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ABSTRACT: Viscoelastic liquid transfer from one surface to
another is a process that finds applications in many technologies,
primarily in printing. Here, cylindrical-shaped capillary bridges
pinned between two parallel disks are considered. Specifically, the
effects of polymer mass fraction, solution viscosity, disk diameter,
initial aspect ratio, final aspect ratio, stretching velocity, and filling
fraction (alike contact angle) are experimentally investigated in
uniaxial extensional flow. Both Newtonian and viscoelastic polymer
solutions are prepared using polyethylene glycol and polyethylene
oxide, with a wide variety of mass fractions. The results show that the increase in polymer mass fraction and solvent viscosity reduces
the liquid transfer to the top surface. Moreover, the increase in the initial and final stretching heights of the capillary bridge also
decreases the liquid transfer for both Newtonian and viscoelastic solutions. Finally, the shape of the capillary bridge is varied by
changing the liquid volume. Now, Newtonian and viscoelastic solutions exhibit opposite behaviors for the liquid transfer. These
findings are discussed in terms of interfacial shape instability and gravitational drainage.

■ INTRODUCTION

Liquid capillary bridges can be found in many industrial
applications such as food processing, material engineering,
adhesion processes, coating technology, flow in porous media,
microfluidics, and measurements of rheological properties.1−4

One of the motivations for the study of stretched liquid bridges
is its close association with printing processes. Nowadays, a
printing process not only is limited to books, magazines, and
newspapers but also has expanded to various areas like
manufacturing of electric circuits,1 printed wearable elec-
tronics,5 screen displays, lab-on-a-chip,6 solar cells,7 and 3D
microstructures (polymer wires, needles, pillars, cones, and
microspheres).8 The printing industry deals with inks, which
can contain polymers, surfactants, or particles and have
viscoelastic properties. While printing, the liquid from one
surface is transferred to another surface through the formation
of a capillary liquid bridge. For Newtonian fluids, during this
liquid transfer, solution pools are formed on the end plates of a
stretched liquid bridge. On the other hand, a stretched
viscoelastic liquid bridge forms a persistent thin filament9−14

along with the solution pools.
Due to complexities involving surface and liquid properties

as well as the formation of filaments, the transfer of the desired
volume of liquid is a challenge in the printing industry.
Specifically, capillary, viscous, inertial, elastic, and gravitational
forces all play a role in this liquid transfer. A relevant parameter
called the transfer ratio, Tr, is defined as the fraction of liquid
transferred to the moving disk (accepter) to the total amount
of liquid left on both disks, as shown in Figure 1. The
geometrical properties that affect Tr are the disk radius, R0, or

the disk diameter, D0, the stretching speed, U, the initial aspect
ratio, L0/R0, and the final aspect ratio, L/R0.
Chadov and Yakhnin15,16 first identified the liquid-transfer

phenomenon for several liquids of viscosity η and surface
tension σ on various surfaces. In their experiments, the top flat
surface was brought downward to press a liquid drop on the
bottom surface and then moved upward to stretch the capillary
bridge at high capillary numbers, that is, Ca = ηU/σ > 1. Under
these conditions, the liquid transfer is independent of surface
and liquid properties, which was later confirmed by others
authors.17−20 Noteworthily, when the contact angles on both
plates are 45°, Tr is found to be 0.5.

Figure 1. (a) Liquid capillary bridge of the polymer solution
sandwiched between parallel disks of diameter D0 and initial height L0
before being stretched with a velocity, U. (b) The top disk reaches the
final stretching height, L, and a thinning filament is observed. (c)
Breakup of the liquid bridge.
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The issues of wetting and the dynamic contact angle21 are
generally avoided by pinning the contact line to the edge of a
disk. For example, Zhang et al.22 investigated, theoretically and
experimentally, the stability and breakup of the liquid bridge,
with fixed contact lines at the edges. The authors found that Tr
decreases with increasing disk diameter but increases with the
stretching speed. In practice, gravure cells are used23−26 to
control the ink spreading. The effect of viscoelastic polymer
solutions on Tr for the gravure printing is studied
experimentally by Sankaran and Rothstein25 and numerically
by Lee et al.26 In the beginning, the liquid transfer is governed
by the early stretching dynamics, while the final amount of
liquid transfer occurs through the delayed viscoelastic filament
thinning.25−27 In contrast, the present study focuses on the
cylindrical-shaped liquid bridges, with the pinned contact lines
on disks to overcome the shearing effect.27

