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Abstract

In this paper, a damage quantification strategy relying on post-processing of Lamb wave based damage localization results

is presented. This method is able to predict the upcoming sizes of a delamination after a training step. Inputs of the pro-
posed method are localization index maps produced by damage localization algorithms and representing the presence

likelihood of a damage over the structure under study. The area covered by a high localization index around the esti-

mated damage location are then extracted from these spatial probability maps. A data-driven model representing the
mathematical relationship between this quantification feature and the actual size of the damage is finally inferred and

used to predict future damage size. The proposed method is successfully validated on experimental data coming from

CFRP plate samples equipped with piezoelectric transducers. Delaminations induced by fatigue testing and laser shock
are studied. The sensitivity of the method to input frequency and damage localization algorithms parameters is assessed

and a method to automatically select its own parameters is proposed. Furthermore, it is demonstrated that a model can

be confidently learned on a given CFRP plate sample and transferred to predict damage size on another similar CFRP
plate sample.

Keywords

Structural health monitoring, damage imaging, damage quantification, composite aeronautic structures, Lamb wave,

growth monitoring, supervised machine learning

1. Introduction

Maintenance represents a significant cost for airlines

since structural integrity checks require to regularly

ground aircrafts for several days (Ackert, 2010). These

inspections are fixed interval with a rate provided by

the airplane constructor. Nevertheless, as the current

state of the structure is unknown, this rate is not

condition-based and thus airplane are grounded

whereas it is not needed most of the time. That is why

real time monitoring of structures is of high interest in

aeronautics. This research field is known as Structural

Health Monitoring (SHM). Various techniques are

used to monitor possible damage apparition in compo-

site aeronautical structures. One of the most common

is the emission and reception of ultrasonic Lamb waves

(Giurgiutiu, 2007; Su and Ye, 2009). Such waves can

propagate over long distances in large structures thanks

to their small attenuation ratio. Moreover, Lamb

waves are easy to generate at high frequencies (and

thus short wavelengths) using ultrasonic transducers

(such as piezoelectric elements). It makes them able to

interact even with small damages (Ashwin et al., 2014;

Shen and Cesnik, 2017; Worden et al., 2007). A com-

mon SHM system to generate and sense Lamb waves is

a network of piezoelectric elements acting both as

actuators and sensors bonded on the surface of the

structure monitored (Giurgiutiu, 2005; Wang and

Shen, 2019). Robust SHM algorithms based on Lamb

waves have already shown great results for damage

detection and localization purposes in composite struc-

tures (Su and Ye, 2009). However, there is still a huge

need for reliable algorithms for damage quantification

of such structures. This task is very challenging since
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the interaction between the incident wave and the dela-

mination induced non-linearity, as noticed in Dafydd

and Khodaei (2020). The experimental study focuses on

three impacts with different energy level and it is demon-

strated that the damage size has a high influence on the

maximum of the envelope received signal. One existing

method for damage quantification by means of Lamb

waves consists in identifying and computing a relevant

damage index that varies with the size of the damage

(Liu et al., 2012). Another approach that has been pro-

posed in the literature consists in training an Artificial

Neural Network (ANN) on simulated data. The size of a

damage is then estimated using experimental data pro-

cessed by this ANN (Su and Ye, 2005). Statistical meth-

ods have also been investigated. Bayesian updating

techniques have been applied to crack size (Yang et al.,

2016) and delamination assessments (Peng et al., 2013).

Multi-class classification for damage quantification with

a support vector machine has been also been successfully

validated on a beam (Ghrib et al., 2018).

In this paper, a damage quantification strategy

based on post-processing of damage localization results

is presented. Such a method allows for damage size

assessment of a delaminated area by post-processing

the images produced by any damage localization algo-

rithm. Damage localization algorithms take raw signals

from sensor as input and return a map of index. This

index represents the likelihood of presence of a damage

over the surface of the structure under study. From this

spatial probability map, a region of high localization

index is identified around the estimated damage loca-

tion and the area of this region is computed. A data-

driven model representing the mathematical relation-

ship between this feature and the actual size of the dam-

age is then inferred. The spatial probability maps

provided by several damage localization algorithms

have been investigated. Time of Arrival (ToA) (Fendzi

et al., 2016) method is a multilateration technique used

for localization. Its underlying idea is to compute the

difference between the travel time of the wave on the

direct path (actuator-sensor) and the travel time of the

scattered signal on the secondary path (actuator-dam-

age-sensor). The equations to be solved lead to a locus

of possible damage positions under the form of an

ellipse. Time difference of arrival (TDoA) (Fendzi

et al., 2016) is based on the same principle. In this

approach, difference of time of arrival of the wave scat-

tered by the damage are computed at two sensors. This

gives a hyperbola of possible positions. In the delay-

and-sum method (DAS) (Michaels and Michaels, 2007;

Qiu et al., 2013) for each point of the structure under

interest and each actuator-sensor path, time of arrival

of the Lamb waves is computed as if there was a dam-

age at this position. Then the residual of the signal is

computed (i.e. the difference of magnitude between the

reference signal and the one that is tested). RAPID

(Reconstruction Algorithm for the Probabilistic

Inspection of Damage) (Sharif-Khodaei and Aliabadi,

2014; Zhao et al., 2007) algorithm consists in comput-

ing the probability of a defect occurrence using the rela-

tive amplitude of the signal change on each actuator-

sensor path. This probability is computed using the sig-

nal difference coefficient and a ratio representing how

far is the point from the direct path.

