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Abstract: Objectives: To compare the risk of laser fiber fracture between Ho:YAG laser and Thulium 

Fiber Laser (TFL) with different laser fiber diameters, laser settings, and fiber bending radii. METH

ODS: Lengths of 200, 272, and 365 µm single use fibers were used with a 30 W Ho:YAG laser and a 

50 W Super Pulsed TFL. Laser fibers of 150 µm length were also tested with the TFL only. Pive differ

ent increasingly smaller bend radii were tested: 1, 0.9, 0.75, 0.6, and 0.45 cm. A total of 13 different 

laser settings were tested for the Ho:YAG laser: six fragmentation settings with a short pulse duration, 

and seven dusting settings with a long pulse duration. A total of 33 different laser settings were tested 

for the TFL. Three laser settings were common two both lasers: 0.5 J x 12 Hz, 0.8 J x 8 Hz, 2 J x 3 Hz. 

The laser was activated for 5 min or until fiber fracture. Each measurement was performed ten times. 

Results: While fiber failures occurred with all fiber diameters with Ho:YAG laser, none were reported 

with TFL. Identified risk factors of fiber fracture with the Ho:YAG laser were short pulse and high 

energy for the 365 µm fibers (p = 0.041), but not for the 200 and 272 µm fibers (p = l and p = 0.43, 

respectively). High frequency was not a risk factor of fiber fracture. Fiber diameter also seemed to 

be a risk factor of fracture. The 200 µm fibers broke more frequently than the 272 and 365 µm ones 

(p = 0.039). There was a trend for a higher number of fractures with the 365 µm fibers compared 

to the 272 µm ones, these occurring at a larger bend radius, but this difference was not significant. 

Conclusion: TFL appears to be a safer laser regarding the risk of fiber fracture than Ho:YAG when 

used with fibers in a deflected position. 
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1. Introduction

Since its introduction in the 1990s, Ho:YAG laser has become the reference point for 
lasers for lithotripsy in urology because of its property to fragment all stone compositions, 
efficiencies and safety profiles [1-3]. Recently, a new laser has been released: the Super 
Pulsed Thulium Fiber Laser (TFL), with potential advantages over Ho:YAG laser such 
as higher ablation volumes during lithotripsy and production of thinner particles [4-8]. 
These two lasers use low hydroxyl silica optical fibers to transmit the laser beam to the 
stone [4,5,9,10]. During laser lithotripsy with flexible ureteroscopy (f-URS), laser fiber 
rupture may occur especially for lower pole stones treatment, resulting in working channel 
perforation and subsequent endoscope repair. Sorne studies reported risk factors of laser 
fiber fracture with Ho:YAG laser while bending: the diameter of the bend and high pulse 
energy [11,12]. While Ho:YAG laser and TFL are currently used for lithotripsy during 
f-URS, there is a lack of comparative study regarding the risk of laser fiber fracture during
laser activation in a deflected position. Thus, we aimed to compare the risk of laser fiber



fracture between Ho:YAG laser and TFL with different laser fiber diameters, laser settings, 
and fiber bending radii. 

2. Materials and Methods

2.1. Laser Fibers 

Single use laser fibers of a unique manufacturer (Rocamed, Monaco) with core diame
ters of 200,272, and 365 µm were used for both laser systems to avoid any confusion due 
to a variability in laser fibers characteristics. Additionally, 150 µm laser fibers were also 
tested with the TFL only. 

2.2. Laser Systems 

A 50 W Super Pulsed TFL generator (IPG Photonics, Fryazino, Russia) with a wave
length of 1940 nm was compared to a 30 W Ho:YAG laser (MHOl-ROCA FTS-30W, Rocamed, 
Monaco) with a wavelength of 2120 nm. A total of 13 different laser settings were tested 
for the Ho:YAG laser: 6 fragmentation settings with a short pulse duration, and 7 dusting 
settings with a long pulse duration. A total of 33 different laser settings were tested for the 
TFL. Since TFL offers lower energies and higher frequencies than current Ho:YAG lasers, 
we aimed to evaluate these specificities. Three laser settings were common to both lasers: 
0.5 J x 12 Hz, 0.8 J x 8 Hz, 2 J x 3 Hz. All laser settings tested are presented in Table 1. 