In the present paper, our experimental study mainly focuses
on Tr for a cylindrical-shaped bridge of viscoelastic as well as
Newtonian fluids. Solutions will be prepared by varying the
mass fraction and molecular weight of polymers to investigate
the effect of viscoelasticity on liquid transfer. The same
stainless-steel disks at the top and bottom will be used to
overcome the complexities due to different surface materials as
previously reported.15,16,27 Different disk diameters, initial and
final aspect ratios, and the initial profile curvatures are
explored.

■ MATERIALS AND METHODS
Sample Preparation. Aqueous solutions of poly-ethylene oxide

(PEO), which is a high-molecular-weight polymer, and poly-ethylene
glycol (PEG), which has a relatively low molecular weight, are used
either separately or in combination. PEO solutions are commonly
used to investigate viscoelastic behavior of liquid jets,28,29 beads on a
string,10,14,30,31 coatings,32−34 and liquid transfer.25,27 Broadly, our
strategy is to control the shear viscosity with PEG and the extensional
viscosity with the mass fraction of PEO. The molecular weight of PEO
is 8 × 106 g/mol and the molecular weight of PEG is 20,000 g/mol
according to Sigma-Aldrich. Three different types of solutions are
prepared: (i) aqueous PEG solutions, (ii) aqueous PEO solutions, and
(iii) mixtures of PEG and PEO solutions. For the solutions containing
PEO, 0.5 wt % iso-propyl alcohol is added for easy dispersion of PEO
molecules in the solvent.35 The mass fraction of PEO in solutions

ranges from 100 to 2000 ppm with and without PEG. Note that a
solution of 1000 ppm of PEO is labeled as PEO1000. Similarly, a
solution of 20 wt % PEG and 2000 ppm of PEO is labeled as
PEG20PEO2000. The density, ρ, and σ were measured for each
solution, and the values are reported in Table S1 in the Supporting
Information.

Rheological Measurements. The shear viscosity of the solutions
was measured using a rotating rheometer (TA Instruments Discovery
HR-3) with a double-wall concentric cylinder geometry. High-
polymer-mass-fraction solutions exhibit shear thinning, as shown in
Figure 2a. The zero shear viscosity, η0, was obtained from fitting the
Carreau equation36 with the infinite viscosity prescribed to the solvent
one.

Additional rheological measurements were conducted using a
capillary breakup extensional rheometer (CaBER from Thermo
Haake). The filament diameter around mid-height is tracked over
the time using an in-built laser (see Figure 2b). The diameter
decreases with time for all solutions. For viscoelastic solutions, the
diameter exhibits an exponential thinning, characterized by the
extensional relaxation time, λ. Further analysis of the diameter can be
used to obtain the extensional viscosity as a function of time and
Hencky strain. These results are given in Pingulkar et al.14

Based on the solution properties, several dimensionless numbers
can be defined. The Deborah number, De = λ/τR, represents a ratio of
the viscoelastic time, λ, to the Rayleigh inertio-capillary time:

R /R 0
3τ ρ σ= . Other authors26,37 use the ratio λ/τv with the viscous

time τv = η0R0/σ. In addition, the ratio of the viscous and Rayleigh
times is also needed, that is, the Ohnesorge number: Oh = τv/τR.
Another important number to characterize a capillary bridge is the
Bond number quantifying the effect of gravitational to capillary forces:
Bo = ρgR0

2/σ. Later, when the capillary bridge shape is non-
cylindrical, the mid-height radius, Rmid, will be used, leading to Bom.
The experiments use three disk diameters and additional mass
fractions, and parameters are presented in Table S2 in the Supporting
Information.