Some attempts have already been carried out to

post-process Lamb wave based damage localization

results for damage size quantification purposes. An

algorithm based on ToA localization has been devel-

oped by Sorrentino and De Fenza to assess the size of

an impact. Each tip of the damage is localized and the

damage size is computed as the area of the polygon

formed by these tips. This method has been applied on

a CFRP composite plate numerically and experimen-

tally (Sorrentino and De Fenza, 2017a) and numeri-

cally on a plate with stiffeners (Sorrentino and De

Fenza, 2017b). Migot et al. proposed a quantification

strategy to assess the size of a crack (by localizing the

tips of a crack and measuring the distance between

them) and a hole (localizing the edge of the hole and

measuring its diameter using two different imaging

techniques). An application has been done on an alumi-

num plate (Migot et al., 2019). A data-driven approach

was proposed by Kulakovskyi using a Convolutional

Neural Networks trained on a dataset composed of

images generated by simulation with spectral finite ele-

ment method and a localization algorithm called Excitelet

(Quaegebeur et al., 2011). In this dataset, an aluminum

plate contained a hole with various sizes and positions.

Once the model performs well on this training set, it is

applied on unknown datasets, one with numerical data

generated the same way as the set used for training, and

an experimental dataset (Kulakovskyi, 2019). Another

way to predict the size of a damage is to find a Damage

Index (DI) that varies in a monotonic manner with the

size of the damage. In (Giridhara et al., 2010), the authors

introduced a DI based on wavelet coefficients that verifies

this condition. It has been applied to a hole damage with

several diameters, on an aluminum plate. However, no

prediction of unknown damage was done in this paper.

In these articles, only one method of localization is

applied, often with isotropic materials such as alumi-

num and on simple geometries like plates. In addition,

applications are made with artificial damages as holes

or slits, whereas there were very few on delaminations.

Besides, there is no universal quantification method in

the literature that can post-process images from differ-

ent localization techniques and compare the results

with each other. The approach proposed in this paper

consists in monitoring the growth of a damage based

on the computation of a feature that varies in a mono-

tonic manner with the actual size of the damage. This

feature is extracted from damage localization methods

results: it corresponds to the area of high index regions

in images returned. This feature is computed for each
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element of a training set composed of previous dam-

aged states of the structure. Then a data-driven model

is built with a polynomial regression. Finally, one can

assess the size of an unknown and larger damage.

Results of this method are compared for four different

damage localization techniques: ToA, TDoA, DAS,

and RAPID. As more and more aeronautic structures

are made of composite materials (Hexcel, 2013), a reli-

able quantification method must be tested on this type

of material. Hence, the applications in this paper are

made on CFRP specimen. The originality of this work

consists in post-processing the results of existing locali-

zation methods to estimate the size of the damage.

Moreover, an application to transfer learning is pro-

posed. It involves to learn the quantification model on

a full dataset available for a sample and use the inferred

model to predict the size on another similar coupon.

After reviewing the different damage localization

methods used in this paper, the proposed approach is

explained in details. A method to automatically select

its own parameters is proposed. Preliminary tests are

made on numerical simulation data to assess the sensi-

tivity of the method to input frequency and damage

localization algorithms. The approach is successfully

validated on experimental data coming from CFRP

plate samples equipped with a piezoelectric transducers

network. Two types of process for close to real life dela-

mination generation are studied: fatigue testing and

laser shock. Finally, a demonstration where the algo-

rithm is used to learn on a composite plate and predic-

tion is done on another sample, is made.

2. Proposed damage quantification

strategy

2.1. Investigated damage localization methods

Damage localization methods are algorithms that take

as input raw signals from piezoelectric transducers

bonded on a composite structure. These raw signals are

first denoized, filtered and time-aligned. The group

velocity of the ultrasonic Lamb waves is then com-

puted. The outputs of these algorithms are the esti-

mated position of the damage (if there is one) and a

map of the structure where each pixel is associated with

a Damage Localization Index (DLI). The higher is this

value, the higher the damage is likely to be localized at

this position. The point with the maximum DLI is con-

sidered as the estimated position of the damage. The

damage localization methods investigated in this paper

are briefly described in the following sections. In the

rest of the section, MPZT denotes the number of piezo-

electric elements.

2.1.1. Time of Arrival (ToA). Time of Arrival (ToA)

method is a multilateration technique widely used for

damage localization purposes. We consider an actuator

i, a sensor j and a damage at the coordinates (x, y). The

method consists in computing the difference of time of

flight of the wave packet on the direct path (actuator-

sensor) and on the secondary path (actuator-damage-

sensor) denoted as ToAij(x, y)

ToAij(x, y)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xi � x)2 +(yi � y)2
q

cg
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xj � x)2 +(yj � y)2
q

cg
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xi � xj)
2 +(yi � yj)

2

q

cg

ð1Þ

where (xi, yi) and (xj, yj) are respectively the coordinates

of the actuator i and the sensor j. cg is the group velo-

city. The possible locations of the damage causing the

diffracted signal are lying on a locus drawing an ellipse.