Table 1. (A): TFL laser settings; (B): Ho:YAG laser settings. 

A. TFL Settings

6W 25W 50W 

Fine dusting (peak power= 125 W) 

0.025 J 240Hz lO00Hz 2000Hz 

0.05 J 120Hz 500Hz lO00Hz 

0.1 J 60Hz 250Hz 500Hz 

0.15 J 40Hz 167Hz 333Hz 

Dusting (peak power= 125 W) 

0.2J 30Hz 125Hz 250Hz 

0.5 J 12Hz 50Hz lO0Hz 

0.SJ 7.5Hz 31.3 Hz 62.5 Hz 

Fragmentation (peak power= 500 W) 

lJ 6Hz 25Hz 50Hz 

2J 3Hz 12.5 Hz 25Hz 

4J l.5Hz 6.3Hz 12.5Hz 

6J lHz 4.2Hz 8.3Hz 

B. Ho:YAG Laser Settings

Dusting (long pulse) 

0.2J 25Hz 

0.5 J 3Hz 12Hz 15Hz 

0.SJ 3Hz 8Hz 15Hz 

Fragmentation (short pulse) 

lJ 3Hz 5Hz 15Hz 

2J 3Hz 8Hz 12Hz 
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2.3. Experimental Setup 

The laser fibers were supported by soft silicone tubes, secured by plastic screws (to 
hold the fibers without causing damage). Failure threshold testing was clone by bending 
fibers to 180° with an initial radius of 1 cm, Figure lA,B. In total, five different increasingly 
smaller bend radii were tested: 1, 0.9, 0.75, 0.6, and 0.45 cm. The choice of the minimal 
bending radius (0.45 cm) was based on the fact that we measured the most acute angle 
over several cases that a flexible ureteroscope might deflect for lower pole lithotripsy in 
difficult anatomical situations. Subsequent radii were randomly chosen to test wider values 
mimicking calices easier to navigate through. The laser was activated continuously for 
5 min or until fiber fracture. Each measurement was performed ten times. 

Laserfiber 

Bena radius 

< ) 

Figure 1. (A) Fiber bending radius, (B) Fiber bending radii tested. 

2.4. Statistical Analyses

(A) 

The Mann-Whitney test was used for comparisons between groups. All tests were 
conducted using the R Software, version 4.0.3. A p-value of 0.05 or less was considered 
significant. 

3. Results

We did not report mechanical failure by bending the fibers alone. All fractures occurred 
after laser energy application. 

3.1. Ho:YAG Laser 

3.1.1. Dusting Settings 

For the 200 µm fibers, the fracture rate was 50% at bending radius ::;o.6 cm, while 
none broke at radius �0.75 cm. For the 272 and 365 µm fiber diameters, fractures occurred 
only with a bending radius of 0.45 cm. A total of 20% of the 272 µm and 30% of the 365 µm 
fibers broke at a bend radius of 0.45 cm, Figure 2. 
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Figure 2. Proportion of fiber failures with Ho:YAG laser according to laser setting, fiber diameter, bending radius. 

3.1.2. Fragmentation Settings
Of the 200 and 272 µm fibers, there was no fracture for a bend radius �0.6 cm. While

90% of the 200 µm fibers broke at a radius of 0.45 cm, 50% of the 272 µm did. The 365 µm
fibers broke more frequently at ::;0.75 cm. A total of 5% and 50% of 365 µm laser fibers
broke with a bending radius of �0.75 and ::;o.6 cm, respectively, Figure 2.

3.1.3. Identification of Risk Factors of Fiber Failure
Short pulse and high energy were significant risk factors of fiber fracture for the 365 µm

fibers (p = 0.041), but not for the 200 and 272 µm fibers (p = 1 and p = 0.43, respectively).
High frequency was not a risk factor of fiber fracture for all fiber core diameters.