Experimental Setup. The capillary bridge stretching is studied
experimentally with the CaBER and a high-speed camera (800 × 1280
pixels). The resolution for typical experiments is 1 pixel = 2 μm.
Shadowgraphic images are obtained using a continuous laser and a
diffuser (from Dantec Dynamics). Initially, a liquid capillary bridge is
created by placing a solution sample in between the two parallel disks.
The volume of the solution introduced in the liquid bridge depends
on R0 and the initial height, L0, and this volume is calculated as

L R0 0
2π= . The liquid volume introduced is controlled with the

Figure 2. (a) Steady shear viscosity against shear rate and (b) diameter time evolution for aqueous solutions of PEO, PEG, and PEG20PEO. The
inset in (a) is a sketch of the double-wall geometry (drawn up to scale) used, and the lines represent fits described in the text.

https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c01462/suppl_file/la1c01462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c01462/suppl_file/la1c01462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c01462/suppl_file/la1c01462_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.1c01462/suppl_file/la1c01462_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01462?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01462?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01462?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01462?fig=fig2&ref=pdf


help of a pipette (Eppendorf research plus). After stretching of the
liquid bridge, solution pools are formed on the top and bottom disks,
as shown in the binarized image in Figure 1c. Considering the
axisymmetric capillary bridge, images of the vertical cross-section of
the solution pools are captured. Then, heights, hT and hB, of top and
bottom solution pools, respectively, are estimated by counting the
pixels in the appropriate directions. The truncated sphere method17 is
implemented to calculate the volume of the solution pools: VT,B =
πhT,B(3R0

2 + hT,B
2)/6. Therefore, the transfer ratio, Tr, is defined in

the same way as previous authors16,17,20,38,39 as Tr = VT/(VT + VB). In
the following, every Tr data point and the associated error bar
symbolize the average of five experiments and their dispersion,
respectively.

■ EXPERIMENTAL RESULTS AND DISCUSSION
The results consist of a series of experiments that report the Tr for
different polymer mass fractions, disk diameters, final heights, and
finally different shapes of the initial capillary bridge. The resulting Tr
are discussed in terms of morphology of the interface and gravitational
drainage.
Effect of Polymer Mass Fraction. The PEO mass fraction is

varied, in the aqueous PEO and PEG + PEO solutions, to test its
influence on Tr. Experiments are preformed using water, PEG20,
PEO, and PEG + PEO solutions. For these experiments, cylindrical-
shaped initial liquid bridges are prepared with R0 = 3 mm and L0/R0 =
0.66. Then, the liquid bridges are stretched to L/R0 = 2 at U = 0.08
m/s. These initial capillary bridges are inside the stability limit
curve.40 The Tr obtained are presented against the PEO mass fraction,
wPEO, in Figure 3a. For both the PEO and PEG + PEO solutions, Tr
decreases with increasing wPEO. The same can be confirmed from the
inset photographs where a smaller top solution pool for PEO2000
solution compared to water can be observed.
Typically, for a viscoelastic liquid bridge, the liquid transfer occurs

in two stages. In the first stage, when a liquid bridge is stretched, the
minimum radius location along the filament appears and an initial
liquid transfer takes place from the bottom to the top disk. When Bo >
1 for R0 = 3 mm (see Table S2 in the Supporting Information), an
initial asymmetry (sagging) decides the primary liquid distribution
along the stretched liquid bridge. Hence, when the liquid bridge is
stretched, initially, a larger bottom solution pool is formed compared
to the top solution pool. However, for PEO and PEG + PEO
solutions, solution pools are formed along with a filament that plays a
significant role in the second stage of liquid transfer. In this second
stage, the liquid is transferred from the top to the bottom solution
pool due to gravitational drainage through the filament. As observed
in Figure 2b, with increasing wPEO, the filament lasts longer and liquid