The implementation of this algorithm described in

(Fendzi et al., 2016) is used here. The structure under

study is spatially sampled and the theoretical ToA

tthij (x, y) is computed for each pixel (x, y) and each path

i� j. Then a damage localization index is obtained at

each point of the structure by comparing the theoretical

time of flight ToAth
ij (x, y) with the one extracted from

scattered signal ToA
xp
ij (x, y) as stated in equation (2).

DLIToA(x, y)=
X

MPZT�1

i= 1

X

MPZT

j= i+ 1

e�
1

t
ToAth

ij (x, y)�ToA
xp

ij
(x, y)j j ð2Þ

where t is a focus parameter introduced in order to

reduce the influence of secondary reflections of the scat-

tered signal.

2.1.2. Time Difference of Arrival (TDoA). Time Difference

of Arrival (TDoA) is based on the same principle as

ToA. The only difference is that in this method a group

of three piezoelectric elements is considered: one actua-

tor i and two sensors j and k. For each point (x, y) the

theoretical difference of the ToA at each sensor is com-

puted and compared with the difference extracted from

the scattered signal. As in the ToA method, a focus

parameter t is introduced to limit the influence of sec-

ondary reflections.

2.1.3. Delay and Sum (DAS). In the Delay-and-Sum

method (DAS) (Michaels, 2008) for each point (x, y) of

the structure under interest, time of arrival tij(x, y) of

the Lamb waves is estimated for the secondary path

actuator i to (x, y) and (x, y) to sensor j. The residual of

this signal rij(t), that is, the difference of magnitude

between the reference signal and the one that is tested,

is then computed. Each residual rij(t) is shifted by

tij(x, y).

s(t; x, y)=
1

N

X

MPZT�1

i= 1

X

MPZT

j= i+ 1

rij t � tij(x, y)
� �

ð3Þ
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For each tested point, the resulting signal difference is

averaged over each actuator-sensor path as shown in

equation (3). The damage index is then computed by

integrating the square of the signal difference over a

time window.

DLIDAS(x, y)=

Z

KDt

½s(t; x, y)�2dt ð4Þ

It can be noticed that in the integral the time reference

is the nominal arrival time for location (x, y). K is an

integer denoting the number of time steps Dt over which

time integration is performed.

2.2. Reconstruction Algorithm for the Probabilistic

Inspection of Damage (RAPID)

The Reconstruction Algorithm for the Probabilistic

Inspection of Damage (RAPID) (Zhao et al., 2007)

consists in computing the probability of a defect occur-

rence using the relative amplitude of the signal change

on each actuator-sensor path. This probability Pij is

computed using the signal difference coefficient

Aij = 1� rij (with rij the correlation coefficient between

the actuator i and the sensor j) and a ratio representing

how far is the point from the direct path. For each

actuator-sensor path, a distribution function is drawn

to represent this property. Here an elliptical distribu-

tion is used and its spread is controlled by a scalar

parameter b.

Pij=Aij

b� Rij(x, y)

b� 1

� �

ð5Þ

with

Rij(x, y)=
RDij(x, y) when RDij(x, y)\b

b when RDij(x, y) � b

�

ð6Þ

where

RDij(x, y)=
dAP + dPS

dAS
ð7Þ

dAP is the distance actuator to point (x, y), dPS the dis-

tance point (x, y) to sensor and dAS the distance between

the actuator and the sensor. The DLI within the sensor

network is then expressed as a linear summation of the

Pij values of every pair as shown in equation (8).

DLIRAPID(x, y)=
X

MPZT�1

i= 1

X

MPZT

j= i+ 1

Pij ð8Þ

2.3. HDLI feature computation

All the damage localization methods presented previ-

ously provide a map of DLI over the structure under

study that will be processed to compute a quantification

feature. For each damage localization method, these

maps are normalized by the highest DLI value in the

whole training set. The idea is then to compute a single

feature that varies with the damage size in a monotonic

manner. From Figure 1(a) which constitutes a typical

DLI map, it can be observed that there is a region where

the DLI is higher than the rest of the image, without

clear boundaries. The assumption made here is that the

area of this region is a function of the actual damage

size. Applying a threshold T to a DLI map gives a binary

image where one or several regions with a DLI above the

threshold can be identified. The next step consists in iso-

lating the region surrounding the estimated damage posi-

tion (i.e. the position with the maximum DLI).

The Moore-Neighbor image segmentation algorithm

(Rafael et al., 2002) is used to perform this task. It con-

sists in identifying the boundaries of all the objects in a

binary image. Beginning at a starting pixel called cur-

rent pixel, the algorithm visits each pixel in the starting

pixel’s neighborhood (i.e. the eight pixels that share a

vertex or an edge with the current pixel) in clockwise

direction. If a pixel belonging to an object is detected,

it becomes the new current pixel. The procedure contin-

ues until matching the stopping criterion. The criterion

Figure 1. Damage localization results (a) and the binary image

obtained after applying a threshold function (b).