 

Fiber diameter also seemed to be a risk factor of fracture. The 200 µm fibers broke 
more frequently than the 272 and 365 µm ones (p = 0.039). There was a trend for a higher 
number of fractures with the 365 µm fibers compared to the 272 µm ones, these occurring 
at a larger bend radius, but this difference was not significant. 

3.2. TFL

Irrespective of the laser fiber diameter, laser settings, and bending radius, no fiber 
fracture occurred with the TFL. 

3.3. Ho:YAG versus TFL

Irrespective of the laser settings, the fiber diameter and the bend radius, there was a 
significant risk of fiber fracture with the Ho:YAG laser compared to the TFL. 

4. Discussion

The current study demonstrated a significant risk of fiber fracture with the Ho:YAG 
laser compared to the TFL in a deflected position. This result is of importance because 
nowadays f-URS has become a modality of choice for the treatment of kidney stones [13]. 
While Ho:YAG laser is currently the gold standard for lithotripsy during f-URS, TFL 
appears as an efficient alternative [14]. For both lasers, the laser energy is delivered to 
the target through a low hydroxyl silica fiber [9]. This laser fiber consists of a silica core 
through which the laser energy is transmitted. This core is surrounded by a layer called 
cladding that is essential for the efficient delivery of laser energy. This cladding is made 
of similar material to the core but has a different refractive index. Thus, the laser beam is 
reflected at the cladding-core interface. This process is called total intemal reflection [9,10]. 
The most external part of the fiber is called jacket and encases the core and cladding. Its 
function is to protect the glass components of the fiber. When the fiber is bent, such as 
in lower pole stone treatment during f-URS, a small amount energy may leave the core 
to the cladding, and subsequently leak into the jacket. This condition represents a loss 
of total internal reflection of the laser energy, and once energy leaks into the jacket, fiber 
failure can occur due to thermal breakdown [15-17]. Prior studies demonstrated that the 
fibers do not fail with mechanical stress alone but rather fail when the laser is activated 
with the fiber in a deflected position. Consequences of such fiber failures are working 
channel perforations during laser activation, which represents an important cause off-URS 
damage [18]. Several studies focused on the risk factors of fiber fracture in a deflected 
position with Ho:YAG laser [11,12,19-23]. They reported contradictory results regarding 
the influence of fiber diameter, bend radius, laser settings, and even for a same type of fiber 
from a specific manufacturer [12,20-22]. For example, while some authors reported that 
medium core fibers were prone to higher rates of failure than small core fibers, other studies 
did not document a correlation between increasing fiber diameter and fracture [11,20]. 
However, all the studies found that the resistance to fracture varies greatly among fiber 
manufacturers [12,20-22]. 

Similarly to Mues et al., we did not report mechanical failure by bending the fibers 
alone [21]. This means that failure is the consequence of loss of total intemal reflection 
during laser activation in a bent fiber. 

4.1. Ho:YAG Laser 

The current study found that small core fibers (200 µm) were prone to a higher rate 
of fracture and failed at a larger bend radius (:S0.6 cm) than 272 and 365 µm fibers in 
dusting setting (0.45 cm only). Surprisingly, no 200 µm fiber failure occurred at a bend 
radius �0.6 cm in fragmentation setting, but there was a higher proportion of fractures 
than in dusting setting (90% versus 50%, respectively). Thus, we found that small core 
fibers failed significantly more often than the 272 and 365 µm ones. These results are 
consistent with the report by Mues et al., and may be explained by the beam profile of 
the Ho:YAG laser [21]. Indeed, the Ho:YAG laser beam does not couple small core fibers 



( <200 µm), and the risk may be overfilling the fiber core and leak laser energy to the fiber 
cladding, which can damage the fiber [4,5,24,25]. Thus, the use of small core fibers require 
the funneling of laser beam. As consequence, Ho:YAG laser is typically limited to larger 
fiber diameters (270-500 µm). 

For the 272 and 365 µm fibers, we found similar results than Haddad et al., the 272 µm 
fibers failed at a smaller diameter than the 365 µm in fragmentation setting, but not in 
dusting setting. 