bridge rupture gets delayed.32 As a result, there is more time for the
gravitational drainage and more liquid is transferred from the top to
the bottom solution pool. For a low mass fraction, for both PEO and
PEG + PEO solutions, the filament breaks up early and there is less
time available for the liquid transfer from the top to the bottom
solution pool. Hence, the viscoelastic liquids nearly reproduce the
response of PEG20, as reported by Sankaran and Rothstein.25

Furthermore, for PEG + PEO solutions, the filament lasts longer
compared to the PEO solutions. Hence, because of the higher
gravitational drainage, lower values of Tr are obtained for the PEG +
PEO solutions compared to the PEO solutions. Power law fits are
used to capture the change in Tr with wPEO, and the exponents for
PEO and PEG + PEO solutions are 0.09 and 0.19, respectively. The
larger exponent of the fit for the PEG + PEO solutions than for the
PEO solutions suggests that the effect of change in wPEO is higher for
the PEG + PEO solutions.

Furthermore, for PEO and PEG + PEO solutions, Tr is plotted as a
function of De in Figure 3b. For both solutions, Tr decreases with
increasing De. Similar behavior was observed numerically by Lee et
al.,26 where the authors reported that the liquid transferred to the top
disk decreases with an increase in De. However, these results were
obtained for a combination of the gravure cell at the bottom and a flat
plate moving upward. Again, power law fits can be used to represent
Tr, and the exponents differ for PEG + PEO solutions (−0.27 for Bo =
1.61) compared to PEO solutions (−0.10 for Bo = 1.48).

Effect of Disk Radius. One of the important parameters of the
capillary bridge geometry is the disk radius. To understand the
influence of R0 on Tr, disks of different radii, such as 2, 3, and 4 mm,
are tested by keeping other geometric parameters the same. As a
result, depending on R0, the Bond number, Bo, varies from 0.66 to
2.63. For these set of experiments, L0/R0 and L/R0 are kept constant
at 0.66 and 2, respectively, whereas the stretching speed, U, is again
0.08 m/s. It can be observed that for all disk radii tested, Tr decreases
with De. Additionally, the increase in R0 as well as Bo globally leads to
the decrease in Tr and indicates the effect of gravity. A similar
decrease in Tr with R0 has been reported for water by Zhang et al.22

In the photographs of Figure 3b, the stretched liquid bridges with
different R0 are displayed for PEO1000 solution at L/R0 = 2. With an
increase in R0 from 2 to 4 mm, the shape of the top solution pools
weakly changes from convex to concave in the vertical plane, but the
shape of the bottom solution pools remains convex. However, the
capillary pressure associated to the shape change is dominated by
hydrostatic pressure difference (ρgL). In addition, for the largest R0,
the hydrostatic pressure difference overcomes the capillary pressure
associated to the mean curvature in the horizontal planes of the top
solution pool. Hence, with increasing R0, more solution is pushed

Figure 3. (a) Transfer ratio, Tr, as a function of the polymer mass fraction, wPEO. R0 = 3 mm, L0/R0 = 0.66, and L/R0 = 2 at U = 0.08 m/s. (b)
Transfer ratio, Tr, as a function of De for different Bo. The insets are stretched liquid bridges for 1000 ppm of PEO for R0 = 2, 3, and 4 mm (from
top to bottom).
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from the top solution pool toward the bottom solution pool due to
the increased stretched liquid bridge height (fixed L/R0 = 2).
Furthermore, it has been observed that the filament thinning time
increases with increasing R0. Hence, the gravitational drainage
through the filament is enhanced by the larger disk radius that
results in lower values of Tr. For each Bo, power law fits are again used
to capture the change in Tr with De. With increasing Bo, the power
law exponents increase from 0.05 to 0.29, suggesting a larger effect of
De on higher Bo due to the combined effect of gravity and delayed
filament thinning. For each wPEO, Tr decreases linearly with Bo. A
reduced plot is shown in the Supporting Information (Figure S1b).
Effect of Final Stretching Height. The effect of the final