The gray circle is the estimated damage localization.

4 Journal of Intelligent Material Systems and Structures 00(0)



used in this paper (as it is the one implemented in

MATLAB) is called Jacob’s stopping criterion. It states

that the algorithm stops after entering the starting pixel

a second time in the same manner it has been entered

initially.

The result of this threshold and segmentation steps

is shown in Figure 1(b). The area of the isolated region

is computed and denoted A. This area is divided by the

total area Atot of the structure under study in order to

have a dimensionless damage index that will be called

HDLI (High Damage Localization Index area) in the

following.

HDLI=
A

Atot

ð9Þ

2.4. Damage quantification model training

In order to estimate the size of an unknown damage, a

data-driven model is built. The workflow followed to

infer and validate such a model is divided in two steps.

The first one is the training step: it consists in training

in a supervised manner a data-based model from a

training set, that is, a collection of signals correspond-

ing to different damage states with the corresponding

size of the damage. In the prediction step, the size of an

unknown and larger damage is predicted with the

model previously inferred in order to validate its extra-

polation performances.

2.4.1. Training step. Let’s assume that a training set of N

damage cases labeled with the associated damage size

f(S1, s1), . . . , (SN , sN )g is available. Si is the set of sig-

nals from the transducers for the ith damage case and si
is the corresponding size of the damage. This dataset is

processed through a given damage localization method.

Then one gets a new dataset f(I1, s1), . . . , (IN , sN )g
where Ii is the image returned by the damage localiza-

tion algorithm. Once the HDLI of each training exam-

ple is computed the training set

X= f(h0, s0), . . . , (hN , sN )g is available. hi is the HDLI

described previously computed from the ith image.

HDLI values close to 0 are discarded to improve the

sensitivity of the method for large damages since the

purpose is to extrapolate a model toward higher dam-

age sizes. In the following, H 2 RN and S 2 RN will

denote respectively the vector of HDLI features and

the vector of damage sizes of all N training samples. To

predict the future size of the damage under study, it is

necessary to build a model that fits well the data on the

training set and that can be extrapolated. Since the

HDLI does not vary linearly with the damage size, a

classical linear regression cannot be used. For the sake

of simplicity, a polynomial regression is chosen. This

method has the advantage to fit the data well and does

not occult the physics of the model like other

supervised machine learning approaches. Polynomial

regression is then performed on X, and the jth coeffi-

cient of the regression model is denoted bj.

Ŝ=
X

d

j= 0

bjH
j ð10Þ

In equation (10), d is the degree of the polynomial,

Ŝ 2 RN is the vector of estimated damage size and

H
j 2 RN is the vector of jth power of the components of

H. In order to keep the model variance low, a variation

of classic linear regression called ridge regression is

used (Friedman et al., 2001). It consists in adding a

penalty term l on the parameters bi in the ordinary

least square regression problem to control for their

amplitude. The vector of regression coefficients b̂ must

minimize the following equation:

b̂= argmin
b2Rd

S� bHk k2
2
+ l bk k2

2

� 	

ð11Þ

The problem can be written under a matrix form:

b̂= H
T
H+ lI

� ��1

H
T
S ð12Þ

where I is the N -by-N identity matrix. The next step is

to compute the optimal value for the penalty term lopt
in order to minimize the error over the training set. To

choose an optimal value for the penalty term lopt, a

gradient descent algorithm is used to minimize the cost

function J with respect to l. To avoid overlearning the

model on the training data set, this cost function is cal-

culated using a cross-validation technique. This step

limits the risk that the model gives very good results

only on the training set while the predictions on the test

set are poor.

lopt= argmin
l2R

Jð Þ ð13Þ

Since the dataset considered here is small, the cross-

validation technique chosen here is called Leave-One-

Out. It consists in training the model on a new training

set where one of the example is left out. The error of the

model is then computed for the example being left out

Ji =
1

2
jsi � ŝij

2
+

l

2

X

d

k= 1

k bk k
2

2

8i 2 ½½1;N ��

ð14Þ

This process is repeated for every item of the training

set that is, N times. The cost function J used in the opti-

mization problem equation (13) is computed as the

mean of all Ji

J =
1

N

X

N

i= 1

Ji ð15Þ

Briand et al. 5



One must choose a value for the degree of the polyno-

mial. Any degree high enough will yield to the same

regression model because coefficients relative to high

degree terms will be close to zero thanks to the regulari-

zation equation (15). Throughout this paper, d is set

to 8.

2.4.2. Prediction step. The data-driven model built earlier

is then used to predict the size of an unknown and

larger damage. The first step is to process the signal

with the damage localization method to get a DLI

image of the structure. Then the HDLI htest is com-

puted from this image. The corresponding size stest is

finally estimated using the size quantification model

previously built according to:

ŝtest =
X

d

k= 0

b̂kh
k
test ð16Þ

2.5. Methodology

The overview of the method is depicted in Figure 2.

