the development of a wide variety of SGP models for single- and poly-crystal structures in the last
two decades.

Most applications involving strain gradient crystal plasticity (SGCP) theories are based on quadratic
formulations of defect energy which function as a linkage between free energy and dislocation densities
and gradients of plastic slips [2, 3, 4, 5, 6, 7]. As an example, the defect energy in the formulation
of Gurtin et al. [3] was defined as a quadratic form of dislocation densities. However, investigation
conducted by Fleck and Willis [8] shows that this choice is not always in accordance with the physics
behind dislocation mechanisms. Some preliminary results by Evans and Hutchinson [9] suggested that
defect energy should be nearly linear. Cordero et al. [10] and Forest and Gueninchault [11] recently
showed that the quadratic form leads to physically unrealistic scaling in the size-dependent response of
laminated microstructures under shear, since quadratic forms are not usual in classical dislocation theory.
Rank-one defect energy, which is linear with respect to dislocation densities, has been used by several
authors [12, 13, 14]. This form of defect energy leads to an increased macroscopic yield stress in certain
situations. Logarithmic defect energy as function of dislocation density tensor has also been proposed by
Forest et al. [5, 11]. Despite the research effort on the subject, elaboration of an optimal form of defect
energy remains very challenging. Using a generalized power-law defect energy, the present work tries to
investigate the influence of the defect energy index on the global response of materials.

After this introduction, the paper is organized as follows. Section 2 details the developed strain gra-
dient crystal plasticity model based on a generalized non-quadratic (power-law) form of defect energy.
Section 3 investigates the influence of the order of the proposed defect energy on the global response
of a constrained two-dimensional crystalline strip subjected to shear loading. Section 4 provides some
concluding remarks.
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2 Formulation of strain gradient crystal plasticity model

2.1 Kinematics

Let u(x, t) denotes the displacement at time t of an arbitrary material point identified by x in a
subregion V of the considered continuum. In the framework of small deformation, the displacement
gradient ∇u can be additively split into elastic and plastic parts :

∇u = He +Hp (1)

He represents the elastic distortion associated with stretch and rotation of the underlying lattice, Hp

represents the plastic distortion due to plastic flow.
In single-crystal plasticity framework, it is widely acknowledged that plastic flow occurs through

slip on prescribed slip systems, with each system α defined by a slip direction vector sα and a slip-plane
normal vector mα. These vectors will be assumed to remain constant during the deformation process and
to verify :

‖sα‖= ‖mα‖= 1 and sα⊥mα (2)

With this description of plastic flow, the rate of Hp can be expressed as follows :

Ḣp =
ns

∑
α=1

γ̇
α [sα⊗mα] (3)

where γ̇α is the rate of plastic slip on slip system α, ns is the total number of slip systems, and “⊗” is the
tensor product operator. In what follows, γ and γ̇ (in bold) will be used to designate the list of plastic
slips and their rates, respectively :

γ =
(
γ

1, γ
2, · · · ,γns) , γ̇ =

(
γ̇

1, γ̇
2, · · · , γ̇ns) (4)

Using (3), the plastic strain rate tensor ε̇p can be obtained as function of γ̇ as follows :

ε̇p =
ns

∑
α=1

γ̇
α Pα (5)

where Pα is the symmetrized Schmid tensor associated with slip system α :

Pα =
1
2
(sα⊗mα +mα⊗ sα) (6)

2.2 Balance equations

In the considered enhanced continuum, both displacement and plastic slip fields are considered as
primary and controllable variables. With this in mind, the balance equations of the proposed SGCP model
will be derived, hereafter, using the principle of virtual power. The internal virtual power expended within
a subregion V of the considered continuum can be expressed as follows :

Pint =
∫

V
σ : δε̇e dv+

ns

∑
α=1

∫
V

π
α

δγ̇
α dv+

ns

∑
α=1

∫
V
ξα ·δ∇γ̇

α dv (7)

where σ is macroscopic stress tensor, πα and ξα are respectively microscopic stress scalar and micro-
scopic stress vector associated with slip system α. Assuming that no external body forces act on the
subregion V and the contact forces acting on its boundary S can be represented by a macroscopic trac-
tion vector t and a microscopic traction scalar χα on each slip system α, the external virtual power
expended on V can be expressed as :

Pext =
∫

S
t ·δu̇ds+

ns

∑
α=1

∫
S

χ
α

δγ̇
α ds (8)

Application of the virtual power principle, which postulates that the internal and external virtual powers
are balanced for any subregion V and virtual variations of the modeling variables, leads to two kinds of
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balance equations (since two kinds of primary variables are used). Macroscopic balance equations can
be obtained by setting :

δγ̇ = 0 (i.e., δ∇u̇ = δε̇e +δω̇e) (9)

Considering the symmetry of the stress tensor σ, the virtual power balance becomes :∫
V
σ : δ∇u̇dv =

∫
S

t ·δu̇ds (10)

or, after application of the Gauss (divergence) theorem :∫
V
(∇ ·σ) ·δu̇dv =

∫
S
(σ ·n− t) ·δu̇ds (11)

which is valid for any arbitrary subregion V and virtual variations of the modeling variables. This leads
to the classical balance equations (static case) and the well-known traction conditions :{