stretching height on the liquid transfer is explored by varying the final
aspect ratio, L/R0, from 2 to 6. All other geometrical and stretching
parameters are kept constant. The minimum value of L/R0 is limited
by the least value of the stretching height required for breaking of the
capillary bridge, whereas the maximum value of L/R0 is limited by the
experimental constraints. Two different experimental studies are
carried out for the PEG20 and PEO solutions.
PEG20 Solution. The obtained results for the variation of Tr are

plotted against L/R0 in Figure S3 in the Supporting Information. The
photographs illustrate different shapes of the capillary bridges formed,
just before their breakup, when the top disk is at L/R0 = 2, 4, and 6.
The Tr decreases linearly with an increase in the L/R0. For L/R0 = 6,
the breakup occurs close to the top solution pool, compared to the
breakup at the middle of the bridge, for L/R0 = 2. This further
suggests that after breakup, the liquid transferred to both disks will be
nearly the same for L/R0 = 2. However, with increasing L/R0, as the
breakup point moves closer to the top solution pool, more liquid
volume will be enclosed below this breakup point and a larger
solution pool is formed on the bottom disk. Hence, with increasing
final stretching height, less liquid will be transferred to the top disk.
PEO Solutions. The change in Tr for values of L/R0 = 2, 4, and 6 is

plotted against De, as shown in Figure 4. For all L/R0, with the

increase in De, Tr decreases. Additionally, for the same De, it can be
noted that the increase in L/R0 leads to the decrease in Tr. This
behaviour appears to be more significant for De > 10. Hence, for De >
10, power law fits of Tr are used for each L/R0. With increasing L/R0,
the value of the power law exponent increases from 0.07 to 0.12. The
location of the necking points, on the liquid bridge, varies with
different L/R0, in a similar manner to PEG20 (see photographs in

Figure S3 in the Supporting Information). The length of the filament
increases with increasing L/R0, and hence, a larger liquid volume is
enclosed below this necking point. Again, the filament lasts longer
with the increase in De, which further helps for the drainage. This
combined effect of the location of the necking point and drainage
produces smaller values of Tr at higher L/R0 and De.

Effects of stretching speed on liquid transfer are discussed in detail
in the Supporting Information, in Figure S4. For PEO solutions, our
results show that Tr does not increase significantly with increasing U
due to Ca ≤ 0.01.

Effect of Initial Bridge Shape. The influence of initial bridge
shape on liquid transfer is studied by varying the liquid volume
introduced with the pipette. This also plays a role in setting the initial
liquid contact angles. For a cylindrical-shaped liquid bridge, the liquid
volume is . Then, a dimensionless parameter, V̅, is defined as the
ratio of the actual liquid volume introduced to . The cylindrical-
shaped liquid bridge, for which V̅ = 1, and the associated contact
angle on the top disk, θT ≃ 90°, are illustrated in the inset of Figure
5a. V̅ is varied from 0.5 to 1.25, resulting in 55° ≲ θT ≲ 115°. In our
experiments, for V̅ < 0.5 or V̅ > 1.25, the bridge is found to be
unfeasible or unstable.