MPZT stands for the number of piezoelectric elements,

Mrep stands for the number of measures for the same

damage case and N is the size of the training set. The

steps to follow are

Step 1 Get signals from each transducer on the

plate.

Step 2 Process the signals corresponding to the ith

case with one of the damage localization algorithm

described earlier. The result is a DLI image of the

structure.

Step 3 Compute the HDLI associated with the

image i.

Step 4 Repeat steps 2 and 3 for each i 2 ½½1;N ��.
Step 5 Perform the polynomial regression model

using the training set of HDLI previously computed

and the known damage size of the corresponding

damage case.

Step 6 Compute the HDLI value of an unknown

damage case.

Step 7 Use the regression model to estimate the size

of the damage.

In order to assess the performance of the inferred

model, the following metric will be used in the rest of

this paper. It is defined as the relative error computed

on training or test set

e=
1

n

X

L

l= 1

ĵsl � slj

sl
ð17Þ

where L is the size of the dataset.

(a) (b)

Figure 2. Overview of the damage size quantification algorithm based on the post processing of damage localization algorithms.

Description of the training step (a) and the prediction step (b).
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2.6. Parameters selection for damage quantification

As previously explained, the damage quantification

method proposed in this paper is tested with several

damage localization methods: ToA, TDoA, RAPID,

and DAS. For each of these algorithms, a tuning para-

meter has to be chosen. In the ToA and TDoA algo-

rithms, an exponential window function is introduced

to reduce the effect of secondary reflections (Fendzi

et al., 2016). This function depends on a decay rate t

(see equation (2)). The DAS algorithm depends on the

number of samples K over which time integration is

performed (Michaels, 2008). In the RAPID approach

the user can set a parameter called b corresponding to

the spread of the ellipses around each path (Sharif-

Khodaei and Aliabadi, 2014). Moreover, the post-

processing method presented in this paper also depends

on the threshold level T in the HDLI feature computa-

tion step.

In order to have an unique damage size for one

HDLI, parameters need to be chosen to get a bijection

between HDLI and damage size values. The tuning

parameters for the localization algorithms used

throughout this work are given in Table 1. These values

have been set empirically.

The only parameter left to be selected is the thresh-

old T . In order to illustrate the influence of this para-

meter on the obtained results, sensitivity of the RAPID

algorithm to threshold is depicted Figure 3. One can

observe that some threshold values lead to bijective

function that can be used for damage size prediction

whereas some others parameters values provide the

same damage size for a wide range of HDLI and thus

do not allow a priori for reliable damage size quantifi-

cation. Thus, to get a threshold value that is compatible

with the post-processing method described earlier, the

optimal threshold Topt minimizing the following cost

function over the training set is selected:

Topt= argmin
T2R

1

2N

X

N

i= 1

k si � ŝik
2

 !

ð18Þ

Unfortunately, this cost function is not smooth and its

derivative cannot be computed analytically. Moreover,

many different local minima could exist. To find a

threshold providing an acceptable error on the training

set, one uses a minimization algorithm repeated several

times with a random initialization. The retained thresh-

old Topt is the one with the lowest associated value of

the cost function. The simplex method (Lagarias et al.,

1998), which is a derivative-free optimization tech-

nique, is used.

3. Application of the proposed damage

quantification method

3.1. Preliminary tests on simulation data

A preliminary test is done on data coming from numer-

ical simulation to assess the performance of the method

in the case of a damage with well-defined boundaries.

Another objective is to study the influence of the excita-

tion signal central frequency on quantification results.

The structure under consideration is a stiffened com-

posite panel made of graphite-epoxy plies with the

stacking sequence [45�/0�/45�/90�/245�/0�]. The prop-

erties of one ply are given in Table 2. The structure is

equipped with five NCE51 piezoelectric elements each

with a diameter of 20 mm and thickness of 0.1 mm.

The FEM model of the structure with piezoelectric ele-

ments and highlighting damage position is shown in

Figure 4. The localization algorithms used here assume

Table 1. Localization parameters selected.

Localization method Method parameter Symbol Selected value

ToA and TDoA Decay rate of an exponential windowed function applied
to reduce secondary reflections.

t 5:0310�6

DAS Number of samples over which time integration is performed. K 1
RAPID Parameter set to adjust the spread of the ellipses around each path. b 1:05

Figure 3. HDLI sensitivity to threshold parameter using

RAPID localization method.
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a 2D structure. We therefore project the position of the

PZT located on the stiffener in the plane z= 0 to con-

sider only the coordinates x and y. Piezoelectric ele-

ments and simulated damage coordinates can be found

in Table 3. Signal used is a five-cycles tone burst with

10 V amplitude. Random noise is added to introduce

variability in the data with a signal to noise ratio of

70 dB. The simulation has been performed with three

different signal with central frequency of 120, 140, and

160 kHz. For each damage case 10 repetitions have been

proceeded. For any damage localization algorithm, each

repetition is compared to each repetition of the healthy

state leading to 100 DLI maps per damage case.