∇ ·σ = 0 in V
σ ·n = t on S (12)

with n the outward unit normal to S . The microscopic counterparts of these balance equations and boun-
dary conditions can be obtained by setting :

δu̇ = 0 (i.e., δε̇e +δω̇e =−
ns

∑
α=1

δγ̇
αsα⊗mα) (13)

Considering (13), it can be demonstrated that :

σ : δε̇e =−
ns

∑
α=1

τ
α

δγ̇
α (14)

where τα is the resolved shear stress on slip system α defined by τα =σ : Pα. This leads, after application
of the Gauss theorem, to the following form of the virtual power balance :

ns

∑
α=1

∫
V
(τα +∇ ·ξα−π

α) δγ̇
α dv =

ns

∑
α=1

∫
S
(ξα ·n−χ

α) δγ̇
α ds = 0 (15)

Since (15) is valid for any arbitrary subregion V and virtual variations of the modeling variables, the
microscopic balance equation (static case) and the microscopic traction condition on each slip system α

can be obtained : {
τα +∇ ·ξα−πα = 0 in V

ξα ·n = χα on S (16)

2.3 Constitutive laws based on non-quadratic defect energy

In this work, σ and ξα (α ∈ {1, 2, ..., ns}) are regarded as energetic and to be derived from the free
energy density ψ, which is assumed to be decomposed into an elastic part ψe and a defect energy part
ψp. The elastic part ψe is assumed to be a quadratic in εe :

ψe (εe) =
1
2
εe : C : εe (17)

where C is the elasticity tensor, which is assumed to be symmetric and positive-definite. Building on the
work of Gurtin et al. [3], ψp is assumed to be function of dislocation densities :

ρ=
(
ρ

1
`, ρ

2
`, ..., ρ

ns
` , ρ

1
�, ρ

2
�, ..., ρ

ns
�
)

(18)

where ρα

` and ρα
� denote respectively edge and screw dislocation densities on slip system α. As shown

by Arsenlis and Parks [15], these quantities can be calculated by :

ρ
α

` =−sα ·∇γ
α, ρ

α
� = lα ·∇γ

α (19)
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where lα is the line direction of dislocation distribution defined by lα = mα× sα (“×” is cross product
operator). In the literature, ψp is generally considered to be a quadratic function of the plastic strain
gradients or equivalent [2, 3, 4, 16]. However, Fleck et al. [17] have shown in a recent work that this
choice can lead to incorrect results concerning the contribution of recoverable gradient effects to the
behavior of materials. Using a non-quadratic defect energy of order n = 1.2 and monotonic loadings,
these authors have demonstrated that such effects contribute not only to hardening as widely recognized
but also to strengthening. To enrich the discussions about this point, a generalized n-order form of ψp

will be used in the present paper :

ψp (∇γ) =
1
n

X0 ln
en

ns

∑
α=1

[
|ρα

`|n +
∣∣ρα
�
∣∣n] (20)

where n is defect energy index, X0 is a constant representing the energetic slip resistance, len is an ener-
getic length scale. To ensure the convexity of ψp, the defect energy index must be greater than 1 (n > 1).
Using (17) and (20), the free energy density can be expressed as :

ψ(εe,∇γ) =
1
2
εe : C : εe +

1
n

X0 ln
en

ns

∑
α=1

[
|ρα

`|n +
∣∣ρα
�
∣∣n] (21)

The partial derivatives of this expression with respect to the state variables provide the energetic constitu-
tive laws that describe the evolution of σ and ξα (α ∈ {1, 2, ..., ns}). The macroscopic (energetic) stress
tensor σ can be expressed as :

σ =
∂ψ

∂εe
= C : εe (22)

or, in the rate form (since C is constant), as :

σ̇ = C : ε̇e (23)

The microscopic energetic stress vector ξα can be expressed as :

ξα =
∂ψp

∂∇γα
(24)

After calculation, ξα can be rewritten as :

ξα = X0 ln
en

{
|sα ·∇γ

α|n−2 sα⊗sα + |lα ·∇γ
α|n−2 lα⊗ lα

}
·∇γ

α (25)

Concerning the microscopic stress scalars πα (α ∈ {1, 2, ..., ns}), they are assumed, in this work, to be
fully dissipative and to be simply expressed as :

π
α = Y0

∣∣∣∣ γ̇α

γ̇α
0

∣∣∣∣m sign(γ̇α) (26)

where Y0 is a strictly positive constant representative of slip resistance, γ̇α
0 > 0 is a constant strain rate

representative of the flow rates of interest, and m > 0 is a constant characterizing the rate sensitivity of
the considered material.