Four different types of fluids, such as water, PEG20, PEO1000, and
PEG20PEO1000, are used to characterize the effect of the initial
bridge shape on Tr. The liquid bridges, formed with R0 = 2 mm, are
stretched from L0/R = 0.66 to L/R = 2 at U = 0.134 m/s. The initial
bridge shape with the contact angles, θT < 90°, at the top disk is
similar to those in previous works,17,18,27,38 where slipping contact
lines were observed. However, in our case, the liquid contact lines are
pinned for all initial bridge shapes. The aqueous solutions have the
tendency to wet the hydrophilic stainless-steel disks. Clearly, PTFE
disks would lead to unpinning and sliding of the contact lines, which
in turn induce unwanted interface dynamics1,27 in the present study.
The obtained Tr results are plotted against the increasing V̅ in Figure
5a. It can be observed that Tr increases with an increase in V̅ for water
and PEG20. However, for PEO1000 and PEG20PEO1000 viscoelastic
solutions, the increase in V̅ has exactly the opposite effect, where Tr
decreases with an increase in V̅.

The effect of the initial bridge shape is further investigated, for
PEO1000, by measuring the mid-plane diameter, Dmid, of the initial
liquid bridge, for R0 = 2 and 3 mm, for all V̅ using image analysis. The
inset photographs illustrate different shapes of PEO1000 liquid
bridges formed for various V̅ with R0 = 3 mm when the top disk is at
L/R0 = 2. With an increase in V̅, a larger filament radius can be
observed, which enhances the gravitational drainage through the
filament. Note that this filament radius after stretching is related to
Rmid. Then, Tr is plotted in Figure 5b against the modified Bond
number calculated using Rmid, that is, Bom = ρgRmid

2/σ (see the inset
of Figure 5a for a sketch with Dmid). Other definitions of the Bond
number have been proposed.41,42 Here, a power law fit is obtained
with Tr ∝ Bom

−0.46 and a coefficient of determination of 0.92. This
results in Tr being proportional to Rmid

−0.92. For V̅ = 1, it was reported
that Tr decreases linearly with Bo (see Figure S1b in the Supporting
Information). However, when V̅; ≠ 1, the curvatures controlling the
Laplace pressures are changed, while the height, L0, and thus the
hydrostatic pressure, is not. Hence, a physics-based formulation for
the Bond number would be

Bo
gL

R/ /
0

mid

ρ
σ σ

* =
+

is the radius in the vertical plane (see the sketch in the inset of
Figure 5a), axisymmetric as a first approximation. As /σ changes
sign when V̅ varies around 1, Bo* ≃ ρgL0Rmid/σ. Our results on Bom
convert into Tr being close to a linear decrease with Bo*, rather than
Bo.

■ CONCLUSIONS
Liquid transfer for viscoelastic polymer solutions was studied
experimentally. Reference results using Newtonian liquids on
the effect of the initial and final aspect ratios have shown a

Figure 4. Tr as a function of De for different L/R0 using PEO
solutions. The liquid bridge, formed in between the two disks having
R0 = 2 mm is stretched from L0/R0 = 0.66 to different L/R0 at U =
0.08 m/s.
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linear decrease of transfer ratio. Then, the cylindrical-shaped
liquid capillary bridge, with pinned contact lines between two
parallel disks, was stretched for a range of polymer mass
fractions. The transfer ratio decreases with Deborah number
and can be explained by the gravitational draining enhanced by
the delayed filament thinning. The gravitational influence was
further studied by using different disk radii, and the results
show that transfer ratio decreases for viscoelastic fluids with
increasing disk radius, similar to Newtonian fluids. From the
printing point of view, smaller values of polymer mass fraction,
disk radius, and initial stretching height along with final
stretching height should be favored for larger liquid transfer.
For non-cylindrical-shaped bridges, the liquid transfer behavior
varies sensitively with the liquid volume introduced. Moreover,
the behavior of the transfer for Newtonian solutions increases
as a function of actual liquid volume introduced and decreases
with viscoelastic solutions. Then, the trend for results with
PEO1000 follows a power law with Bom

−0.46, where Bom is the
Bond number computed from the initial mid-plane radius.
Another Bond number, Bo*, with explicit curvatures could be
used but can have negative values. Hence, for future studies on
transfer ratio, the experimentally tractable Bom based on actual
radius Rmid is suggested.
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