The model is meshed with 1 mm 3 1 mm square

shell elements. The guided wave excitation and sensing

is modeled with piezoelectric Mindlin shells, taking into

account the viscoelasticity of the composite core, the

glue, and the piezoelectric coupling equations.

Electrical degrees of freedom are included in addition

to the nodal displacement (Balmes and Deraemaeker,

2013; Balmes et al., 2014). The mesh size was chosen to

be compatible with the wavelength of the S0 mode at

160 kHz (40 mm), leading to 40 elements per wave-

length which ensure mesh convergence. Only the S0
mode is considered in here since it is the one used in

the localization algorithms studied. Even if this mode is

less sensitive to delamination than the A0 mode, it pro-

pagates faster. This avoids confusing the wave packet

coming from the damage with reflections on the edges

of the structure. Since the other frequencies studied

here have higher wavelength, the same mesh will be use

for all frequencies. The time step for the transient simu-

lation is 0.5 ms leading to a sampling frequency of

2 MHz. The numerical simulation is done with

MATLAB toolbox SDT (Balmes and Deraemaeker,

2013) using an explicit Newmark method. More details

of simulation guidelines of Lamb waves can be found

in (Shen and Giurgiutiu, 2016).

The simulated damage has a circular shape with a

radius varying from 1 to 10 mm by step of 0.5 mm lead-

ing to 19 different damage cases. The delamination is

modeled by a decrease of the Young modulus of 90%

in the damaged area. This kind of model has been com-

pared to experimental results (Kim et al., 2007). It is

shown that the delamination indeed induces a local

stiffness reduction. Even if this model does not fully

account for the non-linear behavior of the delamina-

tion, it will be realistic enough to perform preliminary

tests.

A healthy case that is, without any damage is used as

reference by the damage localization algorithms. The

first 70% of this dataset is used as training set (from 1

to 7 mm) and the 30% left (from 7.5 to 10 mm) are

used as testing set in order to assess the prediction per-

formance of the damage quantification model. In an

industrial context it corresponds to measure the size of

the damage in its early life when it is not yet an issue for

the integrity of the structure. This learning dataset is

used to build a quantification model. Then the predic-

tion relies on the extrapolation of this model to upcom-

ing larger sizes of the damage. Thus, it is possible to

know when the delamination reaches a critical size that

threaten the integrity of the structure.

3.2. Application to fatigue experimental data

The post-processing strategy is also applied to experi-

mental data coming from fatigue test carried out on

CFRP specimens conducted jointly by NASA and

Stanford University (Saxena et al., 2011).

The specimens under study are CFRP composite

plate with a dogbone shape and a notch at mid-length

which geometrical dimensions can be found in Figure 5.

The specimen is equipped with 12 piezoelectric elements

bonded on the surface, that is, a six-PZT-sensor

SMART Layer� from Acellent Technologies, Inc. on

each side of the coupon. The transducers placed at the

top of the coupon are used as actuators whereas the

bottom piezoelectric elements are exclusively used as

Figure 4. FEM model of the stiffened panel used for simulation.

Table 2. Mechanical properties used for numerical simulation.

Density [g/cm 3] E0 [GPa] E90 [GPa]

1.57 163 10

Table 3. Location of center points of PZTand of damaged area.

PZT1 PZT2 PZT3 PZT4 PZT5 Damage

x [mm] 50 25 275 275 200 150
y [mm] 25 98.8 140 66.3 82.5 66.3
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sensors. This leads to a total of 36 actuator-sensor

paths. The experimental protocol consists in running a

cycling tension-tension fatigue test. The presence of the

notch induces a stress concentration that creates a dela-

mination growing with the number of cycles. These fati-

gue tests were performed on a MTS machine with

frequency of 5 Hz and a stress ratio of R= 0:14. The
test was regularly interrupted to perform Lamb waves

pitch-catch acquisition. The excitation signal used is a

5-cycles tone burst with a central frequency of 250 kHz

and an amplitude of 50 V. The frequency is chosen to

be the one where fundamental symmetric and antisym-

metric are the most distinguishable as mentioned by

(Larrosa et al., 2014). An X-ray image is also taken at

each interruption to visualize the size of the delamina-

tion Figure 6. Several layups are available in this data-

set. In this paper the layups L1 and L2 had been

retained with respectively the stacking sequences

½02=904�s and ½0=902=45=� 45=90�s. With these layups a

delamination can be visualized growing progressively

with the number of cycles, allowing a supervised

machine learning approach. The dataset is split in one

training set (first 70% of damage cases) and one test set

(30% of other damage cases). Each damage case is

composed of raw data from piezoelectric patches.

Actual delaminations area were extracted from X-ray

images with the image processing software Digimizer
1

.

3.3. Application to laser shocks delamination

experimental data

The proposed approach is applied on another type of

delamination. This time the damage is generated with

symmetrical laser shocks. When a laser pulse of short

duration (few nanoseconds) and high power reaches

the surface of the plate, the first few micrometers of the

impacted area are transformed into plasma which

expands rapidly against the target surface. In the cur-

rent experimental setup, a sacrificial layer made of alu-

minum is placed on the target to avoid the damaging of

the plate. This plasma expansion release creates a shock

wave into the composite plate. In the symmetrical con-

figuration, each face of the plate is irradiated with a

laser beam generating two shock waves propagating in

opposite direction through the thickness as can be seen

in Figure 7. The crossing of the two waves creates local

high tensile stress which can result in damage at a

through thickness depth if the energy level of the laser

irradiation is high enough. More details about con-

trolled delaminations in composites can be found in

Ghrib et al. (2017).