3 Influence of the defect energy index n

In order to investigate the influence of the defect energy index n on the global response of the consi-
dered continuum, a simplified two-dimensional (2D) version of the proposed SGCP model, under plane
strain condition, is implemented within the commercial finite element package Abaqus/Standard, with the
help of User-ELment (UEL) subroutine. This implemented version is then applied to simulate a simple
shear problem of a constrained 2D strip of height h and width w [18]. Two slip systems, symmetrically
oriented with respect to x1 axis (θ1 =−θ2 = 60°), are taken into account in this strip. The bottom edge is
totally fixed and the top edge is subject to linear displacement loading along x1 direction. Micro-clamped
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FIGURE 1 – Influence of the energetic length scale len in the case of quadratic defect energy (X0 = Y0 =
50MPa, n = 2)

boundary conditions are also applied on the top and bottom edges (γ1 = γ2 = 0 on these edges). Finally,
periodical conditions (with period w) are imposed on the left and right edges to model the infinite length
of the strip.

Starting with n= 2 (quadratic defect energy), fig. 1 presents the influence of the energetic length scale
on the global response of the considered strip. Results of this figure, which are obtained using X0 =Y0 =
50MPa, are in very good agreement with those obtained by Gurtin et al. [3] using similar consititutive
parameters. As expected, for quadratic defect energy, the energetic length scale contributes to hardening
but not to strengthening. In all stress-strain curves (fig. 1a), plasticity starts from the same yield point
and different hardening rates take place after yielding when varying len/h. The case of len/h = 0 gives
a flat stress-strain curve with no hardening after yielding and the plastic shear strain distribution though
the strip thickness is uniform. It corresponds to the classical crystal plasticity (CP) with no hardening
(simply designated by “Perfect CP” in subsequent figures). For len/h = 0.7 and len/h = 1, kinematic
hardening occurs, leading to Bauschinger effects which become more marked with increasing len/h. The
associated plastic shear strain distributions present a quadratic form (Fig. 1b).

Considering the case of non-quadratic defect energy with n < 2, Fig. 2 presents the stress-strain
curves and the plastic shear strain profiles for different values of n (with n < 2) and different values of
len/h. As is shown in Fig. 2a, by analyzing only loading part of the results, the energetic length scale
seems to contribute to material strengthening as reported by Fleck et al. [8] in their study based only on
monotonic loadings. The smaller the value of n (i.e., n approaches 1), the larger is the contribution of
len to this phenomenon. However, by analyzing the entire loading-unloading results, a striking feature
that can be noted is the presence of inflection points in the stress-strain curves. Actually, the material
only experienced an unusual pure nonlinear kinematic hardening (Fig. 2a). In the framework of SGCP,
this type of kinematic hardening was first reported by Ohno et al. [19], using rank-one defect energy.
However, the authors did not recognize the physical origin of this phenomenon. Instead, they further
developed their model to replace the rank-one defect energy by a dissipative formulation removing the
inflection points. In interesting recent works, Forest et al. [5, 20] have also obtained such a phenomenon
using rank-one and logarithmic defect energies. These authors were the first to provide a physical expla-
nation of the phenomenon in the context of SGCP. Based on their works [5, 20], the obtained nonlinear
kinematic hardening corresponds to the kinematic hardening type III (KIII) of Asaro [21]. This type cor-
responds to a “first in/last out” sequence of dislocation motion and represents the most perfect form of
recovery of plastic memory. It was already observed experimentally in several materials, such as some
polycrystalline Fe-Cr and Al-Cu-Mg alloys. Using a defect energy of order n < 2, KIII type hardening
is the single active hardening mechanism, allowing for accurate continuum description of the piling-up
and unpiling-up phenomena. This hardening type results in flattening the parabolic plastic shear strain
distribution observed with n = 2 and leads to the formation of a central region with uniform plastic shear
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strain (Fig. 2b).
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Studying the case of non-quadratic defect energy with n≥ 2, Fig. 3 shows the stress-strain results and
the associated plastic shear strain profiles for n≥ 2. From n = 2, the KIII type hardening disappears and
is replaced by the classical kinematic hardening (KI type hardening, in the terminology of Asaro [21]).
In this case, len has no longer contribution to the strengthening-like phenomenon observed using n < 2.
As illustrated in Fig. 3a , in the range of n ≥ 2, len has only effects on the rate of classical hardening
which decrease with increasing n. A large value of n can even cancel these effects of len (case of n = 4
in Fig. 3a). Using large n, the microscopic stress vectors ξα become insensitive to small variations in the
gradient of the plastic slips. In this case, the material behaves as if ξα = 0 (i.e., len = 0) and the plastic
shear strains become uniformly distributed across the strip thickness (Fig. 3b).

4 Conclusions

In this work, a general non-quadratic power-law form of defect energy with an order-controlling
index n has been proposed to investigate the influence of this parameter on material response. Based on
the results of this work, the following conclusions can be drawn. In the range of n< 2, the energetic length
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scale leads to an unusual nonlinear kinematic hardening which complies with the kinematic hardening
type III (KIII) of Asaro [22]. This type corresponds to a “first in/last out” sequence of dislocation motion
and represents the most perfect form of recovery of plastic memory. It is the single active hardening
mechanism, allowing for accurate continuum description of the piling-up and unpiling-up phenomena.
Beyond n = 2, the nonlinear hardening (KIII type hardening) vanishes and classical kinematic hardening
recovers . In this case, len only influences the hardening rate but not the value of the initial yield strength
(as it is the case for n < 2). The hardening effects of len are inversely related to the value of n > 2.
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