Although 200 µm fibers are more flexible and may be more suitable for the treatment 
of lower pole stones during f-URS, they are more prone to failure when lasering. Thus, 
272 µm core fibers seem a safer option for lower pole f-URS with Ho:YAG laser. 

Finally, similarly to Knudsen et al., we found that the tightness of the fiber bend 
radius increases the risk of fiber failure as well as pulse energy for the 365 µm only [12]. 
This means that for a fixed bending radius, if the pulse energy increases, the amount of 
energy leaking the core to the cladding increases, and thus the risk of fiber fracture. On the 
contrary, Lusch et al. reported a trend for less fiber fracture at long pulse mode, high energy, 
low frequency in the small core fibers (200, 272/273 µm). Contrary to Vassar et al., we did 
not report an increase failure rate when the laser pulse energy increases with 272 µm fibers 
compared to the 365 µm [26]. 

4.2. TFL 

Until now, no study has evaluated the risk of laser fiber fracture with the TFL. We 
found that, irrespective of the laser fiber diameter, laser settings, and bending radius, 
no fiber fracture occurred. These results may be explained by the beam profile and the 
peak power of the TFL. Contrary to the solid state Ho:YAG laser, the laser beam of the 
TFL originates within a small (18-25 µm) core of the thulium-doped silica optical fiber, 
which is about 100 times smaller in diameter than Ho:YAG laser. Furthermore, the TFL 
provides a near single mode Gaussian spatial beam profile, more uniform and symmetrical 
than the multimodal beam produced by the Ho:YAG laser [24]. Thus, even thinner laser 
fibers (150 µm) can be used with TFL. As consequence, total internai reflection may be 
respected in all fiber core diameters, with no leakage of energy through the cladding and 
jacket, which reduce the risk of fiber fracture. Moreover, peak power may also explain the 
absence of fracture with TFL. Indeed, the differences in fiber fracture rates between the two 
lasers systems may be explained by the constant higher peak power with the Ho:YAG laser 
compared to the TFL, regardless of the laser settings [27]. While peak power is directly 
correlated to the energy level with Ho:YAG laser and decreases with increased pulse 
duration, this remains constant with TFL. Furthermore, the pulse shape is also different 
with a flat and uniform shape for the TFL and a spike with an overshoot for the Ho:YAG 
laser [27]. Thus, the treatment of lower pole stone with TFL may be safer than with Ho:YAG 
laser, regardless of fiber diameter, bend radius, and laser settings. 

Our study has several limitations, including the use of laser fibers from a unique 
manufacturer. However, by using exactly the same laser fiber manufacturer, it was possible 
to show the differences between both laser technologies, without risking the additional bias 
that using laser fibers from different origins might introduce. Yet, since great differences 
regarding size, flexibility, and resistance to fracture with bending among manufacturers 
exist, more optical fibers should be tested to ascertain our results with TFL. Although, 
laser fiber manufacturers provide short term minimum bending radius, we did not respect 
them in our tests since it is not possible to respect these minimal values in real conditions, 
especially in a difficult lower calyx access. Indeed, short term minimum bending radii 
were �13 mm, �17 mm, and �21 mm for the 200, 272, and 365 µm laser fibers tested, 
respectively. Another limitation was the absence of power transmission measurement. 
With transmission values, a quantitative correlation of core diameter, bending radius and 
losses might be possible. Lastly, laser activation duration was fixed at 5 min or until fiber 
fracture, which has resulted in different total energies delivered between powers tested. 
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However, this might affect the results with Ho:YAG laser only, since no fiber fracture 
occurred with TFL. 

5. Conclusions

The is the first study comparing the risk of fiber fracture with different laser fiber 
diameters, laser settings, and fiber bending radii between the Ho:YAG laser and TFL. While 
fiber failures occurred with all fiber diameters with Ho:YAG laser, none was reported with 
TFL. Further studies testing fibers from different manufacturers are needed to ascertain 
these results. 
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