Figure 5. (a) CFRP samples used in NASA dataset, (b)

Dimensions of the coupons in mm.
Adapted from Larrosa et al. (2014).

Figure 6. X-ray image of specimen L1 S11 taken at 80 kcycles.
The edges of the delamination are highlighted in white.

Figure 7. Experimental setup in case of symmetrical laser

shock (Ghrib et al., 2017).
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The specimens under study are CFRP composite

plates with dimensions of 300 mm 3 400 mm 3 2.2

mm and the following stacking sequence

½0=90=0=90=0=90=0=90�s. The ply properties are shown

in Table 4. Five PZTs NCE51 are bonded to each cou-

pon with a Redux 322 glue.

A pristine sample is used as a reference state whereas

three other plates are damaged with different energy

levels, leading to different delamination sizes. An ultra-

sound non-destructive test had been carried out on each

sample and revealed that the delaminations generated

are 7, 14, and 21 mm length. The first two damage cases

are used as training set and the remaining one is consid-

ered as a test set.

The excitation signal used in this application is a

five-cycles tone burst with a central frequency of

140 kHz and an amplitude of 10 V.

4. Results

For each considered structure and each damage locali-

zation method, performances of the proposed damage

quantification algorithm are evaluated by two means.

The first one is a plot where the X axis is the true size

of the delamination area and the Y axis is the size pre-

dicted by the damage quantification algorithm. The

y= x line represents a prediction without error: the

closer a value is to this line, the better the prediction.

As stated previously, for each structure considered, the

dataset is split into a training set (the first 70% of the

damage cases) and a testing set (the last 30% of the

damage cases). The other way to assess the perfor-

mance of the strategy proposed in this paper is to com-

pute the error on the training set and the test set of

each structure.

Figure 8 shows performance of the damage size pre-

diction on simulation data for the four damage localiza-

tion algorithms studied in this paper. Only the 140 kHz

excitation signal is considered here AToA and TDoA

exhibit poor results on both training and testing data-

set. DAS performs well on the training set although the

prediction on the testing set is far from the true size.

The RAPID algorithm provides the best results on both

training set and testing set as the predicted values are

very close to the y= x line. In the following, only the

RAPID method will be used. Moreover, the perfor-

mance of DAS and RAPID methods does not seem sen-

sitive to noise.

Figure 9 presents the quantification results when

applied to L1 and L2 experimental specimens. The

RAPID method gives promising results on both train-

ing set and testing set for each type of layup. These

observations are confirmed by Table 5 which shows the

error on the training set etrain and on the test set etest in

order to assess the performance of the approach for

each localization method. One can observe that quali-

tative remarks made about the plots are confirmed

quantitatively here.

The laser shock dataset is very small ans sparse but

as presented in Figure 10, the prediction giving with the

RAPID method is close to the reality.

The influence of the excitation signal frequency on

the prediction has been investigated. Figure 11 shows

the sensitivity performance to the excitation frequency

on the numerical dataset. In the same manner, at

140 kHz it is clear that the prediction is better than

with others excitation frequencies. On the other hand,

Figure 12 relates the prediction error etest on the cou-

pon L1 S11 for each frequency available in the dataset

and for several learning rate that is, several sizes of

training set. Each rate corresponds to the percentage of

the whole dataset used as training set. It can be seen

that the prediction error is the lowest for an input sig-

nal at 250 and 300 kHz. Table 6 shows that this ten-

dency can be observed for most of L1 samples. This

confirms the choice made earlier of a 250 kHz excita-

tion frequency. Moreover, one can see that the optimal

frequency is not sensitive to the learning rate.

5. Discussion

For both simulated and experimental data, the influ-

ence of the selected damage localization method is

clear. HDLI computed with ToA or DToA shows no

correlation with the true damage size leading to poor

performance over training set and testing set. It could

be explained by the fact that these methods only deal

with time of arrival of the signal which is not influenced

by the size of the damage. Another reason of this poor

performance could also be the shape of the high DLI

area which has a great influence on the quality of the

regression. In the ToA and DToA, this region is made

up of ellipses or hyperbolas which area does not clearly

vary with the damage size as mentioned earlier in this

paper. Besides, DAS and RAPID both exhibit great

results on the training set. This performance could be

explained by the fact that DAS and RAPID take ampli-

tude of the signals into account in addition to time of

flight, which make the HDLI more influenced by the

size of the damage. Moreover, high DLI area in the

Table 4. Mechanical properties used for laser shocks delamination experiments.

Density [g/cm 3] E11 [GPa] E22 [GPa] E12 [GPa] G13 =G12 [GPa] n12

1.594 140 9 4.5 4.5 0.3
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DAS and RAPID methods is circular and HDLI varies

in a monotonic manner over the size of the damage

which lead to a more accurate model. It can also be

noticed that with DAS and RAPID methods, the

HDLI is close to zero for small damage sizes (usually

under 4 mm). It would suggest an existence of a lower

bound in damage size sensitivity for a given threshold T

value. DAS method shows poor results on testing set.

Indeed, above a certain level, the HDLI remains steady

with the damage size. It means that above this level,

each damage size leads to the same HDLI.

So far in this article we have only considered the

case where the training step was done on the same sam-

ple as the prediction. However, even if we have seen

earlier that this approach allows to infer a model with

good results on the test set, another way to predict the

size of an unknown damage is to perform the training

step on the full dataset of a coupon to infer a more

accurate model. The established model is then applied

to a damaged coupon with the same parameters (geo-

metry, material, PZTs positions) to predict the size of

the delamination. With this technique, the prediction is

(a) (b)

(c) (d)

Figure 8. Damage quantification performance using different damage localization methods on numerical data. ToA (a), DToA (b),

DAS (c), and RAPID (d).
The central frequency of the excitation signal is 140 kHz. The diagonal y= x line correspond to a prediction without error.
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not made by extrapolating the model on unknown data

but by evaluating the model on HDLI values similar to

the training data, limiting the risk of error induced by

extrapolating a polynomial model outside the training

range. Moreover, this approach is closer to the indus-

trial context since it does not require to have a training

dataset for each coupon to be tested. This approach

has been tested on the L1 S11, L1 S12, and L1 S19 cou-

pons of the NASA dataset. For each one of the three

coupons, the training step was performed on the

specimen in question. A prediction test was performed

on each of the remaining coupons, leading to a total of

six possible combinations where prediction error can be

found in Table 7. An example of these results is shown

in Figure 13. For this set of coupons we obtain good

results for some combinations, which shows that this

method is encouraging. However, in this example this

technique is not very robust since in some cases the

method performs poorly. These results could be due to

the lack of variety in the data. Indeed, for each damage

(a) (b)

(c) (d)

Figure 9. Damage quantification performance using RAPID method on NASA data: L1 coupons (a) and (b), L2 coupons (c) and (d).
The diagonal y= x line correspond to a prediction without error.
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case, only one measurement has been made, which does

not allow to know the sensitivity of the acquired signals

to noise. Another possible explanation is that the train-

ing is carried out on a single coupon. A training of the

model on data from different coupons and multiple

measurements for each damage case should limit the

influence of the variation of the experimental, geome-

trical and material parameters and thus improve the

reliability of this approach.

6. Conclusion

In this paper, a damage quantification strategy based

on post-processing of damage localization results has

been presented. Such a method allows for damage size

assessment of a delaminated area by post-processing

the images produced by damage localization algorithms

Table 5. Performance over the different datasets measured with training and test error in percent.

Dataset ToA DToA DAS RAPID

etrain etest etrain etest etrain etest etrain etest

Numerical 510.0 73.0 340.0 37.0 7.5 13.0 1.4 3.1
Laser shock 94.0 189.0 78.0 56.0 8.9 75.0 112.0 7.7
L1 S11 200.0 32.0 140.0 36.0 36.0 31.0 12.0 7.8
L1 S12 220.0 50.0 300.0 70.0 62.0 38.0 13.0 6.2
L1 S18 390.0 49.0 410.0 36.0 31.0 20.0 19.0 7.8
L1 S19 750.0 85.0 400.0 78.0 29.0 47.0 38.0 27.0
L2 S11 410.0 52.0 420.0 55.0 6.9 15.0 3.6 5.6
L2 S17 24.0 31.0 55.0 37.0 8.4 9.8 19.0 25.0
L2 S18 110.0 3.9 110.0 20.0 160.0 33.0 150.0 5.0
L2 S20 12.0 29.0 77.0 11.0 5.2 4.2 10.0 3.5

Figure 10. Damage quantification performance using RAPID

method on laser shocked composite specimen.
The diagonal y= x line correspond to a prediction without error.

Figure 11. Performance sensitivity to the excitation frequency

using RAPID localization method on numerical data.

Figure 12. Influence of the excitation signal frequency on the

prediction error for the sample L1 S11 using RAPID localization

method.
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such as ToA, TDoA, DAS, and RAPID. From these

images, a region of high localization index can be iden-

tified around the estimated damage location. The area

of this region can be computed and used as a damage

size sensitive feature. A data-driven model representing

the mathematical relationship between this feature and

the actual size of the damage is then inferred using a

polynomial regression. The proposed method exhibit

promising results with the RAPID method on numeri-

cal simulation data carried out on CFRP plate samples

equipped with a stiffener. Moreover, the method is also

successfully tested on experimental data of fatigue tests

from NASA. Furthermore, it is demonstrated that a

model can be confidently learned on a given CFRP

plate sample and transferred to predict damage size on

another similar CFRP plate sample.

The post-processing step presented in this study only

compare the current damage state to the pristine one.

This approach does not make use of all the information

available. Indeed, it could be possible to compare the

current state to every known damage state and use this

information to built a more robust model.
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